Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-1929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations
Guillaume Dodet
CORRESPONDING AUTHOR
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Jean-François Piolle
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Yves Quilfen
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Saleh Abdalla
European Centre for Medium-range Weather Forecasts, Reading RG2 9AX, UK
Mickaël Accensi
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Fabrice Ardhuin
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Ellis Ash
Satellite Oceanographic Consultants (SatOC), Coach House Farm, New Mills SK22 4QF, UK
Jean-Raymond Bidlot
European Centre for Medium-range Weather Forecasts, Reading RG2 9AX, UK
Christine Gommenginger
National Oceanography Centre (NOC), European Way, Southampton SO14 3ZH, UK
Gwendal Marechal
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Marcello Passaro
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstrasse 21, 80333 Munich, Germany
Graham Quartly
Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
Justin Stopa
Department of Ocean Resources and Engineering, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
Ben Timmermans
National Oceanography Centre (NOC), European Way, Southampton SO14 3ZH, UK
Ian Young
Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia
Paolo Cipollini
Telespazio VEGA UK for ESA Climate Office, ECSAT, Fermi Avenue, Harwell Campus, Didcot OX11 0FD, UK
Craig Donlon
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Related authors
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022, https://doi.org/10.5194/os-18-1665-2022, 2022
Short summary
Short summary
Obtaining accurate results from wave models in coastal regions is typically more difficult. This is due to the complex interactions between waves and the local environment characteristics like complex shorelines, sea bottom topography, the presence of strong currents, and other processes that include wave growth and decay. In the present study we analyze which elements can be adjusted and/or included in order to reduce errors in the modeled output.
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Robert R. King, Matthew J. Martin, Lucile Gaultier, Jennifer Waters, Clément Ubelmann, and Craig Donlon
Ocean Sci., 20, 1657–1676, https://doi.org/10.5194/os-20-1657-2024, https://doi.org/10.5194/os-20-1657-2024, 2024
Short summary
Short summary
We use simulations of our ocean forecasting system to compare the impact of additional altimeter observations from two proposed future satellite constellations. We found that, in our system, an altimeter constellation of 12 nadir altimeters produces improved predictions of sea surface height, surface currents, temperature, and salinity compared to a constellation of 2 wide-swath altimeters.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913, https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022, https://doi.org/10.5194/os-18-1665-2022, 2022
Short summary
Short summary
Obtaining accurate results from wave models in coastal regions is typically more difficult. This is due to the complex interactions between waves and the local environment characteristics like complex shorelines, sea bottom topography, the presence of strong currents, and other processes that include wave growth and decay. In the present study we analyze which elements can be adjusted and/or included in order to reduce errors in the modeled output.
Gwendal Marechal and Charly de Marez
Ocean Sci., 18, 1275–1292, https://doi.org/10.5194/os-18-1275-2022, https://doi.org/10.5194/os-18-1275-2022, 2022
Short summary
Short summary
The surface ocean is turbulent from several hundred to a few kilometres. The more the current field is turbulent, the more traveling waves over the underlying current that are scattered. In this paper we focus on an isolated eddy where spontaneous instabilities have occurred, resulting in the emergence of smaller structures. Thanks to the wave scattering we have been able to retrieve the underlying surface current gradients normally not retrievable with traditional current measurements.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon
Ocean Sci., 17, 455–461, https://doi.org/10.5194/os-17-455-2021, https://doi.org/10.5194/os-17-455-2021, 2021
Short summary
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities.
In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Peter Sutherland, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci., 16, 1399–1429, https://doi.org/10.5194/os-16-1399-2020, https://doi.org/10.5194/os-16-1399-2020, 2020
Short summary
Short summary
With present-day techniques, ocean surface currents are poorly known near the Equator and globally for spatial scales under 200 km and timescales under 30 d. Wide-swath radar Doppler measurements are an alternative technique. Such direct surface current measurements are, however, affected by platform motions and waves. These contributions are analyzed in data collected during the DRIFT4SKIM airborne and in situ experiment, demonstrating the possibility of measuring currents from space globally.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Sukun Cheng, Justin Stopa, Fabrice Ardhuin, and Hayley H. Shen
The Cryosphere, 14, 2053–2069, https://doi.org/10.5194/tc-14-2053-2020, https://doi.org/10.5194/tc-14-2053-2020, 2020
Short summary
Short summary
Wave states in ice in polar oceans are mostly studied near the ice edge. However, observations in the internal ice field, where ice morphology is very different from the ice edge, are rare. Recently derived wave data from satellite imagery are easier and cheaper than field studies and provide large coverage. This work presents a way of using these data to have a close view of some key features in the wave propagation over hundreds of kilometers and calibrate models for predicting wave decay.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Guillaume Boutin, Camille Lique, Fabrice Ardhuin, Clément Rousset, Claude Talandier, Mickael Accensi, and Fanny Girard-Ardhuin
The Cryosphere, 14, 709–735, https://doi.org/10.5194/tc-14-709-2020, https://doi.org/10.5194/tc-14-709-2020, 2020
Short summary
Short summary
We investigate the interactions of surface ocean waves with sea ice taking place at the interface between the compact sea ice cover and the open ocean. We use a newly developed coupling framework between a wave and an ocean–sea ice numerical model. Our results show how the push on sea ice exerted by waves changes the amount and the location of sea ice melting, with a strong impact on the ocean surface properties close to the ice edge.
