Articles | Volume 12, issue 3
https://doi.org/10.5194/essd-12-1929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-1929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations
Guillaume Dodet
CORRESPONDING AUTHOR
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Jean-François Piolle
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Yves Quilfen
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Saleh Abdalla
European Centre for Medium-range Weather Forecasts, Reading RG2 9AX, UK
Mickaël Accensi
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Fabrice Ardhuin
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Ellis Ash
Satellite Oceanographic Consultants (SatOC), Coach House Farm, New Mills SK22 4QF, UK
Jean-Raymond Bidlot
European Centre for Medium-range Weather Forecasts, Reading RG2 9AX, UK
Christine Gommenginger
National Oceanography Centre (NOC), European Way, Southampton SO14 3ZH, UK
Gwendal Marechal
Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
Marcello Passaro
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstrasse 21, 80333 Munich, Germany
Graham Quartly
Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
Justin Stopa
Department of Ocean Resources and Engineering, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA
Ben Timmermans
National Oceanography Centre (NOC), European Way, Southampton SO14 3ZH, UK
Ian Young
Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia
Paolo Cipollini
Telespazio VEGA UK for ESA Climate Office, ECSAT, Fermi Avenue, Harwell Campus, Didcot OX11 0FD, UK
Craig Donlon
ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands
Related authors
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022, https://doi.org/10.5194/os-18-1665-2022, 2022
Short summary
Short summary
Obtaining accurate results from wave models in coastal regions is typically more difficult. This is due to the complex interactions between waves and the local environment characteristics like complex shorelines, sea bottom topography, the presence of strong currents, and other processes that include wave growth and decay. In the present study we analyze which elements can be adjusted and/or included in order to reduce errors in the modeled output.
Marcello Passaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-809, https://doi.org/10.5194/egusphere-2025-809, 2025
Short summary
Short summary
This paper evaluates the capability of satellite altimetry to monitor coastally trapped waves in light of the latest advancements in daily gridded sea level data, including new interpolation schemes, an increased number of missions in orbit, and the incorporation of wide-swath altimetry measurements. The eastern Australian coast serves as a testbed, with validation provided by tide gauges and model data.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig Donlon
Ocean Sci., 21, 343–358, https://doi.org/10.5194/os-21-343-2025, https://doi.org/10.5194/os-21-343-2025, 2025
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first phase. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ± 0.1 mm yr-1 (16–84 % confidence level) on a global scale for time intervals between the tandem phases of 4 years or more.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Guisella Gacitúa, Jacob Lorentsen Høyer, Sten Schmidl Søbjærg, Hoyeon Shi, Sotirios Skarpalezos, Ioanna Karagali, Emy Alerskans, and Craig Donlon
Geosci. Instrum. Method. Data Syst., 13, 373–391, https://doi.org/10.5194/gi-13-373-2024, https://doi.org/10.5194/gi-13-373-2024, 2024
Short summary
Short summary
In spring 2021, a study compared sea surface temperature (SST) measurements from thermal infrared (IR) and passive microwave (PMW) radiometers on a ferry between Denmark and Iceland. The goal was to reduce atmospheric effects and directly compare IR and PMW measurements. A method was developed to convert PMW data to match IR data, with uncertainties analysed in the process. The findings provide insights to improve SST inter-comparisons and enhance the synergy between IR and PMW observations.
Robert R. King, Matthew J. Martin, Lucile Gaultier, Jennifer Waters, Clément Ubelmann, and Craig Donlon
Ocean Sci., 20, 1657–1676, https://doi.org/10.5194/os-20-1657-2024, https://doi.org/10.5194/os-20-1657-2024, 2024
Short summary
Short summary
We use simulations of our ocean forecasting system to compare the impact of additional altimeter observations from two proposed future satellite constellations. We found that, in our system, an altimeter constellation of 12 nadir altimeters produces improved predictions of sea surface height, surface currents, temperature, and salinity compared to a constellation of 2 wide-swath altimeters.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
Richard P. Sims, Thomas M. Holding, Peter E. Land, Jean-Francois Piolle, Hannah L. Green, and Jamie D. Shutler
Earth Syst. Sci. Data, 15, 2499–2516, https://doi.org/10.5194/essd-15-2499-2023, https://doi.org/10.5194/essd-15-2499-2023, 2023
Short summary
Short summary
The flow of carbon between the land and ocean is poorly quantified with existing measurements. It is not clear how seasonality and long-term variability impact this flow of carbon. Here, we demonstrate how satellite observations can be used to create decadal time series of the inorganic carbonate system in the Amazon and Congo River outflows.
