Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4799-2021
https://doi.org/10.5194/essd-13-4799-2021
Data description paper
 | 
21 Oct 2021
Data description paper |  | 21 Oct 2021

GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery

Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Shiqi Tao, Qi Zhang, Mohsen Nabil, Fuyou Tian, José Bofana, Awetahegn Niguse Beyene, Abdelrazek Elnashar, Nana Yan, Zhengdong Wang, and Yiliang Liu

Data sets

GCI30: Global Cropping Intensity at 30m resolution Miao Zhang, Bingfang Wu, Hongwei Zeng, Guojin He, Chong Liu, Mohsen Nabil, Fuyou Tian, José Bofana, Zhengdong Wang, and Nana Yan https://doi.org/10.7910/DVN/86M4PO

Model code and software

The script of core GCI30 algorithm on Google Earth Engine Miao Zhang and Chong Liu https://code.earthengine.google.com/64f569c03f8fd633a896a3ec6f56b89a

Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Cropping intensity (CI) is essential for agricultural land use management, but fine-resolution global CI is not available. We used multiple satellite data on Google Earth Engine to develop a first 30 m resolution global CI (GCI30). GCI30 performed well, with an overall accuracy of 92 %. GCI30 not only exhibited high agreement with existing CI products but also provided many spatial details. GCI30 can facilitate research on sustained cropland intensification to improve food production.
Altmetrics
Final-revised paper
Preprint