Thomas Holding, Ian G. Ashton, Jamie D. Shutler, Peter E. Land, Philip D. Nightingale, Andrew P. Rees, Ian Brown, Jean-Francois Piolle, Annette Kock, Hermann W. Bange, David K. Woolf, Lonneke Goddijn-Murphy, Ryan Pereira, Frederic Paul, Fanny Girard-Ardhuin, Bertrand Chapron, Gregor Rehder, Fabrice Ardhuin, and Craig J. Donlon
Ocean Sci., 15, 1707–1728, https://doi.org/10.5194/os-15-1707-2019, https://doi.org/10.5194/os-15-1707-2019, 2019
Short summary
Short summary
FluxEngine is an open-source software toolbox designed to allow for the easy and accurate calculation of air–sea gas fluxes. This article describes new functionality and capabilities, which include the ability to calculate fluxes for nitrous oxide and methane, optimisation for running FluxEngine on a stand-alone desktop computer, and extensive new features to support the in situ measurement community. Four research case studies are used to demonstrate these new features.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Anne Wiese, Joanna Staneva, Johannes Schulz-Stellenfleth, Arno Behrens, Luciana Fenoglio-Marc, and Jean-Raymond Bidlot
Ocean Sci., 14, 1503–1521, https://doi.org/10.5194/os-14-1503-2018, https://doi.org/10.5194/os-14-1503-2018, 2018
Short summary
Short summary
The increase of data quality of wind and wave measurements provided by the new Sentinel-3A satellite in coastal areas is demonstrated compared to measurements of older satellites with in situ data and spectral wave model simulations. Furthermore, the sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, where an hourly temporal resolution is necessary to represent the peak of extreme events better.
Pedro Veras Guimarães, Fabrice Ardhuin, Peter Sutherland, Mickael Accensi, Michel Hamon, Yves Pérignon, Jim Thomson, Alvise Benetazzo, and Pierre Ferrant
Ocean Sci., 14, 1449–1460, https://doi.org/10.5194/os-14-1449-2018, https://doi.org/10.5194/os-14-1449-2018, 2018
Short summary
Short summary
This paper introduces a new design of drifting buoy. The "surface kinematics buoy'' (SKIB) is particularly optimized for measuring wave–current interactions, including relatively short wave components, from 0.09 to 1 Hz, that are important for air–sea interactions and remote-sensing applications. The capability of this instrument is compared to other sensors, and the ability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment.
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
Thomas Block, Sabine Embacher, Christopher J. Merchant, and Craig Donlon
Geosci. Model Dev., 11, 2419–2427, https://doi.org/10.5194/gmd-11-2419-2018, https://doi.org/10.5194/gmd-11-2419-2018, 2018
Short summary
Short summary
For calibration and validation purposes it is necessary to detect simultaneous data acquisitions from different spaceborne platforms. We present an algorithm and a software system which implements a general approach to resolve this problem. The multisensor matchup system (MMS) can detect simultaneous acquisitions in a large dataset (> 100 TB) and extract data for matching locations for further analysis. The MMS implements a flexible software infrastructure and allows for high parallelization.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
Kai Håkon Christensen, Ana Carrasco, Jean-Raymond Bidlot, and Øyvind Breivik
Ocean Sci., 13, 589–597, https://doi.org/10.5194/os-13-589-2017, https://doi.org/10.5194/os-13-589-2017, 2017
Short summary
Short summary
In this note we investigate when and where we would expect the bottom to influence the dynamics of surface waves. In deep water, where the presence of the bottom is not felt by the waves, modelers can use a simpler description of wave-mean flow interactions; hence, the results are relevant for coupled wave-ocean modeling systems. The most pronounced influence is on the Northwest Shelf during winter, and can sometimes be significant even far from the coast.
L. M. Goddijn-Murphy, D. K. Woolf, P. E. Land, J. D. Shutler, and C. Donlon
Ocean Sci., 11, 519–541, https://doi.org/10.5194/os-11-519-2015, https://doi.org/10.5194/os-11-519-2015, 2015
Short summary
Short summary
We describe the OceanFlux Greenhouse Gases methodology for creating an ocean surface CO2 climatology. In situ measurements valid for instantaneous sea surface temperature (SST) were recomputed using a more consistent and averaged SST. The results were normalised to year 2010, averaged by month, and interpolated onto a global 1°×1° grid. The 12 monthly distributions of ocean surface CO2 (see supplement) can be used in air-sea gas flux calculations together with climatologies of other variables.