Peter Edward Land, Helen S. Findlay, Jamie D. Shutler, Jean-Francois Piolle, Richard Sims, Hannah Green, Vassilis Kitidis, Alexander Polukhin, and Irina I. Pipko
Earth Syst. Sci. Data, 15, 921–947, https://doi.org/10.5194/essd-15-921-2023, https://doi.org/10.5194/essd-15-921-2023, 2023
Short summary
Short summary
Measurements of the ocean’s carbonate system (e.g. CO2 and pH) have increased greatly in recent years, resulting in a need to combine these data with satellite measurements and model results, so they can be used to test predictions of how the ocean reacts to changes such as absorption of the CO2 emitted by humans. We show a method of combining data into regions of interest (100 km circles over a 10 d period) and apply it globally to produce a harmonised and easy-to-use data archive.
Matias Alday, Fabrice Ardhuin, Guillaume Dodet, and Mickael Accensi
Ocean Sci., 18, 1665–1689, https://doi.org/10.5194/os-18-1665-2022, https://doi.org/10.5194/os-18-1665-2022, 2022
Short summary
Short summary
Obtaining accurate results from wave models in coastal regions is typically more difficult. This is due to the complex interactions between waves and the local environment characteristics like complex shorelines, sea bottom topography, the presence of strong currents, and other processes that include wave growth and decay. In the present study we analyze which elements can be adjusted and/or included in order to reduce errors in the modeled output.
Gwendal Marechal and Charly de Marez
Ocean Sci., 18, 1275–1292, https://doi.org/10.5194/os-18-1275-2022, https://doi.org/10.5194/os-18-1275-2022, 2022
Short summary
Short summary
The surface ocean is turbulent from several hundred to a few kilometres. The more the current field is turbulent, the more traveling waves over the underlying current that are scattered. In this paper we focus on an isolated eddy where spontaneous instabilities have occurred, resulting in the emergence of smaller structures. Thanks to the wave scattering we have been able to retrieve the underlying surface current gradients normally not retrievable with traditional current measurements.
Darren R. Clark, Andrew P. Rees, Charissa M. Ferrera, Lisa Al-Moosawi, Paul J. Somerfield, Carolyn Harris, Graham D. Quartly, Stephen Goult, Glen Tarran, and Gennadi Lessin
Biogeosciences, 19, 1355–1376, https://doi.org/10.5194/bg-19-1355-2022, https://doi.org/10.5194/bg-19-1355-2022, 2022
Short summary
Short summary
Measurements of microbial processes were made in the sunlit open ocean during a research cruise (AMT19) between the UK and Chile. These help us to understand how microbial communities maintain the function of remote ecosystems. We find that the nitrogen cycling microbes which produce nitrite respond to changes in the environment. Our insights will aid the development of models that aim to replicate and ultimately project how marine environments may respond to ongoing climate change.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Thomas Lavergne, Montserrat Piñol Solé, Emily Down, and Craig Donlon
The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, https://doi.org/10.5194/tc-15-3681-2021, 2021
Short summary
Short summary
Pushed by winds and ocean currents, polar sea ice is on the move. We use passive microwave satellites to observe this motion. The images from their orbits are often put together into daily images before motion is measured. In our study, we measure motion from the individual orbits directly and not from the daily images. We obtain many more motion vectors, and they are more accurate. This can be used for current and future satellites, e.g. the Copernicus Imaging Microwave Radiometer (CIMR).
