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Abstract. High loadings of nitrate (NO−3 ) in the aerosol over China significantly exacerbate the air quality
and pose a great threat to ecosystem safety through dry–wet deposition. Unfortunately, limited ground-level ob-
servation data make it challenging to fully reflect the spatial pattern of NO−3 levels across China. Until now,
long-term monthly particulate NO−3 datasets at a high resolution were still missing, which restricted the assess-
ment of human health and ecosystem safety. Therefore, a unique monthly NO−3 dataset at 0.25◦ resolution over
China during 2005–2015 was developed by assimilating surface observations, satellite products, meteorological
data, land use types and other covariates using an ensemble model combining random forest (RF), gradient-
boosting decision tree (GBDT), and extreme gradient-boosting (XGBoost) methods. The new developed prod-
uct featured an excellent cross-validation R2 value (0.78) and relatively lower root-mean-square error (RMSE:
1.19 µgNm−3) and mean absolute error (MAE: 0.81 µgNm−3). Besides, the dataset also exhibited relatively
robust performance at the spatial and temporal scales. Moreover, the dataset displayed good agreement with
(R2
= 0.85, RMSE= 0.74 µgNm−3, and MAE= 0.55 µgNm−3) some unlearned data collected from previous

studies. The spatiotemporal variations in the developed product were also shown. The estimated NO−3 concentra-
tion showed the highest value in the North China Plain (NCP) (3.55± 1.25 µgNm−3); followed by the Yangtze
River Delta (YRD) (2.56±1.12 µgNm−3), Pearl River Delta (PRD) (1.68±0.81 µgNm−3), and Sichuan Basin
(1.53± 0.63 µgNm−3), and the lowest one in the Tibetan Plateau (0.42± 0.25 µgNm−3). The higher ambient
NO−3 concentrations in the NCP, YRD, and PRD were closely linked to the dense anthropogenic emissions. Apart
from the intensive human activities, poor terrain condition might be a key factor for the serious NO−3 pollution in
the Sichuan Basin. The lowest ambient NO−3 concentration in the Tibetan Plateau was contributed by the scarce
anthropogenic emission and favourable meteorological factors (e.g. high wind speed). In addition, the ambient
NO−3 concentration showed a marked increasing tendency of 0.10 µgNm−3 yr−1 during 2005–2014 (p < 0.05),
while it decreased sharply from 2014 to 2015 at a rate of −0.40 µgNm−3 yr−1 (p < 0.05). The ambient NO−3
levels in Beijing–Tianjin–Hebei (BTH), YRD, and PRD displayed gradual increases at a rate of 0.20, 0.11, and
0.05 µgNm−3 yr−1 (p < 0.05) during 2005–2013, respectively. The gradual increases in NO−3 concentrations in
these regions from 2005 to 2013 were due to the fact that the emission reduction measures during this period
focused on the reduction of SO2 emission rather than NOx emission and the rapid increase in energy consump-
tion. Afterwards, the government further strengthened these emission reduction measures and thus caused the
dramatic decreases in NO−3 concentrations in these regions from 2013 to 2015 (p < 0.05). The long-term NO−3
dataset over China could greatly deepen the knowledge about the impacts of emission reduction measures on
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air quality improvement. The monthly particulate NO−3 levels over China during 2005–2015 are open access at
https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020c).

1 Introduction

Reactive nitrogen (Nr) emissions displayed remarkable in-
creases in the past decades owing to high-speed industrial
development and urbanisation (Cui et al., 2016; Singh et
al., 2017). Ambient reactive N emissions were mainly char-
acterised with nitrogen oxides (NOx), accounting for about
30 % of the gross Nr emissions (Chen et al., 2015; Liu et al.,
2011). These important N-bearing precursors could be trans-
formed into the nitrate (NO−3 ) via multiple chemical path-
ways (e.g. heterogeneous or liquid phase reaction) and fi-
nally deposited in the terrestrial or aquatic ecosystem (Jia
et al., 2016; Qiao et al., 2015; Zhao et al., 2017). On the
one hand, heavy loadings of NO−3 greatly degraded the at-
mospheric visibility and cool the surface of the Earth system
because particulate NO−3 significantly scattered solar radi-
ation (Fu and Chen, 2017). Moreover, enhanced N deposi-
tion might pose a negative effect on the ecosystem health
such as biodiversity losses, freshwater eutrophication, and
oceanic acidification (Compton et al., 2011; Erisman et al.,
2013). Hence, deepening knowledge about the spatial pat-
terns and long-term trends of particulate NO−3 in the atmo-
sphere is beneficial to accurately evaluate the ecological and
environmental effects of N deposition.

Ground-level observation is often acknowledged to be an
effective means to explore the spatial patterns of ambient
NO−3 concentrations. Many long-term monitoring networks
including the Clean Air Status and Trends Network (CAST-
NET) and the Canadian Air and Precipitation Monitoring
Network (CAPMoN) were established to quantify the am-
bient NO−3 concentration and inorganic N deposition. Du et
al. (2014) revealed that the NO−3 deposition showed signif-
icant decrease across the United States during 1985–2012
based on these observation data. To date, most of these ob-
servation networks focused on North America and Europe,
whereas few monitoring sites were located in East Asia, es-
pecially in China. Fortunately, China has constructed some
ground-level observation networks such as the CARE-China
observation network in recent years. On the basis of these ob-
servation networks, the overall spatiotemporal trend of par-
ticulate NO−3 concentration has been clarified (Y. Wang et
al., 2019b; Xu et al., 2018a). Xu et al. (2018a) observed that
the particulate NO−3 concentration (< 4.5 µm) over China did
not show significantly temporal variation during 2011–2015.
Very recently, Y. Wang et al. (2019a) found that the NO−3
level in fine particulate matter (PM2.5) decreased by 34 %
during 2015–2017. Although the overall spatial patterns have
been preliminarily revealed based on these isolated sites,
these sparse ground-observed sites did not accurately reflect

the high-resolution NO−3 pollution, especially the regions far
away from these sites, because each station only possessed
limited spatial representation, and NO−3 concentration was
often highly variable in space and time (L. Liu et al., 2017).
More importantly, the current studies only investigated the
ambient NO−3 concentrations in recent years, while the long-
term variation in NO−3 level remained unknown. It was well
known that the energy consumption in China has displayed
a remarkable increase in recent decades (Zhan et al., 2018a).
Meanwhile, the Chinese government has also proposed pol-
lutant emission reduction policies since 2005 to ensure the
coordinated development of economic growth and environ-
mental protection (Ma et al., 2019). However, the synergistic
effects of air pollution control policies and increased energy
consumption on the long-term evolution trend of NO−3 pollu-
tion over China, which were extremely critical for the imple-
mentation of emission control measures, were not assessed
yet.

