
Earth Syst. Sci. Data, 12, 1929–1951, 2020
https://doi.org/10.5194/essd-12-1929-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

The Sea State CCI dataset v1: towards a sea state climate
data record based on satellite observations

Guillaume Dodet1, Jean-François Piolle1, Yves Quilfen1, Saleh Abdalla2, Mickaël Accensi1,
Fabrice Ardhuin1, Ellis Ash3, Jean-Raymond Bidlot2, Christine Gommenginger4, Gwendal Marechal1,
Marcello Passaro5, Graham Quartly6, Justin Stopa7, Ben Timmermans4, Ian Young8, Paolo Cipollini9,

and Craig Donlon10

1Univ. Brest, Ifremer, CNRS, IRD, LOPS, 29280 Plouzané, France
2European Centre for Medium-range Weather Forecasts, Reading RG2 9AX, UK

3Satellite Oceanographic Consultants (SatOC), Coach House Farm, New Mills SK22 4QF, UK
4National Oceanography Centre (NOC), European Way, Southampton SO14 3ZH, UK

5Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM),
Arcisstrasse 21, 80333 Munich, Germany

6Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, UK
7Department of Ocean Resources and Engineering, School of Ocean and Earth Science and Technology,

University of Hawaii at Manoa, Honolulu, HI, USA
8Department of Infrastructure Engineering, University of Melbourne, Melbourne, Australia

9Telespazio VEGA UK for ESA Climate Office, ECSAT, Fermi Avenue,
Harwell Campus, Didcot OX11 0FD, UK

10ESA/ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, the Netherlands

Correspondence: Guillaume Dodet (guillaume.dodet@ifremer.fr)

Received: 28 December 2019 – Discussion started: 6 February 2020
Revised: 2 July 2020 – Accepted: 11 July 2020 – Published: 2 September 2020

Abstract. Sea state data are of major importance for climate studies, marine engineering, safety at sea and
coastal management. However, long-term sea state datasets are sparse and not always consistent, and sea state
data users still mostly rely on numerical wave models for research and engineering applications. Facing the
urgent need for a sea state climate data record, the Global Climate Observing System has listed “Sea State”
as an Essential Climate Variable (ECV), fostering the launch in 2018 of the Sea State Climate Change Ini-
tiative (CCI). The CCI is a programme of the European Space Agency, whose objective is to realise the full
potential of global Earth observation archives established by ESA and its member states in order to con-
tribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI
dataset, the implementation and benefits of a high-level denoising method, its validation against in situ mea-
surements and numerical model outputs, and the future developments considered within the Sea State CCI
project. The Sea State CCI dataset v1 is freely available on the ESA CCI website (http://cci.esa.int/data,
last access: 25 August 2020) at ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea_state/data/v1.1_release/ (last access:
25 August 2020). Three products are available: a multi-mission along-track L2P product (http://dx.doi.org/
10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1, Piollé et al., 2020a), a daily merged multi mission along-track
L3 product (http://dx.doi.org/10.5285/3ef6a5a66e9947d39b356251909dc12b, Piollé et al., 2020b) and a multi-
mission monthly gridded L4 product (http://dx.doi.org/10.5285/47140d618dcc40309e1edbca7e773478, Piollé
et al., 2020c).
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1 Introduction

Sea state, i.e. the description of wind sea and swell con-
ditions at sea in terms of spectral or bulk wave parame-
ters, is a key component of the coupling between the ocean
and the atmosphere, the coasts, and the sea ice. In the open
ocean, wind-generated waves increase the sea surface rough-
ness and enhance the air–sea momentum transfer through the
modification of the wind stress (Edson et al., 2013). Wave-
breaking contributes to the mixing of the ocean upper layer
(Babanin and Haus, 2009) and releases of sea spray aerosol
into the atmosphere (Monahan et al., 1986). At the coast,
waves are refracted by the shallow bathymetry and the tidal
currents, they shoal over the shoreface and transfer energy
to higher and lower harmonics through non-linear interac-
tions (Longuet-Higgins and Stewart, 1962). They eventually
break in the surf zone, increasing the water level, gener-
ating strong currents and stirring large quantities of sedi-
ments at the break point (Thornton et al., 1996). All these
wave-induced processes contribute to rapid coastal erosion
(Masselink et al., 2016), dune breaching (Kraus and Wams-
ley, 2003) and/or low-lying land overwash during extreme
storm events. In the high latitudes, waves interact with the
sea ice by modifying its mechanical properties, through the
fragmentation of the ice floes of the marginal ice zone into
smaller pieces, or through the push of the ice in the direc-
tion of the wave propagation (Stopa et al., 2018). Given that
increased greenhouse gas emission caused by anthropic ac-
tivities has a strong impact on the Earth’s climate, which
translates into the modification of the atmospheric circula-
tion, the acceleration of sea level rise and the rapid decay
of Arctic sea ice, significant changes in future sea state con-
ditions and the above-mentioned coupling mechanisms are
expected (see, e.g. Thomson and Rogers, 2014; Idier et al.,
2019; Reguero et al., 2019).