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon
Ocean Sci., 17, 455–461, https://doi.org/10.5194/os-17-455-2021, https://doi.org/10.5194/os-17-455-2021, 2021
Short summary
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities.
In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Peter Sutherland, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci., 16, 1399–1429, https://doi.org/10.5194/os-16-1399-2020, https://doi.org/10.5194/os-16-1399-2020, 2020
Short summary
Short summary
With present-day techniques, ocean surface currents are poorly known near the Equator and globally for spatial scales under 200 km and timescales under 30 d. Wide-swath radar Doppler measurements are an alternative technique. Such direct surface current measurements are, however, affected by platform motions and waves. These contributions are analyzed in data collected during the DRIFT4SKIM airborne and in situ experiment, demonstrating the possibility of measuring currents from space globally.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Cited articles
Allan, J. and Komar, P.: Are ocean wave heights increasing in the eastern
North Pacific?, EOS T. Am. Geophys. Un., 81,
561–567, https://doi.org/10.1029/EO081i047p00561-01, 2000. a
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical Wave Modeling
in Conditions with Strong Currents: Dissipation, Refraction, and
Relative Wind, J. Phys. Oceanogr., 42, 2101–2120,
https://doi.org/10.1175/JPO-D-11-0220.1, 2012. a
Ardhuin, F., Gille, S. T., Menemenlis, D., Rocha, C. B., Rascle, N., Chapron,
B., Gula, J., and Molemaker, J.: Small-scale open ocean currents have large
effects on wind wave heights, J. Geophys. Res.-Oceans, 122, 4500–4517,
https://doi.org/10.1002/2016JC012413, 2017. a, b, c
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E.,
Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., Swail, V., and
Young, I.: Observing Sea States, Front. Mar. Sci., 6, 124,
https://doi.org/10.3389/fmars.2019.00124, 2019. a
Babanin, A. V. and Haus, B. K.: On the Existence of Water Turbulence
Induced by Nonbreaking Surface Waves, J. Phys. Oceanogr., 39,
2675–2679, https://doi.org/10.1175/2009JPO4202.1, 2009. a
Brewin, R. J., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps,
P.-Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., Grant, M., Groom,
S., Horseman, A., Hu, C., Krasemann, H., Lee, Z., Maritorena, S., Mélin, F.,
Peters, M., Platt, T., Regner, P., Smyth, T., Steinmetz, F., Swinton, J.,
Werdell, J., and White, G. N.: The Ocean Colour Climate Change Initiative:
III. A round-robin comparison on in-water bio-optical algorithms, Remote
Sens. Environ., 162, 271–294,
https://doi.org/10.1016/j.rse.2013.09.016, 2015. a
Buchhaupt, C., Fenoglio-Marc, L., Dinardo, S., Scharroo, R., and Becker, M.: A
fast convolution based waveform model for conventional and unfocused SAR
altimetry, Adv. Space Res., 62, 1445–1463,
https://doi.org/10.1016/j.asr.2017.11.039, 2018. a
Dibarboure, G., Boy, F., Desjonqueres, J. D., Labroue, S., Lasne, Y., Picot,
N., Poisson, J. C., and Thibaut, P.: Investigating Short-Wavelength
Correlated Errors on Low-Resolution Mode Altimetry, J. Atmos. Ocean. Tech., 31, 1337–1362, https://doi.org/10.1175/JTECH-D-13-00081.1, 2014. a
Dodet, G., Bertin, X., and Taborda, R.: Wave climate variability in the
North-East Atlantic Ocean over the last six decades, Ocean Model.,
31, 120–131, https://doi.org/10.1016/j.ocemod.2009.10.010, 2010. a
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The
Contribution of Wind-Generated Waves to Coastal Sea-Level
Changes, Surv. Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019. a
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J.,
Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On
the Exchange of Momentum over the Open Ocean, J. Phys. Oceanogr., 43,
1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a
Flandrin, P., Rilling, G., and Goncalves, P.: Empirical mode decomposition as a
filter bank, IEEE Signal Proc. Lett., 11, 112–114,