To complement the gaps of ground-level observations, the
satellite product of NO2 is regarded as a welcome addition
to investigate the long-term trends of N-bearing components
in the atmosphere. Ozone Monitoring Instrument (OMI) was
regarded as the typical satellite product applied to simulate
the ambient NO−3 concentration (X. Liu et al., 2017; Vrek-
oussis et al., 2013). Jia et al. (2016) first used the linear re-
gression method to predict the NO−3 levels and dry deposition
fluxes at the global scale based on OMI-derived NO2 column
amount. However, the dry deposition fluxes of NO−3 mod-
elled by Jia et al. (2016) showed weak correlation with the
measured value (R = 0.47), which might be attributable to
the simple linear assumption between NO2 column amount
and NO−3 deposition flux. It was well documented that the
nonlinearity relationship between multiple predictors and
NO−3 concentration was hard to reveal on the basis of the
simple linear model (Zhan et al., 2018a, b). To enhance the
predictive performance of NO−3 concentration, L. Liu et al.
(2017) used the chemical transport models (CTMs) to esti-
mate the dry deposition fluxes of N-bearing species recently
based on the remotely sensed NO2 column amount. How-
ever, CTMs often suffered from high uncertainty because
of the limited knowledge about the generation pathways for
particulate NO−3 in the atmosphere (Zhan et al., 2018a). Re-
cently, the emergence of machine learning models provided
unprecedented opportunities to estimate the concentrations
of N-bearing components (Z. Y. Chen et al., 2019; Zhan et al.,
2018b). It was well known that the machine-learning mod-
els generally showed better predictive accuracy than CTMs
and traditional statistical models when the training samples
were sufficient (Zang et al., 2019; Zhan et al., 2017). Zhan
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et al. (2018b) employed random forest (RF) coupled with a
spatiotemporal kriging model to simulate the ambient NO2
levels over China and achieved moderate modelling perfor-
mance (R2

= 0.62). Afterwards, J. Chen et al. (2019) used
the extreme gradient-boosting (XGBoost) model combined
with the kriging-calibrated satellite method to estimate the
national NO2 concentration and significantly improved the
predictive performance (R2

= 0.85). Until now, no study has
utilised machine-learning models to significantly improve
predictive accuracy of NO−3 concentration. Moreover, nearly
all of the current studies only focused on the spatial pattern
of particulate NO−3 level in China (L. Liu et al., 2017; Jia
et al., 2016), while they cannot establish a long-term NO−3
dataset across China.

Here, we first developed a high-resolution (0.25◦) monthly
particulate NO−3 dataset across China during 2005–2015
based an ensemble model including RF, XGBoost, and
gradient-boosting decision tree (GBDT) algorithms. At first,
the modelling performance and improvement of this newly
developed product compared with previous datasets were
evaluated. Afterwards, we analysed the spatial variation and
long-term evolution trend of estimated NO−3 concentration
over China and explored the potential impacts of air pollu-
tion control measures on NO−3 variation. The long-term NO−3
datasets could supply scientific evidence for policy makers to
mitigate the severe nitrate pollution in China.

2 Input data

2.1 Ground-level NO−
3

data

The monthly NO−3 monitoring data during 2010–2015 were
collected from the Nationwide Nitrogen Deposition Monitor-
ing Network (NNDMN) including 32 sites (Figs. 1, S1, and
S2 in the Supplement), and these sites could be divided into
three types including urban, rural, and background sites (Xu
et al., 2018a). Ambient concentrations of particulate NO−3
were determined on the basis of an active DEnuder for Long-
Term Atmospheric sampling system (DELTA). The system
comprises a pump, a filter sampling instrument, and a dry
gas meter with high sensitivity. Two sets of filters in a two-
stage filter pack were applied to sample the aerosol parti-
cles, first with a K2CO3/glycerol-impregnated filter to obtain
NO−3 particles in PM10. All of the monitoring sites kept the
same sampling frequency at the month scale, and these sam-
ples were continuously collected over a month. The detailed
sampling and analysis procedures have been described by Xu
et al. (2018a, 2019). The detection limit of particulate NO−3
concentration over China is 0.01 mgNL−1.

2.2 Satellite product of NO2 column density

The OMI-NO2 level-3 tropospheric column densities (0.25◦

resolution) were used to predict the NO−3 concentration
(Fig. S3 in the Supplement). The OMI aboard the Aura satel-

Figure 1. Spatial distributions of ground-level NO−3 monitor-
ing sites used for model establishment. Red circles represent the
ground-level sites during 2010–2015. The colour map denotes the
elevation distribution across China.

lite has been available since September 2004, which dis-
played global coverage and crossed the entire Earth each day.
OMI possessed three spectral channels ranging from 270 to
500 nm and thus was often applied to monitor gaseous pollu-
tants such as NO2, SO2, and O3.

In this study, we downloaded the daily NO2 columns dur-
ing 2005–2015 from https://earthdata.nasa.gov/ (last access:
31 July 2020). The tropospheric NO2 column density data of
poor quality (e.g. cloud radiance fraction > 0.5, solar zenith
angles > 85◦, and terrain reflectivity > 30 %) should be re-
moved. Additionally, the cross-track pixels sensitive to sig-
nificant row anomalies must also be deleted. Finally, the
monthly NO2 columns were estimated by averaging the daily
NO2 columns.

2.3 Meteorological factors, land use types, and other
variables

These independent variables for particulate NO−3 estimates
were gained from multiple sources. The daily meteorologi-
cal data (European Centre for Medium-Range Weather Fore-
casts reanalysis (ECMWF ERA-Interim) datasets (0.25◦ res-
olution)) were downloaded from the website of http://www.
ecmwf.int/ (last access: 31 July 2020) (Table S1 in the Sup-
plement). Among all of the daily meteorological data in
ECMWF, 2 m temperature (T2m), 2 m dew point temperature
(D2m), 10 m latitudinal wind component (U10), 10 m merid-
ional wind component (V10), sunshine duration (Sund), sur-
face pressure (Sp), boundary layer height (BLH), and total
precipitation (Tp) were applied to estimate national NO−3
levels. The elevation, gross domestic production (GDP),
and population density (PD) data over China were down-
loaded from the website of http://www.resdc.cn/ (last access:
31 July 2020). PD and GDP in 1995, 2000, 2005, 2010, and
2015 were linearly interpolated to calculate PD and GDP in
each year. Then, the yearly GDP data were divided by 12
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to estimate the monthly GDP. Afterwards, these data were
incorporated into the sub-model to predict the particulate
NO−3 concentration over China. In addition, the land use data
(e.g. grassland, forest, urban, and agricultural land) were also
downloaded from the website of http://www.resdc.cn/.