P. E. Land, J. D. Shutler, R. D. Cowling, D. K. Woolf, P. Walker, H. S. Findlay, R. C. Upstill-Goddard, and C. J. Donlon
Biogeosciences, 10, 8109–8128, https://doi.org/10.5194/bg-10-8109-2013, https://doi.org/10.5194/bg-10-8109-2013, 2013
Related subject area
Physical oceanography
MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
ISASO2: recent trends and regional patterns of ocean dissolved oxygen change
Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning
Near-real-time atmospheric and oceanic science products of Himawari-8 and Himawari-9 geostationary satellites over the South China Sea
High-resolution observations of the ocean upper layer south of Cape St. Vincent, the western northern margin of the Gulf of Cádiz
Catalogue of coastal-based instances with bathymetric and topographic data
Oceanographic monitoring in Hornsund fjord, Svalbard
Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
IAPv4 ocean temperature and ocean heat content gridded dataset
Probabilistic reconstruction of sea-level changes and their causes since 1900
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Underwater light environment in Arctic fjords
A new multi-resolution bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echosounders
Multiyear surface wave dataset from the subsurface “DeepLev” eastern Levantine moored station
A Submesoscale Eddy Identification Dataset in the Northwest Pacific Ocean Derived from GOCI I Chlorophyll–a Data based on Deep Learning
SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data
Lagrangian surface drifter observations in the North Sea: an overview of high-resolution tidal dynamics and surface currents
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
A Lagrangian coherent eddy atlas for biogeochemical applications in the North Pacific Subtropical Gyre
Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Lagoon hydrodynamics of pearl farming islands: the case of Gambier (French Polynesia)
Oceanographic dataset collected during the 2021 scientific expedition of the Canadian Coast Guard Ship Amundsen
Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875
Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from a dry to wet and submerged state
Lagoon hydrodynamics of pearl farming atolls: the case of Raroia, Takapoto, Apataki and Takaroa (French Polynesia)
Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys
A Mediterranean drifter dataset
The DTU21 global mean sea surface and first evaluation
A dataset for investigating socio-ecological changes in Arctic fjords
Dataset of depth and temperature profiles obtained from 2012 to 2020 using commercial fishing vessels of the AdriFOOS fleet in the Adriatic Sea
Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain)
Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Deep-water hydrodynamic observations around a cold-water coral habitat in a submarine canyon in the eastern Ligurian Sea (Mediterranean Sea)
Ocean cross-validated observations from R/Vs L'Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign
A global Lagrangian eddy dataset based on satellite altimetry
The sea level time series of Trieste, Molo Sartorio, Italy (1869–2021)
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, Guofei Wei, and Jian Liu
Earth Syst. Sci. Data, 16, 5665–5679, https://doi.org/10.5194/essd-16-5665-2024, https://doi.org/10.5194/essd-16-5665-2024, 2024
Short summary
Short summary
This paper provides a cross-shaped moored array dataset (MASCS 1.0) of observations that consist of five buoys and four moorings in the northern South China Sea from 2014 to 2015. The moored array is influenced by atmospheric forcings such as tropical cyclones and monsoon as well as oceanic tides and flows. The data reveal variations of the air–sea interface and the ocean itself, which are valuable for studies of air–sea interactions and ocean dynamics in the northern South China Sea.
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024, https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024, https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Short summary
The Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs produced bio-optical data supporting satellite ocean color applications across European seas for almost 2 decades. CoASTS and BiOMaP applied equal standardized instruments, measurement methods, quality control schemes and processing codes to ensure temporal and spatial consistency with data products.
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024, https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary
Short summary
Continuous monitoring of shoreline dynamics is critical to understanding the drivers of shoreline change and evolution. This study uses long-term sequences of Landsat Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images to analyze the spatio-temporal evolution characteristics of the coastlines of Hainan, mainland China, Taiwan, and other countries from 1990 to 2019.
Nicolas Kolodziejczyk, Esther Portela, Virginie Thierry, and Annaig Prigent
Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, https://doi.org/10.5194/essd-16-5191-2024, 2024
Short summary
Short summary
Oceanic dissolved oxygen (DO) is fundamental for ocean biogeochemical cycles and marine life. To ease the computation of the ocean oxygen budget from in situ DO data, mapping of data on a regular 3D grid is useful. Here, we present a new DO gridded product from the Argo database. We compare it with existing DO mapping from a historical dataset. We suggest that the ocean has generally been losing oxygen since the 1980s, but large interannual and regional variabilities should be considered.
Xudong Zhang and Xiaofeng Li
Earth Syst. Sci. Data, 16, 5131–5144, https://doi.org/10.5194/essd-16-5131-2024, https://doi.org/10.5194/essd-16-5131-2024, 2024
Short summary
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Jian Liu, Jingjing Yu, Chuyong Lin, Min He, Haiyan Liu, Wei Wang, and Min Min
Earth Syst. Sci. Data, 16, 4949–4969, https://doi.org/10.5194/essd-16-4949-2024, https://doi.org/10.5194/essd-16-4949-2024, 2024
Short summary
Short summary
The Japanese Himawari-8 and Himawari-9 (H8/9) geostationary (GEO) satellites are strategically positioned over the South China Sea (SCS), spanning from 3 November 2022 to the present. They mainly provide cloud mask, fraction, height, phase, optical, and microphysical property; layered precipitable water; and sea surface temperature products within a temporal resolution of 10 min and a gridded resolution of 0.05° × 0.05°.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu, Marc Sevaux, and Hervé Tanguy
Earth Syst. Sci. Data, 16, 4529–4556, https://doi.org/10.5194/essd-16-4529-2024, https://doi.org/10.5194/essd-16-4529-2024, 2024
Short summary
Short summary
Our study unveils a comprehensive catalogue of 17 700 unique coastal digital elevation models (DEMs) derived from the General Bathymetric Chart of the Oceans (GEBCO) as of 2022. These DEMs are designed to support a variety of scientific and educational purposes. Organised into three libraries, they cover a wide range of coastal geometries and different sizes. Data and custom colour palettes for visualisation are made freely available online, promoting open science and collaboration.