https://doi.org/10.1109/LSP.2003.821662, 2004. a, b
Gemmrich, J., Thomas, B., and Bouchard, R.: Observational changes and trends in
northeast Pacific wave records, Geophys. Res. Lett., 38, L22601,
https://doi.org/10.1029/2011GL049518,
2011. a
GlobWaveTeam: Deliverable D.18. Annual Quality Control Report –
Phase 2, Tech. rep., available at:
http://globwave.ifremer.fr/download/GlobWave_D.18_AQCR.pdf (last access: 25 August 2020),
2012. a
GlobWaveTeam: Deliverable D.30. GlobWave Final Report, Tech. rep., available at:
http://globwave.ifremer.fr/news/wave-community/item/511-globwave-final-report-now-available (last access: 25 August 2020),
2013. a
Gomez-Enri, J., Vignudelli, S., Quartly, G. D., Gommenginger, C. P.,
Cipollini, P., Challenor, P. G., and Benveniste, J.: Modeling Envisat
RA-2 Waveforms in the Coastal Zone: Case Study of Calm Water Contamination,
IEEE Geosci. Remote Sens. Lett., 7, 474–478,
https://doi.org/10.1109/LGRS.2009.2039193, 2010. a
Gower, J. F. R.: Temperature, Wind and Wave Climatologies, and Trends
from Marine Meteorological Buoys in the Northeast Pacific, J.
Climate, 15, 3709–3718,
https://doi.org/10.1175/1520-0442(2002)015<3709:TWAWCA>2.0.CO;2, 2002. a
Gulev, S. K. and Grigorieva, V.: Last century changes in ocean wind wave height
from global visual wave data, Geophys. Res. Lett., 31, L24302,
https://doi.org/10.1029/2004GL021040, 2004. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. de, Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen,
N.-C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis,
P. Roy. Soc. A-Math. Phy., 454, 903–995, https://doi.org/10.1098/rspa.1998.0193,
1998. a, b
Idier, D., Bertin, X., Thompson, P., and Pickering, M. D.: Interactions
Between Mean Sea Level, Tide, Surge, Waves and Flooding:
Mechanisms and Contributions to Sea Level Variations at the
Coast, Surv. Geophys., 40, 1603–1630, https://doi.org/10.1007/s10712-019-09549-5, 2019. a
Jiang, H.: Evaluation of altimeter undersampling in estimating global wind and
wave climate using virtual observation, Remote Sens. Environ., 245, 111840,
https://doi.org/10.1016/j.rse.2020.111840,
2020. a
Kopsinis, Y. and McLaughlin, S.: Development of EMD-Based Denoising
Methods Inspired by Wavelet Thresholding, IEEE T. Signal
Process., 57, 1351–1362, https://doi.org/10.1109/TSP.2009.2013885, 2009. a
Kraus, N. C. and Wamsley, T. V.: Coastal Barrier Breaching. Part 1.
Overview of Breaching Processes, Tech. rep., Engineer Research And
Development Center Vicksburg Ms Coastal And Hydraulics Lab, available at: https://apps.dtic.mil/docs/citations/ADA588872 (last access: 25 August 2020), 2003. a
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019. a
Longuet-Higgins, M. S. and Stewart, R. W.: Radiation stress and mass transport in gravity waves, with application to `surf beats', J. Fluid
Mech., 13, 481–504, https://doi.org/10.1017/S0022112062000877,
1962. a
Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., and
Floc'h, F.: Extreme wave activity during 2013/2014 winter and morphological
impacts along the Atlantic coast of Europe, Geophys. Res. Lett.,
43, 2135–2143, https://doi.org/10.1002/2015GL067492, 2016. a
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler,
E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor,
M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.: Satellite-based
time-series of sea-surface temperature since 1981 for climate applications,
Sci. Data, 6, 1–18, https://doi.org/10.1038/s41597-019-0236-x, 2019. a
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A Model of Marine
Aerosol Generation Via Whitecaps and Wave Disruption, in: Oceanic
Whitecaps: And Their Role in Air-Sea Exchange Processes,
edited by: Monahan, E. C. and Niocaill, G. M., Oceanographic Sciences
Library, Springer Netherlands, Dordrecht, 167–174,
https://doi.org/10.1007/978-94-009-4668-2_16, 1986. a
Moreau, T., Tran, N., Aublanc, J., Tison, C., Gac, S. L., and Boy, F.: Impact
of long ocean waves on wave height retrieval from SAR altimetry data, Adv.