Nowadays, long-term records of wave parameters are pro-
vided by voluntary observing ships along the major maritime
routes (Gulev and Grigorieva, 2004); by in situ wave buoy
networks, mostly located along the US, European, Japanese,
and Australian coastlines; and by satellite altimeter mea-
surements (Ribal and Young, 2019). While altimeter-based
datasets are providing the (almost) global coverage neces-
sary to understand the large-scale variability of sea states and
their interactions with the other components of the Earth’s
climate, they still suffer from several limitations: (1) the main
sea state parameter computed from radar altimeter echoes
is the significant wave height, yet other spectral parameters
such as the wave period and directions are key for some ap-
plications, e.g. coastal impact (Dodet et al., 2019). (2) Al-
timeter measurements cover the last 34 years only (start-
ing with GEOSAT in 1985 with a data gap between 1990
and 1991), which is still relatively short for extracting ro-
bust trend information out of the strong multi-annual fluc-
tuations of the significant wave height. (3) The sparse al-
timeter sampling pattern and the changing number of in-

orbit altimeter missions cause undersampling errors that bias
the long-term statistics, particularly for extreme conditions
(Jiang, 2020). (4) Altimeter missions need to be accurately
cross-calibrated to deliver consistent long-term time series,
this is particularly true when instruments operating in dif-
ferent modes are merged in a single product (Timmermans
et al., 2020). (5) Altimeter measurements are contaminated
by different sources of noise, which prevent a proper rep-
resentation of significant wave height (SWH) variability at
scales lower than 100 km (Ardhuin et al., 2017). In the last
20 years, several research groups have contributed to the de-
velopment of long-term calibrated altimeter databases (Quef-
feulou, 2004; Zieger et al., 2009; Ribal and Young, 2019),
and some of these datasets have been used to compute the
significant wave height trends over the last decades. In a re-
cent study, Young and Ribal (2019) estimated trends in SWH
ranging from − 1 to +1 cm yr−1, depicting a large regional
variability with negative trends mostly located in the Pacific
Ocean. These results, and the dataset they are based on (Ribal
and Young, 2019), represent a milestone in the characterisa-
tion of sea state decadal variability, however, new develop-
ments are necessary to verify these findings and extend the
potential of satellite sea state observations.

Aware of the increasing need for accurate, robust and
consistent long-term sea state data required by the climate
science community (Ardhuin et al., 2019), the Global Cli-
mate Observing System (GCOS) has listed “Sea State” as
an Essential Climate Variable (ECV). ECVs are geophys-
ical records generated from systematic Earth observations
in support of international frameworks and policies such
as the United Nations Framework Convention on Climate
Change (UNFCCC) and the Intergovernmental Panel on Cli-
mate Change (IPCC). The Climate Change Initiative (CCI)
programme, launched by the European Space Agency in
2010, has already contributed to the production of new Cli-
mate Data Records (CDRs) associated with ECVs, such as
aerosol (Popp et al., 2016) or sea ice concentration (Lavergne
et al., 2019). In this context, the Sea State CCI project was
kicked off in 2018 in order to produce a CDR for the new
ECV Sea State. This paper presents the first dataset released
in the context of the Sea State CCI project.

The next section of this paper describes the altimeter mis-
sions that have been considered for the Sea State CCI dataset
v1 and the in situ and model data that have been used to com-
pare against the altimeter data. Section 3 describes the main
processing steps (namely, data editing, inter-calibration and
denoising) implemented within the Sea State CCI produc-
tion system. Section 4 presents the results of the comparison
against in situ measurements and model outputs. Section 5
presents two applications of the Sea State CCI dataset v1 at
global and regional scales. Finally, Sect. 6 discusses the cur-
rent status of the Sea State CCI database v1, the main limita-
tions of the data and the perspectives for the future releases
of this dataset.
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2 Data and methods

2.1 Altimeter data

The altimeter data used in the Sea State CCI dataset v1 come
from multiple missions spanning from 1991 to 2018. Al-
though many spaceborne radar altimeters are bi-frequency
for atmospheric corrections (Ku-C or Ku-S), only measure-
ments in Ku band were used for consistency reasons, being
available for all missions except SARAL/AltiKa (Ka band).
Table 1 provides the list of missions used in the Sea State CCI
dataset v1, together with the input product and version used,
and their orbital properties (note that some cycle changes oc-
curred in the course of some missions for limited period of
time: these are not listed here for clarity, but the correspond-
ing measurements were included in the Sea State CCI dataset
v1). Not surprisingly, the list of altimeter data sources is very
similar to that used by the Sea Level CCI (Fig. 1a in Quartly
et al., 2017), except that project could not utilise the instru-
ments in very long repeat cycles.

2.2 In situ measurements

The in situ data used to validate the Sea State CCI dataset
v1 were gathered by ECMWF (Fig. 1). Most of the data
came from the operational archive from ECMWF, where all
data distributed via the Global Telecommunication System
(GTS) are kept. Data from moored buoys and fixed platforms
were extracted. These data are usually reported hourly (or
less frequently). The bulk of the data comes from moored
buoys, with the exception of data from operating platforms
in the North Sea, Norwegian Sea and the Gulf of Mexico.
The main data providers are the US (via the National Data
Buoy Center, NDBC, and Scripps), Canada, the UK, France,
Ireland, Norway, Iceland, Germany, Spain, Brazil, South Ko-
rea and India. This dataset was supplemented by buoy data
obtained from the websites from the UK Centre for Environ-
ment, Fisheries and Aquaculture Science (CEFAS) and the
Faeroe Islands network. In addition, buoy data from Den-
mark, New Zealand and Japan obtained as part of ECMWF
wave forecast validation project were also used. A basic qual-
ity control was applied to each hourly time series for each
location to remove spurious outliers.