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024, https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024, https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Short summary
Since 2008, the Yellow Sea has faced a significant ecological issue, the green tide, which has become one of the world's largest marine disasters. Satellite remote sensing plays a pivotal role in detecting this phenomenon. This study uses AI-based models to extract the daily green tide from MODIS and SAR images and integrates these daily data to introduce a continuous weekly dataset, which aids research in disaster simulation, forecasting, and prevention.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024, https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024, https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen
Earth Syst. Sci. Data, 16, 3125–3147, https://doi.org/10.5194/essd-16-3125-2024, https://doi.org/10.5194/essd-16-3125-2024, 2024
Short summary
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Yan Wang, Jie Yang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-188, https://doi.org/10.5194/essd-2024-188, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation struggle to observe with current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 16, 2281–2296, https://doi.org/10.5194/essd-16-2281-2024, https://doi.org/10.5194/essd-16-2281-2024, 2024
Short summary
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang
Earth Syst. Sci. Data, 16, 1167–1176, https://doi.org/10.5194/essd-16-1167-2024, https://doi.org/10.5194/essd-16-1167-2024, 2024
Short summary
Short summary
Gravity gradient tensor, a set of six unique gravity signals, is suitable for detecting undersea features. However, due to poor spatial resolution in past years, it has received less research interest and investment. However, current datasets have better accuracy and resolutions, thereby necessitating a revisit. Our analysis shows comparable results with reference models. We conclude that current-generation altimetry datasets can precisely resolve all six gravity gradients.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024, https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Short summary
This study measured the wave-induced plant drag, flow structure, turbulent intensity, and wave energy attenuation in the presence of a salt marsh. We showed that leaves contribute to most of the total plant drag and wave dissipation. Plant resistance significantly reshapes the velocity profile and enhances turbulence intensity. Adding current obviously impact the plants' wave decay capacity. The dataset can be reused to develop and calibrate marsh-flow theoretical and numerical models.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024, https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
Oriane Bruyère, Romain Le Gendre, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 16, 667–679, https://doi.org/10.5194/essd-16-667-2024, https://doi.org/10.5194/essd-16-667-2024, 2024
Short summary
Short summary
During 2019–2020, the lagoon and forereefs of Gambier Island (French Polynesia) were monitored with oceanographic instruments to measure lagoon hydrodynamics and ocean–lagoon water exchanges. Gambier Island is a key black pearl producer and the study goal was to understand the processes influencing spat collection of pearl oyster Pinctada margaritifera, the species used to produce black pearls. The data set is provided to address local pearl farming questions and other investigations as well.
Tahiana Ratsimbazafy, Thibaud Dezutter, Amélie Desmarais, Daniel Amirault, Pascal Guillot, and Simon Morisset
Earth Syst. Sci. Data, 16, 471–499, https://doi.org/10.5194/essd-16-471-2024, https://doi.org/10.5194/essd-16-471-2024, 2024
Short summary
Short summary
The Canadian Coast Guard Ship has collected oceanographic data across the Canadian Arctic annually since 2003. Such activity aims to support Canadian and international researchers. The ship has several instruments with cutting-edge technology available for research each year during the summer. The data presented here include measurements of physical, chemical and biological variables during the year 2021. Datasets collected from each expedition are available free of charge for the public.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Oriane Bruyère, Romain Le Gendre, Mathilde Chauveau, Bertrand Bourgeois, David Varillon, John Butscher, Thomas Trophime, Yann Follin, Jérôme Aucan, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 15, 5553–5573, https://doi.org/10.5194/essd-15-5553-2023, https://doi.org/10.5194/essd-15-5553-2023, 2023
Short summary
Short summary
During 2018–2022, four pearl farming Tuamotu atolls (French Polynesia) were studied with oceanographic instruments to measure lagoon hydrodynamics and ocean-lagoon water exchanges. The goal was to gain knowledge on the processes influencing the spat collection of the pearl oyster Pinctada margaritifera, the species used to produce black pearls. A worldwide unique oceanographic atoll data set is provided to address local pearl farming questions and other fundamental and applied investigations.
Edwin Rainville, Jim Thomson, Melissa Moulton, and Morteza Derakhti
Earth Syst. Sci. Data, 15, 5135–5151, https://doi.org/10.5194/essd-15-5135-2023, https://doi.org/10.5194/essd-15-5135-2023, 2023
Short summary
Short summary
Measuring ocean waves nearshore is essential for understanding how the waves impact our coastlines. We designed and deployed many small wave buoys in the nearshore ocean over 27 d in Duck, North Carolina, USA, in 2021. The wave buoys measure their motion as they drift. In this paper, we describe multiple levels of data processing. We explain how this dataset can be used in future studies to investigate nearshore wave kinematics, transport of buoyant particles, and wave-breaking processes.