Space Res., 62, 1434–1444,
https://doi.org/10.1016/j.asr.2018.06.004, 2018. a, b
Nencioli, F. and Quartly, G. D.: Evaluation of Sentinel-3A Wave Height
Observations Near the Coast of Southwest England, Remote Sensing, 11, 2998,
https://doi.org/10.3390/rs11242998, 2019. a, b
Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., and Snaith, H. M.: ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry, Remote Sens. Environ., 145, 173–189,
https://doi.org/10.1016/j.rse.2014.02.008,
2014. a
Passaro, M., Fenoglio-Marc, L., and Cipollini, P.: Validation of
Significant Wave Height From Improved Satellite Altimetry in the German
Bight, IEEE T. Geosci. Remote, 53, 2146–2156,
https://doi.org/10.1109/TGRS.2014.2356331, 2015. a
Peng, F. and Deng, X.: A New Retracking Technique for Brown Peaky Altimetric
Waveforms, Marine Geodesy, 41, 99–125, https://doi.org/10.1080/01490419.2017.1381656, 2018. a
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci): Global remote sensing
multi-mission along-track significant wave height, L2P product, version
1.1, Centre for Environmental Data Analysis,
https://doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1,
2020a. a, b, c
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci) : Global remote sensing daily
merged multi-mission along-track significant wave height, L3 product,
version 1.1., Centre for Environmental Data Analysis,
https://doi.org/10.5285/3ef6a5a66e9947d39b356251909dc12b,
2020b. a, b, c
Piollé, J.-F., Dodet, G., and Quilfen, Y.: ESA Sea State Climate
Change Initiative (Sea_State_cci) : Global remote sensing merged
multi-mission monthly gridded significant wave height, L4 product, version
1.1., Centre for Environmental Data Analysis,
https://doi.org/10.5285/47140d618dcc40309e1edbca7e773478,
2020c. a, b, c
Popp, T., De Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klüser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei, L.,
North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva, L.,
Stebel, K., Stein Zweers, D., Thomas, G., Tilstra, L. G., Vandenbussche, S.,
Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European
Satellite Observations (Aerosol_cci), Remote Sensing, 8, 421,
https://doi.org/10.3390/rs8050421, 2016. a
Quartly, G. D.: Removal of Covariant Errors from Altimetric Wave Height Data,
Remote Sensing, 11, 2319, https://doi.org/10.3390/rs11192319, 2019. a, b
Quartly, G. D. and Kurekin, A. A.: Sensitivity of Altimeter Wave Height Assessment to Data Selection, Remote Sensing, 12, 2608, https://doi.org/10.3390/rs12162608, 2020. a
Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, 2017. a
Quartly, G. D., Smith, W. H. F., and Passaro, M.: Removing Intra-1-Hz
Covariant Error to Improve Altimetric Profiles of σ0 and Sea
Surface Height, IEEE T. Geosci. Remote, 57,
3741–3752, https://doi.org/10.1109/TGRS.2018.2886998, 2019. a
Queffeulou, P.: Long-Term Validation of Wave Height Measurements from Altimeters, Marine Geodesy, 27, 495–510, https://doi.org/10.1080/01490410490883478, 2004. a, b
Queffeulou, P. and Croizé-Fillon, D.: Global altimeter SWH data set, Tech.