These independent variables collected from various
sources were uniformly resampled to 0.25◦× 0.25◦ grids.
For instance, the land use area, GDP, and PD in the 0.25◦

grid were calculated based on the area-weighted average al-
gorithm. To ensure better predictive performance, it was nec-
essary to employ the appropriate variable selection method
to remove some redundant predictors. The basic principle
of the variable choice was to remove the variables with the
lower importance values. The variables could be regarded as
the redundant ones when the R2 value of the final model
showed a dramatic decrease after removing them. Based on
this method, in the final sub-model, all of the variables ex-
cept GDP, PD, and grassland have been applied to estimate
the ambient NO−3 concentrations across China.

3 Methods

3.1 Ensemble model development

In the previous studies concerning air pollution prediction,
RF, gradient-boosting decision tree (GBDT) and extreme
gradient-boosting (XGBoost) showed good predictive per-
formance (Li et al., 2020a). The RF model possesses a large
number of decision trees, and each one suffered from an inde-
pendent sampling process, and these trees displayed the same
distribution (Breiman, 2001). This model generally shows
the higher prediction accuracy due to the injected random-
ness. The model performance mainly relies on the number
of trees, the variable group, and the splitting features. The
detailed algorithms are shown as follows.

f (x)=
Z∑

z=1
czI (x ∈Mz) (1)

1
cz =mean(yi | xi ∈Mz) (2)
L1(m,n)= {X |Xj ≤ n} and L2(m,n)= {X |Xj > n} (3)

min
m,n

[
min

∑
M1(m,n)

(y− c1)2
+min

∑
M2(m,n)

(y− c2)2

]
(4)

1
c1 =mean(yi | xi ∈M1(m,n)) and (5)
1
c2 =mean(yi | xi ∈M2(m,n))

Here (xi , yi) denotes the sample for i = 1,2, . . .,N in M re-
gions (M1,M2, . . .,Mz); I denotes the weight of each branch;
L denotes the branch of decision tree; cm represents the re-

sponse to the model;
1
cz denotes the best value, m represents

the feature variable; c1 denotes the mean value of the left
branch; c2 denotes the mean value of the right branch and n

is the split point.

The GBDT model is often considered to be a typical boost-
ing method. Compared with the RF model, each classifier is
applied to decrease the residual of the last round. The de-
tailed equations are as follows.

ctj = argmin
∑

xi∈Rtj

L(yi,ft−1(xi)+ c) (6)

ft (x)= ft−1(x)+
J∑

j=1
ctj I (7)

ctj denotes the predicted estimation error in the last round,
Rtj denotes each leaf node for the decision trees, yi repre-
sents the observed value, and ft−1(xi) is the predicted value
in the last round. c was regarded as the optimal value when
ctj reaches the lowest value.

The XGBoost method is an updated version of the GBDT
model, and loss functions are expanded to the second-order
function. On the basis of the pioneering studies (J. Chen et
al., 2019), XGBoost generally shows an excellent perfor-
mance because of its high efficiency and impressive accu-
racy. The detailed XGBoost algorithm is shown as the fol-
lowing formula (Zhai and Chen, 2018):

L(t)
=

n∑
i=1

[
l

(
yi,

3(t−1)

y

)
+ ∂y(t−1) l

(
yi,

3(t−1)

y

)
ft (xi) (8)

+
1
2
∂2
y(t−1) l

(
yi,

3(t−1)

y

)
f 2

t (xi)
]
+�(ft ),

where L(t) represents the cost function at the t th period, ∂

denotes the derivative of the function, ∂2
y(t−1) denotes the sec-

ond derivative of the function, l is the differentiable convex
loss function that reveals the difference of the predicted value

(
3
y) of the ith instance at the t th period and the target value

(yi), ft (x) denotes the increment, and �(ft ) represents the
regulariser.

However, each model still shows some disadvantages in
the prediction accuracy. Consequently, it was proposed to
combine these models with a multiple linear regression
(MLR) model to further estimate monthly NO−3 concentra-
tion in the atmosphere over China. As shown in Fig. 2, three
submodels including RF, GBDT, and XGBoost were stacked
through the MLR model to estimate the monthly NO−3 con-
centration over China. At first, a fivefold cross-validation
method was adopted to train each submodel to determine
the appropriate parameter. Afterwards, the MLR model was
trained with the final simulated concentrations of three sub-
models and observations. Finally, the high-resolution ambi-
ent NO−3 levels over China were estimated based on the op-
timal ensemble model. The detailed algorithms are shown as
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Figure 2. The workflow of the ensemble model development for
ambient NO−3 estimates.

follows (Fig. 2):

NO−3 = A×Pred_RF+B ×Pred_GBDT (9)
+C×Pred_XGBoost+ eij ,

where Pred_RF, Pred_GBDT, and Pred_XGBoost denote the
predicted NO−3 concentrations by RF, GBDT, and XGBoost,
respectively. A, B, and C represent the partial regression
coefficients of RF, GBDT, and XGBoost predictors, respec-
tively. eij denotes the residual error. Based on the estimates,
the regression coefficients including A, B, C, and the resid-
ual error (eij ) determined by the MLR model were 0.42, 0.77,
0.09, and −0.87, respectively. The variance inflation factors
of RF (2.01), GBDT (2.69), and XGBoost (2.08) were signif-
icantly lower than 10, which suggested the MLR model was
robust.

The RF model was trained using matlab2019a with a
package named random forest-master. Both the GBDT and
XGBoost algorithms were conducted using many packages
named gbm, caret, and xgboost in R software.

3.2 The error estimation and uncertainty assessment

The estimation performance of the ensemble model was eval-
uated based on a 10-fold cross-validation algorithm. The
principle of this method meant that the entire datasets were
divided into 10 groups with the same capacity randomly.
Nine groups were applied to develop the model, and the re-
maining one was used to predict the NO−3 level. After 10
rounds, every observed NO−3 concentration showed a corre-
sponding predicted value. Some key indices such as determi-
nation coefficient (R2), root-mean-square error (RMSE), and
mean absolute prediction error (MAE) were selected as the
key indicators to identify the optimal modelling method.

The uncertainty of the ensemble model was mainly de-
rived from input ancillary variables. For instance, both the
satellite data and meteorological data often suffered from
some uncertainties. To quantify the uncertainties derived
from meteorological data, the meteorological data at 0.25◦

across China were validated using ground-measured mete-
orological data downloaded from the website of the Chi-
nese Meteorology Bureau (http://data.cma.cn/, last access:

31 July 2020). Additionally, NO2 columns generally suffered
from some uncertainties, whereas the uncertainties of these
NO2 columns cannot be determined because the data about
the ground-level NO2 columns were not open access. In our
study, we only estimated the missing ratio of the NO2 col-
umn, thereby evaluating the uncertainty of the NO−3 dataset.

