Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-2147-2021
https://doi.org/10.5194/essd-13-2147-2021
Data description paper
 | 
19 May 2021
Data description paper |  | 19 May 2021

Long-term trends of ambient nitrate (NO3) concentrations across China based on ensemble machine-learning models

Rui Li, Lulu Cui, Yilong Zhao, Wenhui Zhou, and Hongbo Fu

Related authors

Enhanced emission of intermediate/semi-volatile organic matters in both gas and particle phases from ship exhausts with low-sulfur fuels
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3433,https://doi.org/10.5194/egusphere-2024-3433, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
New insights into the nonlinear effects of NOx on SOA formation from isoprene photo-oxidation
Xinbei Xu, Yining Gao, Si Zhang, Luyao Chen, Rongjie Li, Zheng Li, Rui Li, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3046,https://doi.org/10.5194/egusphere-2024-3046, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631,https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024,https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024,https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary

Related subject area

Atmospheric chemistry and physics
CREST: a Climate Data Record of Stratospheric Aerosols
Viktoria F. Sofieva, Alexei Rozanov, Monika Szelag, John P. Burrows, Christian Retscher, Robert Damadeo, Doug Degenstein, Landon A. Rieger, and Adam Bourassa
Earth Syst. Sci. Data, 16, 5227–5241, https://doi.org/10.5194/essd-16-5227-2024,https://doi.org/10.5194/essd-16-5227-2024, 2024
Short summary
Multiyear high-temporal-resolution measurements of submicron aerosols at 13 French urban sites: data processing and chemical composition
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaële Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data, 16, 5089–5109, https://doi.org/10.5194/essd-16-5089-2024,https://doi.org/10.5194/essd-16-5089-2024, 2024
Short summary
Large synthesis of in situ field measurements of the size distribution of mineral dust aerosols across their life cycles
Paola Formenti and Claudia Di Biagio
Earth Syst. Sci. Data, 16, 4995–5007, https://doi.org/10.5194/essd-16-4995-2024,https://doi.org/10.5194/essd-16-4995-2024, 2024
Short summary
A 10 km daily-level ultraviolet-radiation-predicting dataset based on machine learning models in China from 2005 to 2020
Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng
Earth Syst. Sci. Data, 16, 4655–4672, https://doi.org/10.5194/essd-16-4655-2024,https://doi.org/10.5194/essd-16-4655-2024, 2024
Short summary
GHOST: a globally harmonised dataset of surface atmospheric composition measurements
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024,https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Chen, H., Li, D., Gurmesa, G. A., Yu, G., Li, L., Zhang, W., Fang, H., and Mo, J.: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis, Environ. Pollut., 206, 352–360, https://doi.org/10.1016/j.envpol.2015.07.033, 2015. 
Chen, J., Yin, J., Zang, L., Zhang, T., and Zhao, M.: Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari-8 aerosol optical depth data, Sci. Total Environ., 697, 134021, https://doi.org/10.1016/j.scitotenv.2019.134021, 2019. 
Chen, Z., Chen, D., Kwan, M.-P., Chen, B., Gao, B., Zhuang, Y., Li, R., and Xu, B.: The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017, Atmos. Chem. Phys., 19, 13519–13533, https://doi.org/10.5194/acp-19-13519-2019, 2019. 
Chen, Z. Y., Zhang, R., Zhang, T. H., Ou, C. Q., and Guo, Y.: A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China, Sci. Total Environ., 690, 556–564, https://doi.org/10.1016/j.scitotenv.2019.06.349, 2019. 
Download
Short summary
A unique monthly NO3− dataset at 0.25° resolution over China during 2005–2015 was developed by assimilating multi-source variables. The newly developed product featured an excellent cross-validation R2 value (0.78) and relatively lower RMSE (1.19 μg N m−3) and mean absolute error (MAE: 0.81 μg N m−3). The dataset also exhibited relatively robust performance at the spatial and temporal scales. The dataset over China could deepen knowledge of the status of N pollution in China.
Altmetrics
Final-revised paper
Preprint