rep., IFREMER, available at:
ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge__11.4.pdf (last access: 25 August 2020),
2017. a
Quilfen, Y. and Chapron, B.: Ocean Surface Wave-Current Signatures
From Satellite Altimeter Measurements, Geophys. Res. Lett., 46,
253–261, https://doi.org/10.1029/2018GL081029,
2019. a
Quilfen, Y. and Chapron, B.: On denoising satellite altimeter measurements for
high-resolution geophysical signal analysis, Adv. Space Res.,
https://doi.org/10.1016/j.asr.2020.01.005, online first,
2020. a, b, c, d
Quilfen, Y., Yurovskaya, M., Chapron, B., and Ardhuin, F.: Storm waves focusing
and steepening in the Agulhas current: Satellite observations and
modeling, Remote Sens. Environ., 216, 561–571,
https://doi.org/10.1016/j.rse.2018.07.020, 2018. a, b
Raney, R. K.: The delay/Doppler radar altimeter, IEEE T.
Geosci. Remote, 36, 1578–1588, https://doi.org/10.1109/36.718861, 1998. a
Rascle, N. and Ardhuin, F.: A global wave parameter database for geophysical
applications. Part 2: model validation with improved source term
parameterization, Oceanogr. Meteorol., 70, 174–188,
https://doi.org/10.1016/j.ocemod.2012.12.001, 2013. a
Ray, C., Martin-Puig, C., Clarizia, M. P., Ruffini, G., Dinardo, S., Gommenginger, C., and Benveniste, J.: SAR Altimeter Backscattered
Waveform Model, IEEE T. Geosci. Remote, 53,
911–919, https://doi.org/10.1109/TGRS.2014.2330423, 2015. a
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A recent increase in global
wave power as a consequence of oceanic warming, Nat. Commun., 10, 205,
https://doi.org/10.1038/s41467-018-08066-0, 2019. a, b
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res. Lett.,
41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014. a, b, c
Rocha, C. B., Chereskin, T. K., and Gille, S. T.: Mesoscale to Submesoscale
Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620,
https://doi.org/10.1175/JPO-D-15-0087.1, 2016. a
Roscher, R., Uebbing, B., and Kusche, J.: STAR: Spatio-temporal altimeter
waveform retracking using sparse representation and conditional random
fields, Remote Sens. Environ., 201, 148–164,
https://doi.org/10.1016/j.rse.2017.07.024, 2017. a
Ruggiero, P., Komar, P. D., and Allan, J. C.: Increasing wave heights and
extreme value projections: The wave climate of the U.S. Pacific
Northwest, Coastal Eng., 57, 539–552,
https://doi.org/10.1016/j.coastaleng.2009.12.005, 2010. a
Schlembach, F., Passaro, M., Quartly, G. D., Kurekin, A., Nencioli, F., Dodet,
G., Piollé, J.-F., Ardhuin, F., Bidlot, J., Schwatke, C., Seitz, F.,
Cipollini, P., and Donlon, C.: Round Robin Assessment of Radar
Altimeter Low Resolution Mode and Delay-Doppler Retracking
Algorithms for Significant Wave Height, Remote Sensing, 12, 1254,
https://doi.org/10.3390/rs12081254, 2020. a
Sepulveda, H., Queffeulou, P., and Ardhuin, F.: Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data, Mar. Geod., 38, 449–465,
https://doi.org/10.1080/01490419.2014.1000470, 2015. a
Smith, W. H. F. and Scharroo, R.: Waveform Aliasing in Satellite Radar
Altimetry, IEEE T. Geosci. Remote, 53,
1671–1682, https://doi.org/10.1109/TGRS.2014.2331193, 2015. a, b
Stopa, J. E., Sutherland, P., and Ardhuin, F.: Strong and highly variable push of ocean waves on Southern Ocean sea ice, P. Natl.