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Pierluigi Penna, Filippo Domenichetti, Andrea Belardinelli, and Michela Martinelli
Earth Syst. Sci. Data, 15, 3513–3527, https://doi.org/10.5194/essd-15-3513-2023, https://doi.org/10.5194/essd-15-3513-2023, 2023
Short summary
Short summary
This work presents the pressure (depth) and temperature profile dataset provided by the AdriFOOS infrastructure in the Adriatic Sea (Mediterranean basin) from 2012 to 2020. Data were subject to quality assurance (QA) and quality control (QC). This infrastructure, based on the ships of opportunity principle and involving the use of commercial fishing vessels, is able to produce huge amounts of useful data both for operational oceanography and fishery biology purposes.
Carmen Zarzuelo, Alejandro López-Ruiz, María Bermúdez, and Miguel Ortega-Sánchez
Earth Syst. Sci. Data, 15, 3095–3110, https://doi.org/10.5194/essd-15-3095-2023, https://doi.org/10.5194/essd-15-3095-2023, 2023
Short summary
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Tongya Liu and Ryan Abernathey
Earth Syst. Sci. Data, 15, 1765–1778, https://doi.org/10.5194/essd-15-1765-2023, https://doi.org/10.5194/essd-15-1765-2023, 2023
Short summary
Short summary
Nearly all existing datasets of mesoscale eddies are based on the Eulerian method because of its operational simplicity. Using satellite observations and a Lagrangian method, we present a global Lagrangian eddy dataset (GLED v1.0). We conduct the statistical comparison between two types of eddies and the dataset validation. Our dataset offers relief from dilemma that the Eulerian eddy dataset is nearly the only option for studying mesoscale eddies.
Fabio Raicich
Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, https://doi.org/10.5194/essd-15-1749-2023, 2023
Short summary
Short summary
In the changing climate, long sea level time series are essential for studying the variability of the mean sea level and the occurrence of extreme events on different timescales. This work summarizes the rescue and quality control of the ultra-centennial sea level data set of Trieste, Italy. The whole time series is characterized by a linear trend of about 1.4 mm yr−1, the period corresponding to the altimetry coverage by a trend of about 3.0 mm yr−1, similarly to the global ocean.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Cited articles
Allan, J. and Komar, P.: Are ocean wave heights increasing in the eastern
North Pacific?, EOS T. Am. Geophys. Un., 81,
561–567, https://doi.org/10.1029/EO081i047p00561-01, 2000. a
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical Wave Modeling
in Conditions with Strong Currents: Dissipation, Refraction, and
Relative Wind, J. Phys. Oceanogr., 42, 2101–2120,
https://doi.org/10.1175/JPO-D-11-0220.1, 2012. a
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron,
B., Gula, J., and Molemaker, J.: Small-scale open ocean currents have large
effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517,
https://doi.org/10.1002/2016JC012413, 2017. a, b, c
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E.,
Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., Swail, V., and
Young, I.: Observing Sea States, Front. Mar. Sci., 6, 124,
https://doi.org/10.3389/fmars.2019.00124, 2019. a
Babanin, A. V. and Haus, B. K.: On the Existence of Water Turbulence
Induced by Nonbreaking Surface Waves, J. Phys. Oceanogr., 39,
2675–2679, https://doi.org/10.1175/2009JPO4202.1, 2009. a
Brewin, R. J., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps,
P.-Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M., Groom,
S., Horseman, A., Hu, C., Krasemann, H., Lee, Z., Maritorena, S., Mélin, F.,
Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F., Swinton, J.,
Werdell, J., and White, G. N.: The Ocean Colour Climate Change Initiative:
III. A round-robin comparison on in-water bio-optical algorithms, Remote
Sens. Environ., 162, 271–294,
https://doi.org/10.1016/j.rse.2013.09.016, 2015. a
Buchhaupt, C., Fenoglio-Marc, L., Dinardo, S., Scharroo, R., and Becker, M.: A
fast convolution based waveform model for conventional and unfocused SAR
altimetry, Adv. Space Res., 62, 1445–1463,
https://doi.org/10.1016/j.asr.2017.11.039, 2018. a
Dibarboure, G., Boy, F., Desjonqueres, J. D., Labroue, S., Lasne, Y., Picot,
N., Poisson, J. C., and Thibaut, P.: Investigating Short-Wavelength
Correlated Errors on Low-Resolution Mode Altimetry, J. Atmos. Ocean. Tech., 31, 1337–1362, https://doi.org/10.1175/JTECH-D-13-00081.1, 2014. a
Dodet, G., Bertin, X., and Taborda, R.: Wave climate variability in the