Wave in situ measurements were compared to altimeter
data at every altimeter–in situ match-up. An altimeter–in
situ match-up occurs each time the altimeter ground track
is less than 50 km from a in situ location and the in situ mea-
surement is available within 30 min (following Queffeulou,
2004). For each match-up, the altimeter SWH is averaged
over the along-track records lying within a 50 km radius cir-
cle centred on the in situ location. The in situ time series are
filtered with a 2 h moving window and are then interpolated
on the satellite overpass time. The metrics used for valida-
tions are the bias, the root-mean-square error (RMSE), the
normalised RMSE (NRMSE), the scatter index (SI) and the

Figure 1. Global maps of the wave in situ data used to validate
the Sea State CCI dataset v1. Red circles indicate stations less than
50 km from the coast, blue circles indicate stations between 50 and
100 km from the coast, green circles indicate stations between 100
and 200 km from the coast, and pink circles indicate stations more
than 200 km from the coast. The number of stations is given within
brackets. Black boxes indicate basin extensions used for the re-
gional validation of the dataset.

coefficient of determination (R2).
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where Xalti is the significant wave height recorded by the al-
timeter andXref is the significant wave height recorded by the
wave buoy or the model (as mentioned in the next section).
Comparisons between altimeter data and in situ measure-
ments showed much better agreement when coastal buoys
(< 200 km) were discarded from the analysis. This can be
seen, for instance, on the scatter diagram and error metrics
computed between SARAL and in situ SWH measurements
during the year 2017 (Fig. 2), when all wave buoys are con-
sidered (Fig. 2a), and when only offshore wave buoys 200 km
away from the coast are considered (Fig. 2b). Poorer perfor-
mances in the comparison with coastal buoys have at least
three reasons: firstly, land shading and refraction can mod-
ify SWH at much shorter distances than in the open ocean,
affecting the validity of the 50 km-radius assumption and
jeopardising the number of sites that can be effectively used
for the comparison; secondly, coastal backscatter inhomo-
geneities in the satellite footprint affect the retrievals partic-
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Table 1. Characteristics of altimeter missions used for the Sea State CCI dataset v1.

Covered Repeat Altitude
Mission Instrument Band period period (days) (km) Inclination (◦) Source product

ERS-1 RA Ku 1991–2000 35 785 98.52 OPR [ESA/F-PAF]
TOPEX NRA Ku 1992–2006 10 1336 66 MGDR [CNES]
ERS-2 RA Ku 1995–2011 35 785 98.52 OPR [ESA/F-PAF]
GFO GFO-RA Ku 1998–2008 17 800 108 GDR/POE [NOAA]
JASON-1 Poseidon-2 Ku 2001–2013 10 1336 66 GDR vE [AVISO]
ENVISAT RA-2 Ku 2002–2012 35 799 98.55 GDR v2.1 [ESA/F-PAC]
JASON-2 Poseidon-3 Ku 2008–2019 10 1336 66 GDR vD [AVISO]
CRYOSAT-2 SIRAL Ku 2010–Ongoing 369 717 92 IGDR [NOAA]
SARAL AltiKa Ka 2013–Ongoing 35 785 98.55 GDR [AVISO]
JASON-3 Poseidon-3B Ku 2016–Ongoing 10 1336 66 GDR vD [AVISO]

Figure 2. Comparison between SARAL and wave in situ SWH
measurements during the year 2017, when all in situ sites are con-
sidered (a) and when only locations 200 km away from the coast are
considered (b).

ularly in the last 20 km from the coastline (see Sect. 6.2); fi-
nally, the stronger variability of the wave field in the coastal
zone due to tidal currents, bathymetric refraction, and coastal
wind inhomogeneity invalidates the assumption of wave field
homogeneity within the altimeter footprint.

2.3 Numerical wave model

The wave hindcast used to compare model results with al-
timeter data were produced with the spectral wave model
WAVEWATCH III® (WW3, The WAVEWATCH III De-
velopment Group, 2016). The model is forced by wind
fields from the ERA5 reanalysis (Hersbach et al., 2020); by
geostrophic and Ekman current components from Globcur-
rent products (Rio et al., 2014), with an ice mask applied

from SSMI radiometer (CERSAT); and iceberg distribu-
tion from Altiberg (Tournadre et al., 2016). The coverage
is global and extends from 78◦ S to 80◦ N at 0.5◦ resolu-
tion with a spectral discretisation of 24 directions and 36
frequencies with the lowest frequency at 0.0339 Hz. Output
fields are generated at 3-hourly intervals. The WW3 ver-
sion used is based on the GitHub NOAA-EMC stable re-
lease from 27 June 2019. The model parameterisation is
based on Rascle and Ardhuin (2013) (T471) with the fol-
lowing tuning for the wave growth: BETAMAX= 1.65 and
SWELLF7= 4.14× 105, and for the strong wind intensifi-
cation the following tuning is applied: WCOR1= 23 and
WCOR2= 1.08. Modelled SWH values are linearly inter-
polated along the satellite ground track and statistical errors
(bias, RMSE, NRMSE, SI, R2) are then computed. Statistics
are only computed on measurements considered good, based
on the quality level flag defined in Sect. 3.1.