3.3 Trend analysis

The trend analysis of particulate NO−3 concentration was per-
formed using the Mann–Kendall nonparametric test. This
method has been widely applied to analyse the historical
trends of carbon fluxes (Tang et al., 2019) and air qual-
ity (Kong et al., 2019), which could reflect whether these
data suffered from significant changes at a significance level
of 0.05. The detailed calculation process is summarised in
Mann (1945) and Kendall (1975).

4 Results and discussion

4.1 Descriptive statistics of observed NO−
3

concentrations

The ensemble model was applied to fit the NO−3 estimation
model based on 1636 matched samples across China during
2010–2015. In general, the ground-observed NO−3 concen-
tration over China ranged from 0.3 µgNm−3 in Bayinbrook
of Xinjiang Province to 7.1 µgNm−3 in Zhengzhou of Henan
Province with the mean value of 2.7± 1.7 µgNm−3. The
monthly particulate NO−3 concentrations displayed the high-
est and lowest values in the North China Plain (NCP) and
Tibetan Plateau, respectively. In addition, the monthly NO−3
level exhibited significant temporal variation during 2010–
2015. The ambient NO−3 concentrations in most sites dis-
played a gradual increase during 2010–2014, while they de-
creased sharply from 2014 to 2015. The spatiotemporal vari-
ation in ambient NO−3 concentration over China shared sim-
ilar characteristics with NO2 column amount (Fig. S3). The
Pearson correlation analysis revealed that the monthly partic-
ulate NO−3 level showed a significantly positive relationship
with NO2 column amount (r = 0.57, p < 0.01) and urban
land area (r = 0.35, p < 0.05) (Fig. S4 in the Supplement).
However, D2m showed the remarkably negative correlation
with ambient NO−3 concentration (r =−0.31, p < 0.05).

4.2 The validation of newly developed NO−
3

dataset and
comparison with previous products

In our study, the ensemble model was applied to develop
a monthly particulate NO−3 dataset over China based on
various predictors. In addition, three other individual mod-
els were also trained to compare with their predictive per-
formances. The cross-validation result indicated that the
R2 value of the new product developed by an ensem-
ble decision tree model reached 0.78, significantly higher
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than those developed by RF (0.57), GBDT (0.73), and
XGBoost (0.45). Nonetheless, both RMSE and MAE ex-
hibited the opposite trends. The RMSE value was in the
order of XGBoost (1.98µgNm−3) > RF(1.67µgN m−3) >

GBDT(1.35µgNm−3) > ensemble model (1.19 µgNm−3).
The MAE value followed a similar characteristic with the
order of XGBoost (1.29µgNm−3) > RF(0.99µgN m−3) >

GBDT(0.95µgNm−3) > ensemble model (0.81 µgNm−3).
In some previous studies (Xiao et al., 2018), XGBoost of-
ten showed the better performance compared with RF, which
seemed to be in contrast to our study. It was assumed that
XGBoost showed the better performance for big data sam-
ples. However, the size of training samples in our study
was relatively smaller than that in previous studies. Xiao
et al. (2018) also verified that the XGBoost showed better
accuracy than RF in some developed regions such as east
China, while RF showed better performance than XGBoost
in northwest China because monitoring sites in northwest
China were relatively scarce. Wolpert (1992) suggested the
combination of various machine-learning models can sig-
nificantly strengthen the transferability of models. J. Chen
et al. (2019) demonstrated that the ensemble model signifi-
cantly outperformed the individual machine-learning model
because the ensemble model can overcome the weaknesses
of individual model. In addition, we also assessed the annual
modelling performance of NO−3 estimation. Figure S5 in the
Supplement shows that the R2 value of annual NO−3 estima-
tion reached 0.81, slightly higher than monthly NO−3 predic-
tion (0.78). However, both RMSE (1.23 µgNm−3) and MAE
(0.85 µgNm−3) for annual NO−3 estimation were slightly
higher than those of monthly NO−3 prediction.

The new developed NO−3 dataset showed the marked tem-
poral discrepancy. The R2 values of NO−3 estimates during
2011–2015 (0.88, 0.89, 0.83, 0.74, and 0.78) were notably
higher than those during 2010 (0.62) (Table 1 and Fig. 3).
The relatively lower R2 value in 2010 attested to the dom-
inant role of sampling size in the predictive accuracy for
machine-learning models. The training samples in 2010 (135
samples) were notably less than those in other years due to
the lack of observation data in spring. However, both RMSE
and MAE were not sensitive to the sampling size. The higher
RMSE and MAE were focused in 2010, 2014, and 2015. The
higher RMSE and MAE observed in 2010 might be con-
tributed by the relatively scarce training samples, while the
higher RMSE and MAE likely pertained to the higher NO−3
levels during other years. In addition, the performance of the
NO−3 dataset varied greatly at the seasonal scale. The R2

value was in the order of summer (0.85) > spring (0.80)=
autumn (0.80) > winter (0.75) across China (Table 2). The
seasonal variation in NO−3 concentration was in contrast to
the results of fine particles modelled by previous studies (Li
et al., 2020a; Qin et al., 2018). It was supposed that aerosol
optical depth (AOD) was sensitive to the precipitation and
relative humidity and thus showed the worse performance in
summer. However, the predictive accuracy of NO−3 estima-

tion based on NO2 column amount was closely linked with
the chemical transformation from NO2 to NO−3 .

The performance of the NO−3 dataset also displayed
marked spatial variation. The highest R2 value was observed
in the NCP (0.70), followed by southwest China (0.60),
southeast China (0.59), and northwest China (0.55), and the
lowest one was in northeast China (0.44) (Table 3). The high-
est R2 value occurring in the NCP was mainly attributable
to the largest training samples (> 400) compared with other
regions. Southeast China and southwest China showed sat-
isfactory cross-validation R2 values because the valid train-
ing samples in both of these regions were higher than 300.
Although both northeast China and northwest China pos-
sessed limited training samples (< 200), the predictive per-
formances of these regions showed a significant discrepancy.
It was assumed that the sampling sites in northeast China
were very centralised, while the sampling sites in north-
west China were uniformly distributed across the whole re-
gion. Geng et al. (2018) revealed that the modelling accu-
racy based on statistical models was significantly affected
by the distribution characteristics of sampling sites. How-
ever, both RMSE and MAE showed different spatial distri-
butions with the R2 value and slope of fitting curve. Note
that the higher values of RMSE and MAE were concentrated
in southwest China (2.08 and 1.41 µgNm−3) and northwest
China (2.06 and 1.38 µgNm−3) rather than the NCP (1.74
and 1.06 µgNm−3). There are two reasons responsible for
the result. At first, the predictive performances of southwest
China and northwest China were significantly worse than that
of the NCP, thereby leading to the higher RMSE and MAE.
Moreover, most of the sampling sites in southwest China
were focused on the Sichuan Basin, which often showed se-
vere NO−3 pollution all year round. Meanwhile, the annual
mean NO−3 concentrations in Yangling and Wuwei reached
4.1 and 4.5 µgNm−3, respectively. The higher loadings of
NO−3 concentrations for training samples led to the higher
RMSE and MAE for northwest China.