North-East Atlantic Ocean over the last six decades, Ocean Model.,
31, 120–131, https://doi.org/10.1016/j.ocemod.2009.10.010, 2010. a
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The
Contribution of Wind-Generated Waves to Coastal Sea-Level
Changes, Surv. Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019. a
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J.,
Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On
the Exchange of Momentum over the Open Ocean, J. Phys. Oceanogr., 43,
1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a
Flandrin, P., Rilling, G., and Goncalves, P.: Empirical mode decomposition as a
filter bank, IEEE Signal Proc. Lett., 11, 112–114,
https://doi.org/10.1109/LSP.2003.821662, 2004. a, b
Gemmrich, J., Thomas, B., and Bouchard, R.: Observational changes and trends in
northeast Pacific wave records, Geophys. Res. Lett., 38, L22601,
https://doi.org/10.1029/2011GL049518,
2011. a
GlobWaveTeam: Deliverable D.18. Annual Quality Control Report –
Phase 2, Tech. rep., available at:
http://globwave.ifremer.fr/download/GlobWave_D.18_AQCR.pdf (last access: 25 August 2020),
2012. a
GlobWaveTeam: Deliverable D.30. GlobWave Final Report, Tech. rep., available at:
http://globwave.ifremer.fr/news/wave-community/item/511-globwave-final-report-now-available (last access: 25 August 2020),
2013. a
Gomez-Enri, J., Vignudelli, S., Quartly, G. D., Gommenginger, C. P.,
Cipollini, P., Challenor, P. G., and Benveniste, J.: Modeling Envisat
RA-2 Waveforms in the Coastal Zone: Case Study of Calm Water Contamination,
IEEE Geosci. Remote Sens. Lett., 7, 474–478,
https://doi.org/10.1109/LGRS.2009.2039193, 2010. a
Gower, J. F. R.: Temperature, Wind and Wave Climatologies, and Trends
from Marine Meteorological Buoys in the Northeast Pacific, J.
Climate, 15, 3709–3718,
https://doi.org/10.1175/1520-0442(2002)015<3709:TWAWCA>2.0.CO;2, 2002. a
Gulev, S. K. and Grigorieva, V.: Last century changes in ocean wind wave height
from global visual wave data, Geophys. Res. Lett., 31, L24302,
https://doi.org/10.1029/2004GL021040, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen,
N.-C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis,
P. Roy. Soc. A-Math. Phy., 454, 903–995, https://doi.org/10.1098/rspa.1998.0193,
1998. a, b
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
Between Mean Sea Level, Tide, Surge, Waves and Flooding:
Mechanisms and Contributions to Sea Level Variations at the
Coast, Surv. Geophys., 40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019. a
Jiang, H.: Evaluation of altimeter undersampling in estimating global wind and
wave climate using virtual observation, Remote Sens. Environ., 245, 111840,
https://doi.org/10.1016/j.rse.2020.111840,
2020. a
Kopsinis, Y. and McLaughlin, S.: Development of EMD-Based Denoising
Methods Inspired by Wavelet Thresholding, IEEE T. Signal
Process., 57, 1351–1362, https://doi.org/10.1109/TSP.2009.2013885, 2009. a
Kraus, N. C. and Wamsley, T. V.: Coastal Barrier Breaching. Part 1.
Overview of Breaching Processes, Tech. rep., Engineer Research And
Development Center Vicksburg Ms Coastal And Hydraulics Lab, available at: https://apps.dtic.mil/docs/citations/ADA588872 (last access: 25 August 2020), 2003. a
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019. a
Longuet-Higgins, M. S. and Stewart, R. W.: Radiation stress and mass transport in gravity waves, with application to `surf beats', J. Fluid
Mech., 13, 481–504, https://doi.org/10.1017/S0022112062000877,
1962. a
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., and
Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological
impacts along the Atlantic coast of Europe, Geophys. Res. Lett.,
43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016. a
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler,
E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor,
M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based
time-series of sea-surface temperature since 1981 for climate applications,
Sci. Data, 6, 1–18, https://doi.org/10.1038/s41597-019-0236-x, 2019. a
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A Model of Marine
Aerosol Generation Via Whitecaps and Wave Disruption, in: Oceanic
Whitecaps: And Their Role in Air-Sea Exchange Processes,
edited by: Monahan, E. C. and Niocaill, G. M., Oceanographic Sciences
Library, Springer Netherlands, Dordrecht, 167–174,
https://doi.org/10.1007/978-94-009-4668-2_16, 1986. a
Moreau, T., Tran, N., Aublanc, J., Tison, C., Gac, S. L., and Boy, F.: Impact
of long ocean waves on wave height retrieval from SAR altimetry data, Adv.