3 Processing of altimeter data

The Sea State CCI dataset v1 products are inherited from the
GlobWave project (2009–2012) building on the experience
and methodology developed within this project. It extends
and improves the GlobWave products, which were a post-
processing of existing L2 altimeter agency products with ad-
ditional filtering, corrections and variables. Three kinds of
products are delivered in the Sea State CCI dataset v1.

– L2P. Along-track products separated per satellite and
half-orbit (pass) or full orbit (depending on the input
product used), including all measurements with flags,
corrections and extra parameters from other sources.
These are expert products with rich content and no data
loss (Piollé et al., 2020a).

– L3. Edited merged daily products, derived from the L2P
and retaining only valid and good-quality measurements
from all altimeters over 1 d (one daily file), with simpli-
fied content (only a few key parameters). This is close
to what is delivered in near real time by, for instance,
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Table 2. Quality levels defined for Sea State CCI dataset v1.

Value Meaning Description

0 undefined the measurement value is not defined or relevant (missing value, etc.); no quality check was applied.
1 bad the measurement was qualified as not usable after quality check.
2 acceptable the measurement may be usable for specific applications only or the quality check could not fully assess if it is

a bad or good value (suspect).
3 good the measurement is usable.

the Copernicus Marine Environment Monitoring Ser-
vice (Piollé et al., 2020b).

– L4. Statistical gridded products, also derived from the
L2P and averaging valid and good measurements from
all available altimeters over a fixed resolution grid
(1◦× 1◦) on a monthly basis. These products are meant
for statistics and visualisation (such as the CCI toolbox,
http://climatetoolbox.io/, last access: 25 August 2020)
(Piollé et al., 2020c).

The following sections provide more details on the pro-
cessing steps of L2P products, from which L3 and L4 are
derived.

3.1 Data editing

This first step consists in the identification of bad or sus-
pect measurements, in order to build a quality level flag
(swh_quality) providing users with a way to only retain
the valid measurements in their analysis. This is achieved
through a series of tests applied to each measurement, the
result of which are summarised into an additional rejection
flag (swh_rejection_flags), where each bit documents a spe-
cific test’s failure or success. Table 2 lists the four levels of
the variable swh_quality.

When SWH measurements were rejected as bad, the rea-
son (quality test) for which they were rejected is reported in
the related swh_rejection_flags variable. The eight rejection
flags are as follows.

– not_water. The surface type is not water. It may be
land or continental ice. We try to keep lake and inner
seas measurements (when the discrimination is possi-
ble from the GDR information). This test only uses the
internal flags provided in the input product by the pro-
ducer.

– sea_ice. The measurement has possible ice contami-
nation. The sea ice fraction is taken from an external
source (such as the Sea Ice CCI microwave based daily
maps). Sea ice contamination is defined as areas where
the sea ice fraction is greater than a minimal threshold
(corresponding to 10 % of ice in the current configura-
tion). SWH measurements where the sea ice fraction is
greater than 0 % but lower than 10 % are classified as
acceptable.

– swh_validity. The SWH measurements were considered
invalid (for instance because of the possible range or
some internal flag provided in the original product used
as input).

– sigma0_validity. The sigma0 measurements were con-
sidered invalid for water surface type.

– waveform_validity. The measurements were considered
invalid as there are indications of unsuitable waveforms
(as indicated in some internal flag provided in the origi-
nal product used as input) for a proper SWH calculation.

– ssh_validity. The SWH measurements were considered
invalid as there were issues on SSH (as indicated in
some internal flag provided in the original product used
as input), which was considered an indication of prob-
lematic quality for SWH too.

– swh_rms_outlier. The root-mean-square deviation of
the 20 Hz SWH measurements exceeds a certain thresh-
old, which depends on SWH and is computed following
Sepulveda et al. (2015)

– swh_outlier. The measurements were considered in-
valid when performing the SWH outlier test: this test
considers all the measurements within a 100 km win-
dow centred on the screened measurement; measure-
ments that deviate from the 100 km mean (excluding
the two most extreme values in the mean calculation)
by more than 5 standard deviations or by more than 5 m
are discarded. These empirical thresholds were defined
through careful visual examination of the data. This step
is iterated three times over the same window.

The editing criteria which leads to setting the SWH qual-
ity level and rejection flags are specific to each mission and
are detailed in the Sea State CCI dataset product user guide
(available on the project’s website: http://cci.esa.int/seastate,
last access: 25 August 2020).

3.2 Cross-calibration

The Sea State CCI project builds on the GlobWave project,
for which SWH altimeter measurements over the period
1985–2016 were carefully calibrated against in situ data
(GlobWaveTeam, 2013). In the Sea State CCI dataset
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Table 3. Calibration formula used for the Sea State CCI dataset v1.

