Articles | Volume 13, issue 5
https://doi.org/10.5194/essd-13-2147-2021
https://doi.org/10.5194/essd-13-2147-2021
Data description paper
 | 
19 May 2021
Data description paper |  | 19 May 2021

Long-term trends of ambient nitrate (NO3) concentrations across China based on ensemble machine-learning models

Rui Li, Lulu Cui, Yilong Zhao, Wenhui Zhou, and Hongbo Fu

Related authors

Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025,https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Heterogeneous impacts of fire-sourced ozone (O3) pollution on global crop yields in the future climate scenarios
Rui Li, Dongmei Tang, Yumeng Shao, Yining Gao, and Hongfang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-847,https://doi.org/10.5194/egusphere-2025-847, 2025
Short summary
Different response characteristics of ambient hazardous trace metals and health impacts to global emission reduction
Wenwen Sun, Xing Liu, and Rui Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-2080,https://doi.org/10.5194/egusphere-2025-2080, 2025
Short summary
Measurement Report: Polycyclic aromatic hydrocarbons (PAHs) and their alkylated (RPAHs), nitrated (NPAHs) and oxygenated (OPAHs) derivatives in the global marine atmosphere: occurrence, spatial variations, and source apportionment
Rui Li, Yubing Shen, Yumeng Shao, Yining Gao, Ziwei Yao, Qian Liu, Xing Liu, and Guitao Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3740,https://doi.org/10.5194/egusphere-2024-3740, 2025
Short summary
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: insights from high-resolution measurements and modeling
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
Atmos. Chem. Phys., 25, 905–921, https://doi.org/10.5194/acp-25-905-2025,https://doi.org/10.5194/acp-25-905-2025, 2025
Short summary

Related subject area

Atmospheric chemistry and physics
Aerosol single-scattering albedo derived by merging OMI/POLDER satellite products and AERONET ground observations
Yueming Dong, Jing Li, Zhenyu Zhang, Chongzhao Zhang, and Qiurui Li
Earth Syst. Sci. Data, 17, 3873–3892, https://doi.org/10.5194/essd-17-3873-2025,https://doi.org/10.5194/essd-17-3873-2025, 2025
Short summary
Remote sensing measurements during PaCE 2022 campaign
Simo Tukiainen, Tuomas Siipola, Niko Leskinen, and Ewan O'Connor
Earth Syst. Sci. Data, 17, 3797–3806, https://doi.org/10.5194/essd-17-3797-2025,https://doi.org/10.5194/essd-17-3797-2025, 2025
Short summary
Biologically effective daily radiant exposure for erythema appearance, previtamin D3 synthesis, and clearing of psoriatic lesions derived from erythemal broadband meters at Belsk, Poland, for the period 1976–2023
Janusz W. Krzyścin, Agnieszka Czerwińska, Bonawentura Rajewska-Więch, Janusz Jarosławski, Piotr S. Sobolewski, and Izabela Pawlak
Earth Syst. Sci. Data, 17, 3757–3775, https://doi.org/10.5194/essd-17-3757-2025,https://doi.org/10.5194/essd-17-3757-2025, 2025
Short summary
Global high-resolution fire-sourced PM2.5 concentrations for 2000–2023
Yonghang Hu, Chenguang Tian, Xu Yue, Yadong Lei, Yang Cao, Rongbin Xu, and Yuming Guo
Earth Syst. Sci. Data, 17, 3741–3756, https://doi.org/10.5194/essd-17-3741-2025,https://doi.org/10.5194/essd-17-3741-2025, 2025
Short summary
A high-resolution divergence and vorticity dataset in Beijing derived from radar wind profiler mesonet measurements
Xiaoran Guo, Jianping Guo, Deli Meng, Yuping Sun, Zhen Zhang, Hui Xu, Liping Zeng, Juan Chen, Ning Li, and Tianmeng Chen
Earth Syst. Sci. Data, 17, 3541–3552, https://doi.org/10.5194/essd-17-3541-2025,https://doi.org/10.5194/essd-17-3541-2025, 2025
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. 
Chen, H., Li, D., Gurmesa, G. A., Yu, G., Li, L., Zhang, W., Fang, H., and Mo, J.: Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis, Environ. Pollut., 206, 352–360, https://doi.org/10.1016/j.envpol.2015.07.033, 2015. 
Chen, J., Yin, J., Zang, L., Zhang, T., and Zhao, M.: Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari-8 aerosol optical depth data, Sci. Total Environ., 697, 134021, https://doi.org/10.1016/j.scitotenv.2019.134021, 2019. 
Chen, Z., Chen, D., Kwan, M.-P., Chen, B., Gao, B., Zhuang, Y., Li, R., and Xu, B.: The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017, Atmos. Chem. Phys., 19, 13519–13533, https://doi.org/10.5194/acp-19-13519-2019, 2019. 
Chen, Z. Y., Zhang, R., Zhang, T. H., Ou, C. Q., and Guo, Y.: A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China, Sci. Total Environ., 690, 556–564, https://doi.org/10.1016/j.scitotenv.2019.06.349, 2019. 
Download
Short summary
A unique monthly NO3− dataset at 0.25° resolution over China during 2005–2015 was developed by assimilating multi-source variables. The newly developed product featured an excellent cross-validation R2 value (0.78) and relatively lower RMSE (1.19 μg N m−3) and mean absolute error (MAE: 0.81 μg N m−3). The dataset also exhibited relatively robust performance at the spatial and temporal scales. The dataset over China could deepen knowledge of the status of N pollution in China.
Share
Altmetrics
Final-revised paper
Preprint