Although the cross-validation result suggested the newly
developed dataset achieved better modelling accuracy, the
cross-validation algorithm could not test the transferability
and agreement of this dataset in past years. Hence, the un-
learned data (annual mean NO−3 concentration in 10 cities)
collected from previous references were employed to vali-
date the transferability of this product. As shown in Fig. 4
and Table S2 in the Supplement, we found that the R2 value
of the newly developed NO−3 product and historical data
reached 0.85 (Fig. 4), and the out-of-range R2 value was even
slightly higher than the cross-validation R2 value. Moreover,
the out-of-bag slope based on these unlearning data reached
0.81 and equaled the slope of the cross-validation database.
In addition, the site-based cross-validation was also applied
to validate the transferability of this dataset. The basic prin-
ciple is that all of the sites were evenly classified into 10
clusters based on the geographical locations. Afterwards, 9
of 10 were used to train the model and then test the model
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Table 1. The cross-validation result of NO−3 estimation over China during 2010–2015.

Year Sample size R2 value Slope RMSE (µgNm−3) MAE (µgNm−3)

2010 135 0.62 0.60 1.39 0.90
2011 291 0.88 0.85 0.32 0.24
2012 274 0.89 0.86 0.33 0.28
2013 312 0.83 0.82 0.64 0.43
2014 306 0.74 0.76 1.50 1.04
2015 318 0.78 0.78 1.35 0.86

Figure 3. Density scatterplots of 10-fold cross-validation results for monthly NO−3 estimation (unit: µgNm−3) across China for the ensemble
decision tree model (a), RF (b), GBDT (c), and XGBoost (d). The colour bar reflects the sampling size of each model. The red solid line
denotes the best-fit line through the data points (1636 points). The black dashed line denotes the diagonal, which could be used to reflect the
deviation of data points.

based on the remaining one. After round 10, all of the ob-
served values versus estimate values were considered to be
the final result to validate the spatial transferability of this
model. As depicted in Fig. S6 in the Supplement, the site-
based cross-validation R2 value reached 0.73, which was
slightly lower than the cross-validation R2 value of the train-
ing model (0.78). The result suggested the newly developed
dataset showed excellent performance in the past decade.

Owing to the severe air pollution issue frequently observed
in recent years, especially nitrogen-bearing haze events,
many studies have tried to predict the NO−3 concentrations
in China. Most of these studies employed CTMs to simu-
late the ambient NO−3 concentrations over China. Huang et
al. (2015) employed WRF-CMAQ to estimate the inorganic
nitrogen deposition over the Pearl River Delta (PRD) and
confirmed that the R value only reached 0.54. Afterwards,

Han et al. (2017) used RAMS-GMAQ to predict the dry de-
position flux of reactive nitrogen and significantly underes-
timated the NO−3 concentration in the atmosphere. Very re-
cently, Geng et al. (2019) used CMAQ to estimate the NO−3
concentrations over east China, and the predictive perfor-
mance (R = 0.53) showed a similar result to Huang et al.
(2015). Apart from these CTMs, statistical models have also
been applied to estimate the ambient NO−3 concentration over
China. Unfortunately, the predictive accuracy was not good
based on traditional statistical models (e.g. linear regression)
(R = 0.47) (Jia et al., 2016). In terms of model performance,
the developed NO−3 product in our study was much better
than those developed by pioneering studies. Furthermore,
this product showed many extra advantages than those ob-
tained by CTMs, especially for the estimates of air pollutants.
For instance, CTMs generally required continuous emission
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Table 2. The cross-validation result of NO−3 estimation over China in four seasons.

Season Sample size R2 value Slope RMSE (µgNm−3) MAE (µgNm−3)

Spring 395 0.80 0.80 0.71 0.48
Summer 418 0.85 0.84 0.29 0.20
Autumn 437 0.80 0.78 1.10 0.70
Winter 386 0.75 0.73 1.85 1.23

Table 3. The cross-validation result of NO−3 estimation over China in different regions (northeast China includes Heilongjiang, Jilin, and
Liaoning provinces; NCP includes Beijing, Tianjin, Hebei, Henan, Shandong, and Shanxi provinces; southeast China includes Jiangsu,
Zhejiang, Fujian, Guangdong, Jiangxi, Anhui, Hunan, Hainan, Shanghai, and Hubei provinces; southwest China includes Yunnan, Guangxi,
Sichuan, Tibet, Chongqing, and Guizhou provinces; northwest China includes Inner Mongolia, Xinjiang, Gansu, Qinghai, Ningxia, and
Shaanxi.

Season Sample size R2 value Slope RMSE (µgNm−3) MAE (µgNm−3)

Northeast China 175 0.44 0.43 1.30 0.81
NCP 492 0.70 0.64 1.74 1.06
Southeast China 395 0.59 0.57 1.50 0.84
Southwest China 384 0.60 0.59 2.08 1.41
Northwest China 190 0.58 0.52 2.06 1.38

Figure 4. The transferability validation of the ensemble model in
estimating NO−3 concentration over China based on the unlearning
observation data (Shen et al., 2009, 2013; W. Wang et al., 2019;
Xu et al., 2018b). The colour bar reflects the sampling size of each
model. The red solid line denotes the best-fit line through the data
points. The black dashed line denotes the diagonal, which could be
used to reflect the deviation of data points.

inventory data, which were often not available and showed
high uncertainties. Moreover, CTMs generally needed sub-
stantial computing time and big input data to ensure reli-
able predictive accuracy. Thus, the NO−3 product retrieved
by CTMs often lacks a long-term dataset (> 10 years), and
our study fills the gaps of previous studies.

