Articles | Volume 12, issue 1
https://doi.org/10.5194/essd-12-429-2020
https://doi.org/10.5194/essd-12-429-2020
Data description paper
 | 
18 Feb 2020
Data description paper |  | 18 Feb 2020

The Tall Tower Dataset: a unique initiative to boost wind energy research

Jaume Ramon, Llorenç Lledó, Núria Pérez-Zanón, Albert Soret, and Francisco J. Doblas-Reyes

Related authors

Impact of AMV on rainfall intensity distribution and timing of the West African Monsoon in DCPP-C-like simulations
Elsa Mohino, Paul-Arthur Monerie, Juliette Mignot, Moussa Diakhaté, Markus Donat, Christopher David Roberts, and Francisco Doblas-Reyes
EGUsphere, https://doi.org/10.5194/egusphere-2023-962,https://doi.org/10.5194/egusphere-2023-962, 2023
Short summary
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023,https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Data fusion uncertainty-enabled methods to map street-scale hourly NO2 in Barcelona: a case study with CALIOPE-Urban v1.0
Alvaro Criado, Jan Mateu Armengol, Hervé Petetin, Daniel Rodriguez-Rey, Jaime Benavides, Marc Guevara, Carlos Pérez García-Pando, Albert Soret, and Oriol Jorba
Geosci. Model Dev., 16, 2193–2213, https://doi.org/10.5194/gmd-16-2193-2023,https://doi.org/10.5194/gmd-16-2193-2023, 2023
Short summary
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023,https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary
Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system
Rashed Mahmood, Markus G. Donat, Pablo Ortega, Francisco J. Doblas-Reyes, Carlos Delgado-Torres, Margarida Samsó, and Pierre-Antoine Bretonnière
Earth Syst. Dynam., 13, 1437–1450, https://doi.org/10.5194/esd-13-1437-2022,https://doi.org/10.5194/esd-13-1437-2022, 2022
Short summary

Related subject area

Meteorology
EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023,https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Radar and ground-level measurements of clouds and precipitation collected during the POPE 2020 campaign at Princess Elisabeth Antarctica
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023,https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland
Santiago Beguería, Dhais Peña-Angulo, Víctor Trullenque-Blanco, and Carlos González-Hidalgo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-63,https://doi.org/10.5194/essd-2023-63, 2023
Revised manuscript accepted for ESSD
Short summary
Combined wind lidar and cloud radar for high-resolution wind profiling
José Dias Neto, Louise Nuijens, Christine Unal, and Steven Knoop
Earth Syst. Sci. Data, 15, 769–789, https://doi.org/10.5194/essd-15-769-2023,https://doi.org/10.5194/essd-15-769-2023, 2023
Short summary
An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020
Peng Yuan, Geoffrey Blewitt, Corné Kreemer, William C. Hammond, Donald Argus, Xungang Yin, Roeland Van Malderen, Michael Mayer, Weiping Jiang, Joseph Awange, and Hansjörg Kutterer
Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023,https://doi.org/10.5194/essd-15-723-2023, 2023
Short summary

Cited articles

Aguilar, E., Auer, I., Brunet, M., Peterson, T. C., and Wieringa, J.: Guidelines on climate metadata and homogenization, World Meteorological Organization, p. 55, 2003. a
AWEA: AWEA US Wind Industry Annual Market Report Year Ending 2018, Tech. rep., AWEA, 2019. a
Baker, I., Denning, A. S., Hanan, N., Prihodko, L., Uliasz, M., Vidale, P. L., Davis, K., and Bakwin, P.: Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5, Glob. Change Biol., 9, 1262–1277, https://doi.org/10.1046/j.1365-2486.2003.00671.x, 2003. a
Brower, M. C., Barton, M. S., Lledó, L., and Dubois, J.: A study of wind speed variability using global reanalysis data, Tech. Rep. May 2013, AWS True Power, available at: https://www.awstruepower.com/assets/A-Study-of-Wind-Speed-Variability-Using-Global-Reanalysis-Data.pdf (last access: February 2020), 2013. a
Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), Tech. rep., ECMWF, 2017. a
Download
Short summary
A dataset containing quality-controlled wind observations from 222 tall towers has been created. Wind speed and wind direction records have been collected from existing tall towers in an effort to boost the utilization of these non-standard atmospheric datasets. Observations are compiled in a unique collection with a common format, access, documentation and quality control (QC). For the latter, a total of 18 QC checks have been considered to ensure the high quality of the wind data.