Space Res., 62, 1434–1444,
https://doi.org/10.1016/j.asr.2018.06.004, 2018. a, b
Nencioli, F. and Quartly, G. D.: Evaluation of Sentinel-3A Wave Height
Observations Near the Coast of Southwest England, Remote Sensing, 11, 2998,
https://doi.org/10.3390/rs11242998, 2019. a, b
Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., and Snaith, H. M.: ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry, Remote Sens. Environ., 145, 173–189,
https://doi.org/10.1016/j.rse.2014.02.008,
2014. a
Passaro, M., Fenoglio-Marc, L., and Cipollini, P.: Validation of
Significant Wave Height From Improved Satellite Altimetry in the German
Bight, IEEE T. Geosci. Remote, 53, 2146–2156,
https://doi.org/10.1109/TGRS.2014.2356331, 2015. a
Peng, F. and Deng, X.: A New Retracking Technique for Brown Peaky Altimetric
Waveforms, Marine Geodesy, 41, 99–125, https://doi.org/10.1080/01490419.2017.1381656, 2018. a
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci): Global remote sensing
multi-mission along-track significant wave height, L2P product, version
1.1, Centre for Environmental Data Analysis,
https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1,
2020a. a, b, c
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci) : Global remote sensing daily
merged multi-mission along-track significant wave height, L3 product,
version 1.1., Centre for Environmental Data Analysis,
https://doi.org/10.5285/3ef6a5a66e9947d39b356251909dc12b,
2020b. a, b, c
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci) : Global remote sensing merged
multi-mission monthly gridded significant wave height, L4 product, version
1.1., Centre for Environmental Data Analysis,
https://doi.org/10.5285/47140d618dcc40309e1edbca7e773478,
2020c. a, b, c
Popp, T., De Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klüser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei, L.,
North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva, L.,
Stebel, K., Stein Zweers, D., Thomas, G., Tilstra, L. G., Vandenbussche, S.,
Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European
Satellite Observations (Aerosol_cci), Remote Sensing, 8, 421,
https://doi.org/10.3390/rs8050421, 2016. a
Quartly, G. D.: Removal of Covariant Errors from Altimetric Wave Height Data,
Remote Sensing, 11, 2319, https://doi.org/10.3390/rs11192319, 2019. a, b
Quartly, G. D. and Kurekin, A. A.: Sensitivity of Altimeter Wave Height Assessment to Data Selection, Remote Sensing, 12, 2608, https://doi.org/10.3390/rs12162608, 2020. a
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017. a
Quartly, G. D., Smith, W. H. F., and Passaro, M.: Removing Intra-1-Hz
Covariant Error to Improve Altimetric Profiles of σ0 and Sea
Surface Height, IEEE T. Geosci. Remote, 57,
3741–3752, https://doi.org/10.1109/TGRS.2018.2886998, 2019. a
Queffeulou, P.: Long-Term Validation of Wave Height Measurements from Altimeters, Marine Geodesy, 27, 495–510, https://doi.org/10.1080/01490410490883478, 2004. a, b
Queffeulou, P. and Croizé-Fillon, D.: Global altimeter SWH data set, Tech.
rep., IFREMER, available at:
ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge__11.4.pdf (last access: 25 August 2020),
2017. a
Quilfen, Y. and Chapron, B.: Ocean Surface Wave-Current Signatures
From Satellite Altimeter Measurements, Geophys. Res. Lett., 46,
253–261, https://doi.org/10.1029/2018GL081029,
2019. a
Quilfen, Y. and Chapron, B.: On denoising satellite altimeter measurements for
high-resolution geophysical signal analysis, Adv. Space Res.,
https://doi.org/10.1016/j.asr.2020.01.005, online first,
2020. a, b, c, d
Quilfen, Y., Yurovskaya, M., Chapron, B., and Ardhuin, F.: Storm waves focusing
and steepening in the Agulhas current: Satellite observations and
modeling, Remote Sens. Environ., 216, 561–571,
https://doi.org/10.1016/j.rse.2018.07.020, 2018. a, b
Raney, R. K.: The delay/Doppler radar altimeter, IEEE T.
Geosci. Remote, 36, 1578–1588, https://doi.org/10.1109/36.718861, 1998. a
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical
applications. Part 2: model validation with improved source term
parameterization, Oceanogr. Meteorol., 70, 174–188,
https://doi.org/10.1016/j.ocemod.2012.12.001, 2013. a
Ray, C., Martin-Puig, C., Clarizia, M. P., Ruffini, G., Dinardo, S., Gommenginger, C., and Benveniste, J.: SAR Altimeter Backscattered
Waveform Model, IEEE T. Geosci. Remote, 53,
911–919, https://doi.org/10.1109/TGRS.2014.2330423, 2015. a
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A recent increase in global
wave power as a consequence of oceanic warming, Nat. Commun., 10, 205,
https://doi.org/10.1038/s41467-018-08066-0, 2019. a, b
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res. Lett.,
41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014. a, b, c
Rocha, C. B., Chereskin, T. K., and Gille, S. T.: Mesoscale to Submesoscale
Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620,
https://doi.org/10.1175/JPO-D-15-0087.1, 2016. a
Roscher, R., Uebbing, B., and Kusche, J.: STAR: Spatio-temporal altimeter
waveform retracking using sparse representation and conditional random
fields, Remote Sens. Environ., 201, 148–164,
https://doi.org/10.1016/j.rse.2017.07.024, 2017. a
Ruggiero, P., Komar, P. D., and Allan, J. C.: Increasing wave heights and
extreme value projections: The wave climate of the U.S. Pacific
Northwest, Coastal Eng., 57, 539–552,
https://doi.org/10.1016/j.coastaleng.2009.12.005, 2010. a
Schlembach, F., Passaro, M., Quartly, G. D., Kurekin, A., Nencioli, F., Dodet,
G., Piollé, J.-F., Ardhuin, F., Bidlot, J., Schwatke, C., Seitz, F.,
Cipollini, P., and Donlon, C.: Round Robin Assessment of Radar
Altimeter Low Resolution Mode and Delay-Doppler Retracking
Algorithms for Significant Wave Height, Remote Sensing, 12, 1254,
https://doi.org/10.3390/rs12081254, 2020. a
Sepulveda, H., Queffeulou, P., and Ardhuin, F.: Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data, Mar. Geod., 38, 449–465,
https://doi.org/10.1080/01490419.2014.1000470, 2015. a
Smith, W. H. F. and Scharroo, R.: Waveform Aliasing in Satellite Radar
Altimetry, IEEE T. Geosci. Remote, 53,
1671–1682, https://doi.org/10.1109/TGRS.2014.2331193, 2015. a, b
Stopa, J. E., Sutherland, P., and Ardhuin, F.: Strong and highly variable push of ocean waves on Southern Ocean sea ice, P. Natl.