Mission Calibration formula Applied to

ERS-1 SWHcal = 1.1259SWH+ 0.1854 All data
TOPEX SWHcal = 1.0539SWH− 0.0766 cycles 0–97 (Side A)

SWHcal = 1.0539SWH− 0.0766+ dh(cycle)∗ cycles 98–235 (Side A)
SWHcal = 1.0237SWH− 0.0476 cycles > 235 (Side B)

ERS-2 SWHcal = 1.0541SWH+ 0.0391 All data
GFO SWHcal = 1.0625SWH+ 0.0754 All data
JASON-1 SWHcal = 1.0125SWH+ 0.0461 All data
ENVISAT SWHcal =−0.021SWH3

+ 0.1650SWH2
+ 0.5693SWH+ 0.4358 SWH< 3.41 m

SWHcal = 1.0095SWH+ 0.0391 SWH≥ 3.41 m
JASON-2 SWHcal = 1.0149SWH+ 0.0277 All data
CRYOSAT-2 SWHcal = 0.0124SWH2

+ 0.8858SWH+ 0.1446 SWH< 7.67 m
SARAL SWHcal = 0.9881SWH+ 0.0555 All data
JASON-3 SWHcal = 1.0086SWH+ 0.0503 All data

∗ dh=−0.0685+ 6.0426× 10−4cycle+ 7.7894× 10−6cycle2
− 6.9624× 10−8cycle3.

v1, three additional altimeter missions, namely JASON-3,
CRYOSAT-2 (Low-Resolution Mode) and SARAL, have
been included, and we describe here the methodology used
to cross-calibrate these SWH records against a common
reference dataset. Moreover, a new version (version E) of
the JASON-1 GDR has been released since the GlobWave
project and the calibration formula derived for JASON-1
has also been updated. According to the GlobWave Annual
Quality Control Report (GlobWaveTeam, 2012), there is no
specific quality problem in JASON-2 and the variability in
terms of data quality is lower than for JASON-1 and EN-
VISAT. Therefore, the calibrations of JASON-1, JASON-3,
CRYOSAT-2 and SARAL are performed against the JASON-
2 data, as calibrated by Queffeulou and Croizé-Fillon (2017).
Altimeter SWH cross-calibration is carried out by comparing
SWH measurements at cross-over locations between the al-
timeter to be calibrated and the reference mission JASON-2.
A cross-over data pair is defined each time the two satel-
lite ground tracks intersect within a 60 min time window
(Fig. 3). In order to attenuate the impact of along-track noise
(instrumental and retracking-induced noise) in the compar-
ison, SWH is averaged along n consecutive measurements
25 km away from the intersection points (7≤ n≤ 9 depend-
ing on altimeter orbital velocity, shown as blue and red dots
in Fig. 3). SWH at cross-over locations are then compared to
estimate the calibration formula.

Visual assessment of JASON-1, JASON-3 and SARAL
SWH measurements against JASON-2 calibrated SWH mea-
surements indicate a linear relationship between these mis-
sions (Figs. 4, 5 and 6), and linear calibration formula are
obtained by fitting a least-square regression line through the
SWH data. Note that the fitting was only applied for SWH
values larger than 1 m. Below this value, the linearity of the
relationship is lost, mostly due to differences in the instru-
mental correction applied to account for the fact that the point
target response in the model used is approximated by a Gaus-

Figure 3. (a) JASON-2 (light blue) and SARAL (light red) ground
tracks on 31 March 2018 with the ground track intersection shown
with black circles. (b) The along-track data and cross-over are high-
lighted in (a).

sian function (Thibaut et al., 2010). Moreover, it is known
that SWH retrieval at low sea states and particularly below
0.75 m is less accurate and is noisier due the inadequate sam-
pling of the signal (Smith and Scharroo, 2015).

For CRYOSAT-2 the relationship is no longer linear
(Fig. 7), and we use a second-order polynomial function to
correct this mission. In order to avoid discontinuous and un-
realistic corrections at high sea state, we apply this second-
order polynomial corrections until an upper threshold, corre-
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Figure 4. Residual of JASON-1 SWH− JASON-2 SWH as a func-
tion of JASON-1 SWH before (a) and after (b) calibration. The
dashed red line is a linear fit through the data.

Figure 5. Residual of SARAL SWH − JASON-2 SWH as a func-
tion of SARAL SWH before (a) and after (b) calibration. The
dashed red line is a linear fit through the data.

Figure 6. Residual of JASON-3 SWH− JASON-2 SWH as a func-
tion of JASON-3 SWH before (top) and after (bottom) calibration.
The dashed red line is a linear fit through the data.

Figure 7. Residual of CRYOSAT-2 SWH − JASON-2 SWH as a
function of CRYOSAT-2 SWH before (a) and after (b) calibration.
The dashed red line is a linear fit through the data.
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sponding to the SWH values at which the polynomial inter-
sects the zero residual y axis (in this case 7.67 m).

Table 3 lists the equations used to calibrate the altimeter
SWH measurements in the Sea State CCI dataset v1.