4.3 Spatial pattern of newly developed NO−
3

dataset

The monthly NO−3 concentration displayed a similar distribu-
tion characteristic to PM2.5 and PM1 (Wei et al., 2019). Over-
all, the NO−3 concentration in east China was much higher
than that in west China. The higher NO−3 concentration
was concentrated on NCP (3.55± 1.25 µgNm−3), followed
by the Yangtze River Delta (YRD) (2.56± 1.12 µgNm−3),
Pearl River Delta (PRD) (1.68±0.81 µgNm−3), and Sichuan
Basin (1.53± 0.63 µgNm−3), and the lowest one was ob-
served in the Tibetan Plateau (0.42±0.25 µgNm−3) (Fig. 5).
Most provinces over NCP such as Beijing, Hebei, Henan,
and Shandong suffered from severe NO−3 pollution due to
dense human activities and strong industry foundation (Li
et al., 2017) (Fig. S7 in the Supplement), which released
a large amount of N-bearing gaseous pollutants to the at-
mosphere, especially in winter. In Beijing–Tianjin–Hebei
(BTH) (2.97± 1.97 µgNm−3), Wang et al. (2016) verified
that this fresh NOx emitted from power plants or cement
industries could be transformed into nitrate in the particu-
late phase by the aid of low air temperature. In the YRD
and PRD, the combustion of fossil fuels and traffic emis-
sions was considered to be the major source of NOx emis-
sion, which favoured the formation of nitrate events through
the gas–particle conversion processes (Fu et al., 2017; Kong
et al., 2020; Ming et al., 2017). Apart from the contributions
of smelting industries, the poor topographical or meteoro-
logical conditions were also responsible for the severe NO−3
pollution in the Sichuan Basin (Tian et al., 2017; Wang et al.,
2017). The Tibetan Plateau generally showed clean air qual-
ity due to the unique landscape and scarce industrial activity
(Yang et al., 2018). In addition, it was interesting to note that
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Figure 5. The spatial pattern of estimated NO−3 concentration
(µg Nm−3) over China during 2005–2015 based on the ensemble
model.

the Altai region and Taklimakan desert in the Xinjiang au-
tonomous region also showed some NO−3 hotspots, though
these regions were often believed to be remote. It was as-
sumed that the many petrochemical industries (e.g. Karamay
oil field) were located in the Altai region (Liu et al., 2018). In
addition, Qi et al. (2018) verified that the resuspension of soil
dust might trigger the accumulation of NO−3 concentration in
the aerosol.

4.4 Long-term trend of ambient NO−
3

across China

The temporal variation in NO−3 levels from 2005 to 2015
over China has been clarified in Figs. 6 and 7 and Ta-
ble S3 in the Supplement. Overall, the ambient NO−3 con-
centration in China showed the significant increasing trend
of 0.10 µgNm−3 yr−1 during 2005–2014, while it decreased
sharply from 2014 to 2015 by −0.40 µgNm−3 yr−1. Over-
all, more than 90 % of mainland China showed consistent
temporal variation with a gradual increase from 2005 to
2013/14 and then rapid decrease from 2013/14 to 2015.
However, the decreasing/increasing speed displayed signif-
icant spatial difference in some major regions of China.
For instance, the ambient NO−3 level in BTH showed a re-
markable increase during 2005–2013 by 0.20 µgNm−3 yr−1.
Afterwards, the NO−3 level decreased rapidly from 2013
to 2015 at a rate of −0.58 µgNm−3 yr−1. The NO−3 con-
centrations in the YRD (0.11 µgNm−3 yr−1) and PRD
(0.05 µgNm−3 yr−1) both showed slight increases during
2005–2013, though the statistical test revealed the increases
were significant (p < 0.05). However, the NO−3 concentra-
tions in the YRD and PRD showed dramatic decreases with
−0.48 and −0.36 µgNm−3 yr−1 during 2013–2015, respec-
tively. As seen from 2005 to 2015, the NO−3 concentration in
BTH displayed on slight increase during this period. Never-
theless, the NO−3 levels in the YRD and PRD both displayed
slow decreases of −0.01 and −0.03 µgNm−3 yr−1, respec-
tively.

Furthermore, the different provinces displayed dis-
parate temporal variations, especially during 11th 5-year

plan (2005–2010). A total of 31 provinces (municipali-
ties/autonomous region) of China can be classified into three
clusters based on the temporal trends of NO−3 concentra-
tions during the 11th 5-year plan. The first cluster featured
a gradual increase in NO−3 concentration during this pe-
riod, which consisted of three provinces in northeast China
(e.g. Heilongjiang) and central provinces in south China
(e.g. Jiangxi, Anhui) (Table S3). The second cluster repre-
sented the provinces with stable increases of NO−3 during
2005–2007 and slight decreases during 2007–2010. Some
provinces of the NCP (e.g. Beijing, Hebei, Henan) and north-
west China (e.g. Gansu, Inner Mongolia, Ningxia) fell into
the second cluster. The last cluster featured the opposite tem-
poral trend to the second cluster during 2005–2010, which
included many southern provinces such as Fujian, Guang-
dong, Zhejiang, and Guangxi. Although the central govern-
ment proposed the emission reduction goal in 2006, the am-
bient NO−3 concentrations in most provinces did not display
pronounced decreases, which was totally different from the
decrease in PM2.5 since 2007 (Xue et al., 2019). Especially
in the provinces of northeast China (e.g. Liaoning), the ambi-
ent NO−3 concentrations in these provinces still showed rapid
increases after the proposal of emission control measures. It
was assumed that these provinces generally possessed a large
amount of energy-intensive industries and coal-fired power
plants (Zhang et al., 2018). Moreover, the result might be as-
sociated with the fact that the emission reduction measures
focused on the reduction of SO2 emission rather than NOx

emission (Kanada et al., 2013). Schreifels et al. (2012) re-
vealed that major control measures during this period in-
cluded shutting down inefficient industries, increasing the
pollution levy for excessive SO2 emissions, and implement-
ing energy conservation projects. Therefore, the total SO2
emission in 2010 decreased by more than 14 % compared
with the emission in 1995. The ambient SO2 concentrations
in many provinces since 2005 have displayed significant de-
creases compared with those in the 1990s (Li et al., 2020b;
Lu et al., 2013; Zhou et al., 2015). Nonetheless, the NOx

emission in China did not display a significant decrease dur-
ing this period (Duncan et al., 2016; Granier et al., 2017),
and thus the ambient NO−3 in many provinces still maintained
higher concentrations. It should be noted that the NO−3 con-
centrations in some provinces of the NCP exhibited slow de-
creases after 2007. It was supposed that the energy structure
adjustment and elimination of backward production capacity
promoted the small decrease in NO−3 concentrations (Ma et
al., 2019). Unfortunately, the slight decreases were quickly
offset by the rapid increase in energy consumption. Zhang
et al. (2018) demonstrated that the industry-added value and
private cars in BTH increased by 189.4 % and 279.6 % dur-
ing 2005–2010, respectively. In addition, the decrease in SO2
emission rather than NOx emission can further lead to a NO−3
increase because of decreased aerosol acidity, which was dic-
tated by SO2−

4 in particulate matter (Xie et al., 2020; Vasi-
lakos et al., 2018).
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Figure 6. The annual mean predicted NO−3 concentrations (µgNm−3) across the entire study area from (a–k) 2005–2015 based on the
ensemble model.

