Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3297-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3297-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses
TNO Geological Survey of the Netherlands, Utrecht, the Netherlands
Hung Van Pham
Division of Water Resources Planning and Investigation for the
South of Vietnam (DWRPIS), Ho Chi Minh City, Vietnam
Department of Physical Geography, Utrecht University, Utrecht, the
Netherlands
Gualbert H. P. Oude Essink
Department of Physical Geography, Utrecht University, Utrecht, the
Netherlands
Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the
Netherlands
Marc F. P. Bierkens
Department of Physical Geography, Utrecht University, Utrecht, the
Netherlands
Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the
Netherlands
Related authors
No articles found.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 4219–4239, https://doi.org/10.5194/hess-29-4219-2025, https://doi.org/10.5194/hess-29-4219-2025, 2025
Short summary
Short summary
This study combines the global hydrological model
PCRaster Global Water Balancewith the
World Food Studiescrop model to analyze feedbacks between hydrology and crop growth. It quantifies one-way and two-way interactions, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025, https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary
Short summary
The contribution of groundwater to groundwater-dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDE extent and health.
Jennie C. Steyaert, Edwin Sutanudjaja, Marc Bierkens, and Niko Wanders
EGUsphere, https://doi.org/10.5194/egusphere-2024-3658, https://doi.org/10.5194/egusphere-2024-3658, 2025
Short summary
Short summary
Using machine learning techniques and remotely sensed reservoir data, we develop a workflow to derive reservoir storage bounds. We put these bounds in a global hydrologic model, PCR-GLOBWB 2, and evaluate the difference between generalized operations (the schemes typically in global models) and this data derived method. We find that modelled storage is more accurate in the data derived operations. We also find that generalized operations over estimate storage and can underestimate water gaps.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Cited articles
An, T. D., Tsujimura, M., Le Phu, V., Kawachi, A., and Ha, D. T.: Chemical
characteristics of surface water and groundwater in Coastal Watershed,
Mekong Delta, Vietnam, Proc. Environ. Sci., 20, 712–721, 2014.
Archie, G. E.: The electrical resistivity log as an aid in determining some
reservoir characteristics, Petrol. T. AIME, 146, 54–62,
https://doi.org/10.2118/942054-G,
1942.
Bui, T. V., Ngo, D. C., Le, H. N., and Dang, V. T.: Assessment of Climate Change on
Groundwater Resources in Mekong Delta, Proposal of Adaptation Measures,
Division of Water Resources and Planning Investigation for the South of Viet
Nam, Ho Chi Minh City, Vietnam, 2013.
Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Pham Thi
Kim Trang, P. T. K., and Viet, P. H.: Contamination of drinking water resources in
the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population, Environ. Int., 34, 756–764,
https://doi.org/10.1016/j.envint.2007.12.025, 2008.
Caers, J.: Modeling uncertainty in the Earth Sciences.
Wiley-Blackwell, West-Sussex, UK, 229 pp., 2011.
Coleman J. M. and Roberts, H. H.: Deltaic coastal wetlands, in: Coastal Lowlands, edited by: Van der Linden,
W. J. M., Cloetingh, S. A. P. L., Kaasschieter, J. P. K., Van de Graaff, W. J. E.,
Vandenberghe, J., and Van der Gun, J. A. M., Springer,
Dordrecht, The Netherlands, 24 pp., https://doi.org/10.1007/978-94-017-1064-0_1, 1989.
Davis, J. C.: Statistics and data analysis in Geology, Wiley , New Jersey, 656 pp., 2002.
de Louw, P. G. B., Eeman, S., Siemon, B., Voortman, B. R., Gunnink, J., van Baaren, E. S., and Oude Essink, G. H. P.: Shallow rainwater lenses in deltaic areas with saline seepage, Hydrol. Earth Syst. Sci., 15, 3659–3678, https://doi.org/10.5194/hess-15-3659-2011, 2011.
Delsman, J. R., Hu-a-ng, K. R. M., Vos, P. C., de Louw, P. G. B., Oude Essink, G. H. P., Stuyfzand, P. J., and Bierkens, M. F. P.: Paleo-modeling of coastal saltwater intrusion during the Holocene: an application to the Netherlands, Hydrol. Earth Syst. Sci., 18, 3891–3905, https://doi.org/10.5194/hess-18-3891-2014, 2014.