3.3 Data denoising

Altimeter measurements are characterised by a low signal-to-
noise ratio (SNR) at spatial scales below about 100 km, blur-
ring geophysical signal variabilities in this scale range, such
as those resulting from wave–current interactions. The use
of altimeter data therefore often requires preliminary noise
filtering, and low-pass or smoothing filters are frequently ap-
plied. Such operation quite systematically results in the loss
of small-scale (< 100 km) geophysical information or in the
creation of artefacts in the geophysical variability analysed
(e.g. spectral ringing), and requires setting of a cut-off wave-
length or a filter window length that is difficult to determine
adequately for a global dataset. As for approaches that infer a
correction to eliminate correlated errors from other aspects of
the waveform data (Quartly, 2019; Tran et al., 2019), it also
leaves a substantial amount of low- and medium-frequency
noise in the data. To overcome these difficulties, an adap-
tive noise elimination method is used, based on the non-
parametric Empirical Mode Decomposition (EMD) method
developed to analyse non-stationary and non-linear signals
(Huang et al., 1998). EMD is a scale decomposition into a
limited number of amplitude and frequency modulated func-
tions (AM-FM) – called Intrinsic Mode Functions (IMFs) –
among which the Gaussian noise distribution is predictable
(Flandrin et al., 2004). It therefore provides the basis for
a noise elimination approach with results often superior to
those of wavelet-based techniques (Kopsinis and McLaugh-
lin, 2009). Recently, EMD analysis has been successfully ap-
plied to altimeter data to analyse wave–current interactions
known to predominate at scales below 100 km (Quilfen et al.,
2018; Quilfen and Chapron, 2019). The main steps of this
method are described hereinafter. For a full description of
the method, please refer to Quilfen and Chapron (2020).

3.3.1 The EMD principles

EMD adaptively decomposes a signal x(t) into a small num-
ber L of IMFs hn(t),1≤ n≤ L, and thus

x(t)=
L∑
n=1

hn(t). (1)

The IMF number, L, depends on the length of the record and
typically varies from 1 to 10 for the lengths analysed in the
altimeter dataset. By construction, IMFs have the following
properties: they are zero mean, all their maxima and min-
ima are respectively positive and negative, and they have the
same number (or ±1) of zero-crossings and local extrema.
The IMFs are calculated successively, the first one contain-
ing the shortest scales and the last one containing a trend, by

construction of the algorithm. Each IMF is estimated using
an iterative process called sifting that determines the AM-
FM high-frequency part of any input signal. For a given data
segment, the sifting operates in a few steps: (1) find the local
maxima and minima, (2) interpolate along the maxima and
minima to form an upper and a lower envelope, (3) calcu-
late the average of the two envelopes and subtract it from the
analysed segment, and (4) repeat the process from step 1 to
3 unless a stopping criterion has been met (see Huang et al.,
1998; Quilfen and Chapron, 2020, for details). An example is
shown in Fig. 8 for a JASON-2 measurement record of about
1060 km length, for which the EMD method determined six
IMFs to represent the full signal.

The figure also shows other aspects of the denoising pro-
cess to be discussed in the next section. As shown, the high-
frequency noise is projected in the first IMF, and the scale
range of each IMF is increasing with the IMF increasing in
rank. Notably, the very large geophysical gradients such as
observed in this example are also captured by IMF1. IMF1
therefore requires a particular processing to separate noise
from useful information.

Once the signal is broken down into a set of IMFs, a
denoising strategy inspired by those used for wavelet tech-
niques can be applied. The analysis to be carried out takes ad-
vantage of (1) the well-behaved and predictable distribution
of Gaussian noise energy with the IMF basis, (2) the legacy
of decades of wavelet-based denoising techniques, and (3) an
ensemble average approach to estimate a robust noise-free
signal.

3.3.2 EMD-based data denoising

Flandrin et al. (2004) showed that in the case of pure frac-
tional Gaussian noise, the first IMF possesses the charac-
teristics of a high-pass filter, while the higher-order modes
behave similarly to a dyadic filter bank for which, as they
descend the frequency scale, the successive frequency bands
have half the width of their predecessors. This is illustrated
in Fig. 9.

It implies that the Gaussian noise variance projected onto
the IMF basis can be modelled, for IMFs of rank n > 1, as
follows:

var(hn(t))∝ 2(α−1)n, (2)

α depends on the autocorrelation function of the fractional
Gaussian noise (i.e. α = 0.5 for an uncorrelated noise, e.g.
white noise; α 6= 0.5 for an autocorrelated noise). For white
noise, the expected noise energy level of each IMF of rank
n > 1 is then given by

En =
E1

0.719
2.01−n, (3)
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Figure 8. EMD expansion in L IMFs (IMF2 to 6 from top to bottom) for a data segment of JASON-2 raw (solid black line) and filtered
(dashed red line) SWH measurements on 29 February 2016 (top panel). For the IMFs, the black lines show the IMF amplitudes and the
superimposed magenta lines the signal portions identified as above the predicted noise level (solid green lines). For this particular case,
portions of signal that are dominated by noise are found solely in the three first IMFs. For IMF1, the dashed red line shows the high-frequency
noise series that has been computed from IMF1 wavelet processing. As obtained, six IMFs describe the total signal.