Acad. Sci. USA, 115, 5861–5865, https://doi.org/10.1073/pnas.1802011115, 2018. a
Tedesco, P., Gula, J., Ménesguen, C., Penven, P., and Krug, M.: Generation of
submesoscale frontal eddies in the Agulhas Current, J. Geophys. Res., 124,
7606–7625, https://doi.org/10.1029/2019JC015229, 2019. a
The WAVEWATCH III Development Group: User manual and system documentation of WAVEWATCH IIIR version 5.16, NOAA/NWS/NCEP/MMAB Technical Note 316, p. 326, available at: http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (last access: 25 August 2020),
2016. a
Thibaut, P., Poisson, J., Bronner, E., and Picot, N.: Relative performance of
the MLE3 and MLE4 retracking algorithms on Jason-2 altimeter waveforms,
Mar. Geod., 33, 317–335, 2010. a
Thibaut, P., Piras, F., Poisson, J. C., Moreau, T., Halimi, A., Boy, F., and
Guillot, A.: Convergent solutions for retracking conventional and Delay
Doppler altimeter echoes, in: Proceedings of the Ocean Surface
Topography Science Team Meeting, p. 18, Miami,
available at: https://meetings.aviso.altimetry.fr/fileadmin/user_upload/IPM_06_Thibaut_LRM_SAR_Retrackers_-_16.9.pdf (last access: 10 March 2020), 2017. a
Thomson, J. and Rogers, W. E.: Swell and sea in the emerging Arctic Ocean, Geophys. Res. Lett., 41, 3136–3140, https://doi.org/10.1002/2014GL059983,
2014. a
Thornton, E. B., Humiston, R. T., and Birkemeier, W.: Bar/trough generation on a natural beach, J. Geophys. Res.-Oceans, 101, 12097–12110,
https://doi.org/10.1029/96JC00209, 1996. a
Timmermans, B. W., Gommenginger, C. P., Dodet, G., and Bidlot, J.-R.: Global
Wave Height Trends and Variability from New Multimission
Satellite Altimeter Products, Reanalyses, and Wave Buoys,
Geophys. Res. Lett., 47, e2019GL086880, https://doi.org/10.1029/2019GL086880, 2020. a, b, c, d, e, f, g, h, i, j, k
Tournadre, J., Bouhier, N., Girard‐Ardhuin, F., and Rémy, F.: Antarctic
icebergs distributions 1992–2014, J. Geophys. Res.-Oceans, 121, 327–349,
https://doi.org/10.1002/2015JC011178, 2016. a
Tran, N., Vandemark, D., Zaron, E. D., Thibaut, P., Dibarboure, G., and Picot, N.: Assessing the effects of sea-state related errors on the precision of
high-rate Jason-3 altimeter sea level data, Adv. Space Res.,
https://doi.org/10.1016/j.asr.2019.11.034, online first,
2019. a
Vergara, O., Morrow, R., Pujol, I., Dibarboure, G., and Ubelmann, C.: Revised
Global Wave Number Spectra From Recent Altimeter
Observations, J. Geophys. Res.-Oceans, 124, 3523–3537,
https://doi.org/10.1029/2018JC014844, 2019. a
Xu, Y. and Fu, L.-L.: Global Variability of the Wavenumber Spectrum of Oceanic
Mesoscale Turbulence, J. Phys. Oceanogr., 41, 802–809, 2011. a
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind
speed and wave height, Science, 364, 548–552, https://doi.org/10.1126/science.aav9527,
2019.
a
Young, I. R., Zieger, S., and Babanin, A. V.: Global Trends in Wind Speed
and Wave Height, Science, 332, 451–455, https://doi.org/10.1126/science.1197219,
2011. a
Zieger, S., Vinoth, J., and Young, I. R.: Joint Calibration of
Multiplatform Altimeter Measurements of Wind Speed and Wave
Height over the Past 20 Years, J. Atmos. Ocean.
Tech., 26, 2549–2564, https://doi.org/10.1175/2009JTECHA1303.1,
2009. a
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Sea state data are of major importance for climate studies, marine engineering, safety at sea...
Altmetrics
Final-revised paper
Preprint