Deutsch, C. V. and Journel, A. G.: GSLIB: Geostatistical Software Library and
User's guide, 2nd edn., Oxford University Press, New York, 369 pp.,
1998.
Deutsch, C. V.: Geostatistical Reservoir Modeling, Oxford University press,
New York, 376 pp., 2002.
Doan, N. T., Bui, T. V., and Bui, S. C.: Remapping the Hydrogeological Map in
Southern Part of Vietnam, Scale 1 : 200 000, Division of Water Resources and
Planning Investigation for the South of Viet Nam, Ho Chi Minh City, Vietnam,
2016.
Erban, L. E., Gorelick, S. M., Zebker, H. A., and Fendorf, S.: Release of
arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to
pumping-induced land subsidence, P. Natl. Acad. Sci. USA, 110, 13751–13756, https://doi.org/10.1073/pnas.1300503110, 2013.
Erban, L. E., Gorelick, S. M., and Zebker, H. A.: Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam, Environ. Res. Lett., 9, 091002, https://doi.org/10.1088/1748-9326/9/8/084010,
2014.
Faneca Sànchez, M., Gunnink, J. L., van Baaren, E. S., Oude Essink, G. H. P., Siemon, B., Auken, E., Elderhorst, W., and de Louw, P. G. B.: Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements, Hydrol. Earth Syst. Sci., 16, 4499–4516, https://doi.org/10.5194/hess-16-4499-2012, 2012.
Faneca Sànchez, M., Bashar, K., Janssen, G. M. C. M., Vogels, M., Snel, J.,
Zhou, Y., Stuurman, R. J., and Oude Essink, G. H. P.: SWIBANGLA: Managing salt water intrusion impacts in coastal groundwater systems of
Bangladesh, Technical Report, Deltares, Utrecht, the Netherlands, https://doi.org/10.13140/2.1.1793.1042, 2015.
Fitts, C. R.: Groundwater Science, Academic Press, London, UK, 450 pp., 2002.
Giosan, L. L., Syvitski, J. P. M., Constantinescu, S., and Day, J. W.: Protect the
worlds delta's, Nature, 516, 31–33, https://doi.org/10.1038/516031a, 2014.
Goovaerts, P.: Geostatistics for Natural Resources Evaluation, Oxford
University Press, New York, 512 pp., 1997.
Goovaerts, P.: Geostatistical modeling of uncertainty in soil science,
Geoderma, 103, 3–26, https://doi.org/10.1016/S0016-7061(01)00067-2, 2001.
Goovaerts, P.: AUTO-IK: A 2D indicator program for the automated
non-parametric modeling of local uncertainty in earth sciences, Comput. Geosci., 35, 1255–1270, https://doi.org/10.1016/j.cageo.2008.08.014, 2009.
Gunnink, J. L., Pham, H. V., Oude Essink, G. H. P., and Bierkens, M. F. P.: 3D
Hydrogeological and TDS model of the Mekong delta, Vietnam, Zenodo, https://doi.org/10.5281/zenodo.4441776, 2021.
Hamer, T., Dieperink, C., Van Pham Dang Tri, Otter, H. S., and Hoekstra, P.: The
rationality of groundwater governance in the Vietnamese Mekong Delta's
coastal zone, Int. J. Water Resour. D., 36,
127–148, https://doi.org/10.1080/07900627.2019.1618247, 2019.
Hoang, D. N.: Geostatistical tools for better characterization of the
groundwater quality – case studies for the coastal Quaternary aquifers in
the Nam Dinh area, Vietnam, PhD thesis, Greifswald, Germany, 2008.
Huntley, D.: Relations between permeability and electrical resistivity in
granular aquifers, Groundwater, 24, 466–474, https://doi.org/10.1111/j.1745-6584.1986.tb01025.x, 1986.
Jenn, F., Hanh, H. T., Nam, L. H., Pechstein, A., and Thy, N. T. A.: Baseline Study Cà Mau; Review of studies on groundwater
resources in Ca Mau Province, IGPVN Technical Report III-2, Hannover,
Germany, 2017.