where E1 is computed using the Median Absolute Deviation
(MAD) from zero:

E1 =

(
median|n1(t)|

0.6745

)2

, (4)

where n1(t) is the IMF1 noise estimated from a wavelet anal-
ysis (as an example, see the top panel of Fig. 8). Equation (3)
and (4) then give the expected noise energy in each IMF to

determine the different thresholds below which signal fluctu-
ations are associated with noise, as illustrated in Fig. 8. For
each IMF, the threshold is Tn = A

√
En. A is a constant that

can be adjusted as a global tuning parameter.
With the EMD basis, noise energy decreases rapidly with

the increasing IMF rank: ∼ 59 %, 20.5 %, 10.3 %, and 5.2 %
of total energy for the first four IMFs, respectively, which
represents∼ 95 % of the total noise energy. For a given noisy
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Figure 9. Mean Power Spectral Density (PSD) of the first four IMFs, for white noise (red curves) and JASON-2 SWH along-track mea-
surements (black curves), and mean PSD of the corresponding noisy (solid blue line) and denoised (dashed blue line) JASON-2 SWH
measurements. The PSD is the average of PSDs computed over all data segments covering the years 2014 to 2016 in the Agulhas region
(45–33◦ S, 10–35◦ E). From Quilfen and Chapron (2020).

input signal, the SNR and robustness of the denoised signal
(e.g. to mitigate for result uncertainties associated with signal
fluctuations close to the applied thresholds) are increased by
estimating the final result as an ensemble average of several
denoised signals. For that, the noise n1(t) is first removed
from the noisy signal x(t), then a set of k new noisy signals
is generated by adding random realisations of n1(t), provid-
ing after denoising a set of k denoised signals whose average
gives the resulting denoised SWH and whose standard de-
viation gives the uncertainty attached to the denoised SWH.
The uncertainty parameter therefore accounts for the noise
characteristics of the noisy signal (function of the altime-
ter sensor, SWH etc), as well as for the local SNR (which
is scale-dependent) and for uncertainties attached to the de-
noising process.

Figure 9 illustrates the different points discussed above.
It shows how the EMD filter bank distributes a white noise
signal and the JASON-2 altimeter SWH signal in the Agul-
has Current region. The standard deviation of noise was ad-
justed to fit the SWH background noise at scales< 20 km. As
shown, the EMD filter bank is composed of a high-pass fil-
ter, IMF1, and a dyadic filter bank for higher-ranking IMFs.
A similar structure is observed when EMD is applied to the
SWH along-track signal, confirming that IMF1 mainly con-
tains the high-frequency noise and showing that pure noise
and SWH higher-ranking IMFs share the same frequency

ranges. Figure 9, which shows how similar the filter bank is
for pure noise and for SWH signal, therefore highlights the
practical rule used for denoising, which compares the signal
modulation in each IMF with the noise energy expected for
the IMF of same rank. The proposed method is free of sys-
tematic artefacts, preserves the amplitude of spatial gradients
and extreme values, and eliminates the noise over the whole
frequency range. Signals down to scales of nearly 30 km can
be recovered, provided that the local signal-to-noise ratio is
sufficient.

4 Quality assessment of the Sea State CCI dataset
v1

4.1 Comparisons against in situ data and model results

Statistical metrics (bias, RMSE, NRMSE, SI and R2) be-
tween altimeter measurements and in situ data were com-
puted for each mission and each year. The overall scores are
provided in Table 4 for the calibrated and denoised altime-
ter SWH, considering only altimeter–in situ match-ups that
occurred more than 200 km from the coast. With a number
of match-up data between 1018 (ERS-1, 3 years of data) and
14 395 (JASON-2, 11 years of data), all the computed val-
ues are statistically significant. Except for ERS-1 for which
the bias is negative (−7.2 cm), all the mission show a pos-
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itive bias lower than 10 cm. The RMSE is below 26 cm for
all missions, corresponding to a mean value lower than 11 %
once normalised by the mean of the observations. Moreover,
the scatter index is lower than 9 % and the coefficient of de-
termination is higher than 0.96 for all missions.

In order to assess the impact of the calibration and denois-
ing steps applied on the altimeter measurements (Sect. 3.1),
the above-mentioned metrics were also computed for the raw
and calibrated SWH data before denoising was applied. Fig-
ure 10 shows the averaged bias and normalised RMSE be-
tween in situ and altimeter measurements for the raw, cali-
brated and denoised SWH. Here, again only match-ups that
occurred more than 200 km from the coast were considered.
Comparing the statistics for the raw SWH and calibrated
SWH, we see that the calibration step tends to decrease the
absolute bias and the NRMSE, except for JASON-1, JASON-
2, SARAL and JASON-3. In particular, the GlobWave-
calibrated JASON-2 measurements present a positive bias
of ∼ 8 cm. Since these data were used to inter-calibrate the
JASON-1, SARAL and JASON-3 measurements included in
the present dataset, it is straightforward to attribute the pos-
itive bias found in these three missions to the propagation
of the error during the inter-calibration step. The increased
bias also resulted in larger NRMSE after the calibration of
these missions. Although a clear understanding of this in-
creased bias for JASON-2 requires further investigations, the
different in situ dataset (stations and time period) used for
the GlobWave calibration and for the present validation may
explain part of the discrepancies. Comparing the statistics for
the calibrated and denoised SWH, we see that the denoised
data compared slightly better with in situ measurements than
data that is not denoised, with NRMSE decreasing by up to
7 % and by 3 % on average, after denoising is applied. The
impact of the denoising step was actually much more signif-
icant on the comparisons against model outputs, which take
into account the along-track variability (see below).