Figure 7. The annual mean NO−3 concentrations in major regions across China during 2005–2015. The solid lines denote the mean NO−3
concentrations, and the shadow represents the range of NO−3 concentrations.
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Since 2010, the central government has begun to imple-
ment severe limitations in PM2.5, NOx , and soot emissions,
and thus the total NOx emission during the 11th 5-year plan
(2011–2015) showed a slow decrease (10 %) across China
(Ma et al., 2019). However, the NO−3 concentrations across
China did not show a rapid response to the emission con-
trol measures. For instance, the NO−3 concentrations in most
provinces of China still showed rapid increases during 2010–
2013 (2014) (Figs. 7 and 8). The result suggested that the
control measures about the NOx emissions from vehicles
and ships might not be very effective. Until 2013, the cen-
tral government had issued the Action Plan for Air Pollu-
tion Prevention and Control (APPC-AP) in order to enhance
air pollution prevention measures (Li et al., 2017, 2019).
Many powerful economic and policy means including pric-
ing (tax) policy and optimisation of industrial layout caused
rapid decreases in NO−3 concentrations after 2013 in many
provinces (e.g. Beijing, Hebei, Zhejiang). Y. Wang et al.
(2019a) also verified that the NO−3 level in PM2.5 over BTH
decreased by 20 % during 2013–2015, which was in accor-
dance with the findings of our study. In addition to the im-
pact of emission reduction, the rapid decrease in NO−3 con-
centration over China after 2013 might be linked with ben-
eficial meteorological factors because Z. Chen et al. (2019)
demonstrated that favourable meteorological conditions led
to about 20 % of the PM2.5 decrease in BTH during 2013–
2015. However, the decreasing trend of NO−3 concentration
during 2014/15 in the PRD (−0.36 µgNm−3 yr−1) was sig-
nificantly slower than that in BTH (−0.58 µgNm−3 yr−1)
and the YRD (−0.48 µgNm−3 yr−1) (Table 4). Y. Wang et
al. (2019a) found that the ambient NO−3 concentration in a
background site of the PRD even showed an upward trend
during 2014–2016. Thus, it was necessary to strengthen the
control of nitrogen oxide emissions.

In general, the ambient NO−3 concentration varied greatly
at the seasonal scale (Fig. 9). China underwent the most se-
rious NO−3 pollution in winter (1.57± 0.63 µgNm−3), fol-
lowed by autumn (1.09± 0.52 µgNm−3) and spring (0.78±
0.50 µgNm−3), and the lowest one in summer (0.63±
0.40 µgNm−3) (Table S4 in the Supplement). The higher
NO−3 concentration observed in winter might be contributed
by the dense coal combustion in north China and un-
favourable meteorological conditions (Itahashi et al., 2017;
Quan et al., 2014; Y. L. Wang et al., 2019). The lightest NO−3
pollution in summer was attributable to the abundant precip-
itation, which promoted the diffusion and removal of pollu-
tants and reduced ambient NO−3 level (Hu et al., 2005). The
ratio of NO−3 concentration in winter (NO−3 winter) and that
in summer (NO−3 summer) varied greatly at the spatial scale.
The NO−3 winter / NO−3 summer in some provinces (municipali-
ties) including Tianjin (2.11), Hebei (2.25), and Henan (2.84)
displayed higher values compared with other provinces. The
higher NO−3 winter / NO−3 summer in the NCP might be affected
by the fossil fuel combustion for domestic heating, while

some southern provinces did not need domestic heating in
winter. In contrast, the ratio of NO−3 winter / NO−3 summer ex-
hibited lower values in some western provinces such as Ti-
bet and Qinghai. This might be associated with less aerosol
emission from anthropogenic sources and higher wind speed
(Wei et al., 2019).

4.5 Uncertainty analysis of NO−
3

estimation

The ensemble model of three machine-learning algorithms
captured better accuracy in predicting the NO−3 level from
OMI data. Nonetheless, the ensemble model still showed
some improvement space in terms of the R2 value. At
first, meteorological data collected from reanalysis on the
ECMWF website generally showed high uncertainty, which
inevitably increased the error of NO−3 estimation. In our
study, we validated the gridded T2m and Tp datasets against
the ground-observed datasets and found that the R2 values of
T2m and Tp reached 0.98 and 0.83 (Table S5 in the Supple-
ment), respectively. The result suggested that T2m showed a
lower uncertainty, while Tp displayed relatively higher un-
certainty. Except T2m and Tp, the ground-level datasets for
other meteorological factors were not open access, and thus
we cannot assess their uncertainties. Thus, we only reviewed
some references and evaluated their uncertainties. For in-
stance, Guo et al. (2019) found that the reanalysis BLH data
also exhibited large uncertainties because few sounding data
were assimilated. These uncertainties derived from predic-
tors could be passed to the ensemble model and thus increase
the uncertainties of ambient NO−3 estimates.

The second reason was closely linked to the missing NO2
column amount across China. The NO2 column amount re-
trieval showed many nonrandom biases, especially for the
arid or semi-arid area with high surface reflectance. The
missing NO2 column amounts over China were not filled in
our study due to the increased uncertainty of filling the NO2
column. Moreover, it should be noted that the monthly NO2
column amounts were averaged based on the daily one, and
the missing ratio of daily NO2 columns during 2005–2015
reached 57.64 %. The higher missing ratio might increase the
uncertainty of NO−3 simulation.

Lastly, the developed ensemble model did not integrate the
direct spatiotemporal weight indicators (e.g. the distance of
observed sites and contiguous grids) though many predictors
(e.g. month of year) reflecting spatiotemporal autocorrelation
were input into the original model as the key predictors. Fur-
thermore, the developed model was the ensemble one of three
original models, which ignored the spatiotemporal autocorre-
lation of estimation residue from first-stage model. In future
work, the ensemble model could be combined with a space-
time model to further enhance the modelling performance.
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Figure 8. The long-term trends of NO−3 concentrations (µgNm−3) and significance levels in China (a, b, and c denote the annual variation in
ambient NO−3 concentration during 2005–2015, 2005–2014, and 2014/15, respectively. Panels (d), (e), and (f) represent the significance level
of the NO−3 trend during these periods). The pale green colour denotes the regions with significant variation in ambient NO−3 concentrations
(p < 0.05), while the grey colour represents the regions with insignificant variation in NO−3 concentrations.