Johnson, A. I.: Drainable porosity – compilation of drainable porosities for
various materials, United States Government Printing Office, Washington, Geological Survey water-supply paper 1662-D, 1967.
Journel, A. G.: Nonparametric-estimation of spatial distributions,
Math. Geol., 15, 440-5-468, https://doi.org/10.1007/BF01031292, 1983.
Journel, A. G. and Huijbregts, Ch. J.: Mining Geostatistics, Academic Press,
London, 1978.
Larsen, F., Tran, L. V., Hoang, H. Van, Tran, T. L., Christiansen, A. V., and Pham,
N. Q.: Groundwater salinity influenced by Holocene seawater trapped in
incised valleys in the Red River delta plain, Nat. Geosci. 10, 376–381,
https://doi.org/10.1038/ngeo2938, 2017.
Li, J. and Heap, A. D.: A Review of Spatial Interpolation Methods for
Environmental Scientists, Geoscience Australia, Record 2008/23, 137 pp.,
2008.
Minderhoud, P. S. J., Erkens, G., Van Hung, P., Vuong, B. T., Erban, L. E.,
Kooi, H., and Stouthamer, E.: Impacts of 25 years of groundwater extraction
on subsidence in the Mekong delta, Vietnam, Environ. Res. Lett., 12, 064006,
https://doi.org/10.1088/1748-9326/aa7146, 2017.
Minderhoud, P. S. J., Coumou, L., Erkens, G., Middelkoop, H., and Stouthamer, E.:
Mekong delta much lower than previously assumed in sea-level rise impact
assessments, Nat. Commun., 10, 3847, https://doi.org/10.1038/s41467-019-11602-1, 2019.
Nguyen, H. T. and Gupta, A. D.: Assessment of water resources and salinity
intrusion in the Mekong Delta, Water Int., 26, 86–95, https://doi.org/10.1080/02508060108686889, 2001.
Nguyen, H. D., Tran, V. K., Trinh, N. T., Pham, H. L., and Le, D. N.: Research of
geological structure and classification of N-Q sediments in Vietnamese
Mekong Delta, Division of Geology and Minerals of the South of Viet Nam, Ho
Chi Minh City, Viet Nam, 2004.
Pechstein, A., Hanh, H. T., Orilski, J., Nam, L. H., and Manh, L. V.: Detailed
investigation on the hydrological situation in Ca Mau Province, Mekong
Delta, Vietnam, Technical report III-5, Project: Improvement of Groundwater
Protection in Vietnam (IGPVN), 2018.
Pham, V. H., Van Geer, F. C., Tran, V. B., Dubelaar, W., and Oude Essink, G. H. P.:
Paleo-hydrogeological reconstruction of the fresh-saline groundwater
distribution in the Vietnamese Mekong Delta since the late Pleistocene, J.
Hydrol. Reg. Stud., 23, 100594, https://doi.org/10.1016/j.ejrh.2019.100594, 2019.
Rahman, M. M., Penny, G., Mondal, M. S., Zaman, M. H., Kryston, A., Salehin,
M., Nahar, Q., Islam, M. S., Bolster, D., Tank, J. L., and Müller, M. F.:
Salinization in large river deltas: Drivers, impacts and socio-hydrological
feedbacks, Water Secur. 6, 100024, https://doi.org/10.1016/j.wasec.2019.100024, 2019.
Renaud, F. G. and Kuenzer, C.: The Mekong Delta System; Interdisciplinary
Analyses of a River Delta, Springer Environmental Science and Engineering,
466 pp. https://doi.org/10.1007/978-94-007-3962-8, 2012.
Saisna, M., Dubois, G., Chaloulakou, A., Spyrellis, N.: Classification
criteria and probability risks maps: limitations and perspectives, Environ.
Sci. Technol, 38, 1275–1281, https://doi.org/10.1021/es034652+, 2004.
Shrestha, S., Bach, T. V., and Pandey, V. P.: Climate change impacts on
groundwater resources in Mekong Delta under representative concentration
pathways (RCPs) scenarios, Environ. Sci. Policy, 61, 1–13, https://doi.org/10.1016/j.envsci.2016.03.010, 2016.
Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., and Stavroulakis, G.:
Estimation of aquifer hydraulic parameters from sirficial geophysical
methods: A case study of Keritis Basin in Chania (Crete – Greece), J. Hydrol., 338, 122–131, https://doi.org/10.1016/j.jhydrol.2007.02.028, 2007.
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J. W., Vörösmarty, C. J., Saito, Y., Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/ngeo629, 2009.
Tam, V. T., Batelaan, O., Le, T. T., and Nhan, P. Q.: Three-dimensional
hydrostratigraphical modeling to support evaluation of recharge and
saltwater intrusion in a coastal groundwater system in Vietnam, Hydrogeol.
J., 22, 1749–1762, https://doi.org/10.1007/s10040-014-1185-2, 2014.
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I.,
Aizenman, H., Syvitski, J. P. M., and Foufoula-Georgiou, E.: Profiling risk and sustainability in coastal deltas of the world, Science, 349, 638–643, https://doi.org/10.1126/science.aab3574, 2015.
TNO-IGG: Introduction to geophysical well logs, a practical course for
groundwater studies, TNO Instituut voor Grondwater en Geo-Energie, Delft, 1992 (in
Dutch).
Tran, L. T., Larsen, F., Pham, N. Q., Christiansen, A. V., Tran, N., Vu, H. V.,
Tran, L. V., Hoang, H. V., and Hinsby, K.: Origin and extent of fresh
groundwater, salty paleowaters and recent saltwater intrusions in Red River
flood plain aquifers, Vietnam, Hydrogeol. J., 20, 1295–1313, https://doi.org/10.1007/s10040-012-0874-y, 2012.
van Engelen, J., Verkaik, J., King, J., Nofal, E. R., Bierkens, M. F. P., and Oude Essink, G. H. P.: A three-dimensional palaeohydrogeological reconstruction of the groundwater salinity distribution in the Nile Delta Aquifer, Hydrol. Earth Syst. Sci., 23, 5175–5198, https://doi.org/10.5194/hess-23-5175-2019, 2019.
Van, T. P. and Koontanakulvong, S.: Estimation of Groundwater Use Pattern
and Distribution in the Coastal Mekong Delta, Vietnam via Socio-Economical
Survey and Groundwater Modelling, Eng. J., 23, 487–499,
https://doi.org/10.4186/ej.2019.23.6.487, 2019.
Wada, Y., Van Beek, L. P. H., Viviroli, D., Dürr, H. H.,
Weingartner, R., and Bierkens, M. F. P.: Global monthly water stress: 2. Water
demand and severity of water stress, Water Resour. Res., 47, W07518,
https://doi.org/10.1029/2010WR009792, 2011.
Wagner, F., Tran, V. B., and Renaud, F. G.: Groundwater resources in
the Mekong Delta: availability, utilization and risks, chap. 7, in: The Mekong Delta System, edited by: Kuenzer, C., Springer, Dordrecht, 201–220, https://doi.org/10.1007/978-94-007-3962-8_7, 2012.
Worthington, P. F.: The uses and abuses of the Archie equations: 1. The
formation factor–porosity relationship, J. Appl. Geophys., 30,
215–228, https://doi.org/10.1016/0926-9851(93)90028-W, 1993.
Zamrsky, D., Oude Essink, G. H. P., and Bierkens, M. F. P.: Estimating the thickness of unconsolidated coastal aquifers along the global coastline, Earth Syst. Sci. Data, 10, 1591–1603, https://doi.org/10.5194/essd-10-1591-2018, 2018.
Zamrsky, D., Karssenberg, M. E., Cohen, K. M., Bierkens, M. F. P., Oude Essink, G. H. P.: Geological heterogeneity of coastal unconsolidated groundwater systems worldwide and its influence on offshore fresh groundwater
occurrence, Front. Earth Sci., 7, 339, https://doi.org/10.3389/feart.2019.00339, 2020.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(12951 KB) - Full-text XML
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial...
Altmetrics
Final-revised paper
Preprint