Acad. Sci. USA, 115, 5861–5865, https://doi.org/10.1073/pnas.1802011115, 2018. a
Tedesco, P., Gula, J., Ménesguen, C., Penven, P., and Krug, M.: Generation of
submesoscale frontal eddies in the Agulhas Current, J. Geophys. Res., 124,
7606–7625, https://doi.org/10.1029/2019JC015229, 2019. a
The WAVEWATCH III Development Group: User manual and system documentation of WAVEWATCH IIIR version 5.16, NOAA/NWS/NCEP/MMAB Technical Note 316, p. 326, available at: http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (last access: 25 August 2020),
2016. a
Thibaut, P., Poisson, J., Bronner, E., and Picot, N.: Relative performance of
the MLE3 and MLE4 retracking algorithms on Jason-2 altimeter waveforms,
Mar. Geod., 33, 317–335, 2010. a
Thibaut, P., Piras, F., Poisson, J. C., Moreau, T., Halimi, A., Boy, F., and
Guillot, A.: Convergent solutions for retracking conventional and Delay
Doppler altimeter echoes, in: Proceedings of the Ocean Surface
Topography Science Team Meeting, p. 18, Miami,
available at: https://meetings.aviso.altimetry.fr/fileadmin/user_upload/IPM_06_Thibaut_LRM_SAR_Retrackers_-_16.9.pdf (last access: 10 March 2020), 2017. a
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean, Geophys. Res. Lett., 41, 3136–3140, https://doi.org/10.1002/2014GL059983,
2014. a
Thornton, E. B., Humiston, R. T., and Birkemeier, W.: Bar/trough generation on a natural beach, J. Geophys. Res.-Oceans, 101, 12097–12110,
https://doi.org/10.1029/96JC00209, 1996. a
Timmermans, B. W., Gommenginger, C. P., Dodet, G., and Bidlot, J.-R.: Global
Wave Height Trends and Variability from New Multimission
Satellite Altimeter Products, Reanalyses, and Wave Buoys,
Geophys. Res. Lett., 47, e2019GL086880, https://doi.org/10.1029/2019GL086880, 2020. a, b, c, d, e, f, g, h, i, j, k
Tournadre, J., Bouhier, N., Girard‐Ardhuin, F., and Rémy, F.: Antarctic
icebergs distributions 1992–2014, J. Geophys. Res.-Oceans, 121, 327–349,
https://doi.org/10.1002/2015JC011178, 2016. a
Tran, N., Vandemark, D., Zaron, E. D., Thibaut, P., Dibarboure, G., and Picot, N.: Assessing the effects of sea-state related errors on the precision of
high-rate Jason-3 altimeter sea level data, Adv. Space Res.,
https://doi.org/10.1016/j.asr.2019.11.034, online first,
2019. a
Vergara, O., Morrow, R., Pujol, I., Dibarboure, G., and Ubelmann, C.: Revised
Global Wave Number Spectra From Recent Altimeter
Observations, J. Geophys. Res.-Oceans, 124, 3523–3537,
https://doi.org/10.1029/2018JC014844, 2019. a
Xu, Y. and Fu, L.-L.: Global Variability of the Wavenumber Spectrum of Oceanic
Mesoscale Turbulence, J. Phys. Oceanogr., 41, 802–809, 2011. a
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind
speed and wave height, Science, 364, 548–552, https://doi.org/10.1126/science.aav9527,
2019.
a
Young, I. R., Zieger, S., and Babanin, A. V.: Global Trends in Wind Speed
and Wave Height, Science, 332, 451–455, https://doi.org/10.1126/science.1197219,
2011. a
Zieger, S., Vinoth, J., and Young, I. R.: Joint Calibration of
Multiplatform Altimeter Measurements of Wind Speed and Wave
Height over the Past 20 Years, J. Atmos. Ocean.
Tech., 26, 2549–2564, https://doi.org/10.1175/2009JTECHA1303.1,
2009. a
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Sea state data are of major importance for climate studies, marine engineering, safety at sea...
Altmetrics
Final-revised paper
Preprint