Articles | Volume 12, issue 4
Earth Syst. Sci. Data, 12, 2459–2483, 2020
Earth Syst. Sci. Data, 12, 2459–2483, 2020
Data description paper
12 Oct 2020
Data description paper | 12 Oct 2020

CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain

Gemma Coxon et al.

Related authors

A large-sample investigation into uncertain climate change impacts on high flows across Great Britain
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554,,, 2022
Short summary
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
EGUsphere,,, 2022
Short summary
A snow and glacier hydrological model for large catchments – case study for the Naryn River, Central Asia
Sarah Rose Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci. Discuss.,,, 2022
Revised manuscript under review for HESS
Short summary
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534,,, 2021
Short summary
How is Baseflow Index (BFI) impacted by water resource management practices?
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379,,, 2021
Short summary

Related subject area

A 1 km daily soil moisture dataset over China using in situ measurement and machine learning
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286,,, 2022
Short summary
Downscaled hyper-resolution (400 m) gridded datasets of daily precipitation and temperature (2008–2019) for the East–Taylor subbasin (western United States)
Utkarsh Mital, Dipankar Dwivedi, James B. Brown, and Carl I. Steefel
Earth Syst. Sci. Data, 14, 4949–4966,,, 2022
Short summary
HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China
Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang
Earth Syst. Sci. Data, 14, 4793–4810,,, 2022
Short summary
The Surface Water Chemistry (SWatCh) database: a standardized global database of water chemistry to facilitate large-sample hydrological research
Lobke Rotteveel, Franz Heubach, and Shannon M. Sterling
Earth Syst. Sci. Data, 14, 4667–4680,,, 2022
Short summary
Hydrography90m: a new high-resolution global hydrographic dataset
Giuseppe Amatulli, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch
Earth Syst. Sci. Data, 14, 4525–4550,,, 2022
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313,, 2017. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54, 8792–8812,, 2018. 
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrol. Sci. J., 0, 1–14,, 2019. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, available at: (last access: 7 October 2019), 1998. 
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846,, 2018. 
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.