Table 4. The trend analysis of NO−3 concentrations in China, BTH, YRD, and PRD regions during 2005–2015.

Period Trend China BTH YRD PRD

2005–2014 Trend (µgNm−3 yr−1) 0.08 0.13 0.08 0.03
Significance p < 0.05 p < 0.05 p < 0.05 p < 0.05

2014/15 Trend (µgNm−3 yr−1) −0.40 −0.76 −0.79 −0.59
Significance p < 0.05 p < 0.05 p < 0.05 p < 0.05

2005–2015 Trend (µgNm−3 yr−1) 0.04 0.04 −0.01 −0.03
Significance p < 0.05 p > 0.05 p > 0.05 p < 0.05

5 Code availability

The code used for this article is not publicly available, but
can be obtained on request from the corresponding authors.

6 Data availability

The monthly NO−3 datasets at 0.25◦ resolution
across China during 2005–2015 are available at
https://doi.org/10.5281/zenodo.3988307 (Li et al., 2020c),
which can be downloaded in xlsx format. The missing values
are shown as NaN.

7 Conclusions and implications

In this study, RF, GBDT, and XGBoost algorithms were com-
bined to establish a high-resolution (0.25◦) NO−3 dataset over

China during 2005–2015 on the basis of multi-source pre-
dictors. The NO−3 product showed a high cross-validation
R2 value (0.78) but low RMSE (1.19 µgNm−3) and MAE
(0.81 µgNm−3). The NO−3 dataset showed the marked spa-
tiotemporal discrepancy. The R2 value was in the order
of summer (0.85) > spring (0.80)= autumn (0.80) > winter
(0.75) across China, and the R2 showed the highest value in
the NCP. In addition, the dataset exhibited excellent trans-
ferability (R2

= 0.85, RMSE= 0.74 µgNm−3, and MAE=
0.55 µgNm−3) on the basis of the non-learning-observed
data in 10 sites.

The newly developed NO−3 dataset showed remarkable
predictive accuracy compared with previous products de-
veloped by CTMs and linear regression models. The result
might be linked to two key reasons. First of all, the new prod-
uct assimilated high-resolution NO2 column amount instead
of the NOx emission inventory used by CTMs. The imper-
fect knowledge about the chemical modules with regard to
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Figure 9. The mean concentrations of ambient NO−3 in spring (a), summer (b), autumn (c), and winter (d) during 2005–2015 over the study
area.

the NO−3 formation and the inaccurate emission inventory
decreased the predictive performance of CTMs. In contrast,
the new product was obtained using an ensemble machine-
learning model, which did not need to consider the photo-
chemical or aqueous process from gaseous NO2 to partic-
ulate NO−3 . Compared with the NO−3 product estimated by
linear regression model (R2

= 0.21), the new product signif-
icantly elevated the modelling performance of NO−3 concen-
tration. It was supposed that the ensemble model for the de-
velopment of the new NO−3 dataset did not predefine the po-
tential relationships between explanatory variables and NO−3
level like the multiple regression model, which must assume
the linear linkage between dependent variables and predic-
tors before model establishment.

On the basis of the dataset, the spatiotemporal variation
in NO−3 concentration over China during 2005–2015 was
clarified. The annual mean NO−3 concentration followed the
order of NCP (3.55± 1.25µgNm−3) > YRD (2.56±
1.12µgNm−3) > PRD (1.68± 0.81µgNm−3) >

Sichuan Basin (1.53± 0.63µgNm−3) > Tibetan Plateau
(0.42± 0.25 µgNm−3). The higher NO−3 concentrations in
the NCP, YRD, and PRD were mainly contributed by the
intensive industrial and traffic emissions. The Sichuan Basin
suffered serious NO−3 pollution due to the high loadings of
aerosols and unfavourable terrain conditions. The Tibetan
Plateau showed the lightest NO−3 pollution because of the
scarce anthropogenic emissions and favourable meteorolog-
ical factors. Additionally, we also found that the ambient
NO−3 concentration showed significant increasing trend of
0.10 µgNm−3 yr−1 during 2005–2014, while it decreased

sharply from 2014 to 2015 at a rate of −0.40 µgNm−3 yr−1.
The ambient NO−3 levels in BTH, YRD, and PRD dis-
played slight increases at the rate of 0.20, 0.11, and
0.05 µgNm−3 yr−1 during 2013–2015, respectively. Af-
terwards, the NO−3 concentrations decreased sharply at
the speed of −0.58, −0.48, and −0.36 µgNm−3 yr−1.
Although National Economic and Social Development of
China issued an emission reduction goal in 2006, the NO−3
concentrations in most provinces did not show significant
decreases during 2005–2010. This might be contributed
by the increase in energy consumption and non-targeted
emission control measures. Since 2010, the government
began to decrease the NOx emission over China, whereas
the NO−3 concentrations in many provinces still showed
slight increases during 2010–2014 because the benefits of
control measures for NOx emission could be neutralised by
elevated energy consumption along with rapid economic
development. Since 2014, the Chinese government has
issued APPC-AP and further enhanced the emission control
measures, which triggered the dramatic decrease in NO−3
concentration over China. Apart from the effect of emission
reduction, the favourable meteorological conditions might
have led to the rapid decrease in NO−3 levels over China
during 2014/15. Compared with the powerful emission
control measures, meteorological factors only contributed
a small portion of NO−3 reduction in China. In addition,
the decrease speed of NO−3 level in China also displayed
pronounced spatial heterogeneity, and some background
regions have even featured an increase in air pollution in
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recent years. Therefore, it is still imperative to strengthen
the emission reduction measures.

It must be acknowledged that our study still suffers from
some limitations. First of all, the NO−3 dataset was devel-
oped by machine-learning models, which lacked the chem-
ical module concerning the transformation pathway from
NO2 to NO−3 , and might underestimate the ambient NO−3
concentration across China. In future work, the output re-
sults of CTMs including the conversion ratio from NO2 to
NO−3 and dry–wet deposition flux of NO2 and NO−3 in the at-
mosphere should be incorporated into the machine-learning
model to develop a next-generation NO−3 product. Second,
the low-time-resolution (monthly) observation data hindered
the daily estimation of NO−3 concentration. The daily NO−3
datasets are warranted in the future because they can be used
to assess the potential impact on human health. In addition,
the ultrahigh-resolution satellite (TROPOMI) can allow con-
tinuation and enhancement of the spatiotemporal NO−3 esti-
mation, and the OMI product could capture enough spatial
variations across China.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-13-2147-2021-supplement.
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