Comparison of the altimeter dataset against the WW3
wave model hindcast (described in Sect. 2.3) was performed
as a complementary validation with an independent dataset.
In order to assess the quality of the dataset over the 1994–
2018 time period, mean global bias and NRMSE between
the denoised altimeter SWH and the modelled SWH were
computed on a yearly basis for each altimeter mission. Fig-
ure 11 shows the time series of these two parameters, with
distinct colours for each mission. We can see that the bias is
lower than 10 cm and the NRMSE is lower than 13 % over the
whole period. The overall trend is a decrease of the error met-
rics from the oldest missions to the most recent ones that may
be attributed to improvements in instrument performance and
processing techniques. We also note some inter- and multi-
annual variabilities in the metrics that can be associated with
changes in missions recording phases and associated orbits.
The thin dashed lines in Fig. 11b show the NRMSE obtained
before denoising is applied on the altimeter SWH. Differ-
ences in the metrics obtained with the calibrated (not de-

Figure 10. Mean bias (a) and mean NRMSE (b) between altimeter
measurements and in situ measurements > 200 km from the coast.

Figure 11. Time series of mean global bias (a) and mean global
NRMSE (b) between Sea State CCI dataset v1 and WW3 model
outputs forced with ERA5 wind fields (see Sect. 2.3). The thin
dashed lines in (b) represent the results obtained for the calibrated
SWH before denoising was applied.

noised) and denoised SWH illustrate the significant improve-
ments obtained after the small scale (< 100 km) fluctuations
in the altimeter measurements are removed, with a NRMSE
decrease by up to 20 % and by 10 % on average.

Finally, coastal and regional assessments of the dataset
were performed by computing error metrics for different
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Table 4. Statistical metrics for the validation of denoised SWH in the Sea State CCI dataset v1 against in situ data located> 200 km offshore.

Mission N years Match-ups Bias (m) RMSE (m) NRMSE (%) SI (%) R2

ERS-1 3 1018 −0.07 0.26 9.95 8.41 0.97
TOPEX 12 7797 0.01 0.24 9.74 8.39 0.97
ERS-2 17 9207 0.01 0.24 10.41 8.96 0.97
GFO 9 5221 0.03 0.26 10.91 9.46 0.96
JASON-1 12 11 094 0.01 0.22 9.58 8.31 0.97
ENVISAT 11 8286 0.04 0.23 10.05 8.58 0.97
JASON-2 11 14 395 0.07 0.21 9.67 7.86 0.98
CRYOSAT-2 9 7913 0.07 0.20 9.17 7.46 0.98
SARAL 6 7876 0.09 0.21 10.14 7.96 0.98
JASON-3 3 4181 0.10 0.21 9.95 7.48 0.98

Table 5. Statistical metrics based on altimeter–buoy and altimeter–
model comparisons for different subsets of data (see Fig. 1).

Bias RMSE NRMSE SI
Subset (m) (m) (%) (%) R2

Comparisons against buoys

All 0.11 0.36 18.19 14.53 0.93
> 200 km 0.04 0.23 9.96 8.29 0.97
100–200 km 0.07 0.30 13.42 11.02 0.96
50–100 km 0.06 0.28 15.81 12.76 0.95
0–50 km 0.16 0.44 23.69 18.27 0.89

Comparisons against models∗

All 0.02 0.30 11.14 10.20 0.89
> 200 km 0.00 0.30 10.30 9.66 0.90
100–200 km 0.08 0.29 13.22 11.45 0.87
50–100 km 0.12 0.30 16.50 13.35 0.83
NA 0.04 0.31 11.50 10.93 0.91
SA −0.02 0.31 10.64 10.11 0.89
NP 0.04 0.30 11.49 10.78 0.90
SP 0.02 0.28 9.47 8.67 0.88
IO 0.06 0.23 10.67 9.62 0.90
SO −0.17 0.47 13.86 11.51 0.88

∗ For the model comparisons, only nodes located further than 50 km from the
coast are considered. For the coastal assessment against model outputs, only data
within 60◦ S–60◦ N are considered.

coastal strips (> 200, 100–200, 50–100, 0–50 km) and dif-
ferent basins (North Atlantic, South Atlantic, North Pacific,
South Pacific, Indian Ocean and Southern Ocean). The num-
ber and locations of the coastal in situ stations and the (arbi-
trary) extensions of the ocean basins used for these compar-
isons are depicted in Fig. 1. Due to a low number of in situ
stations in most ocean basins, the regional assessment was
only performed against model outputs. Also, given the 0.5◦

model resolution, coastal assessment was only performed for
model outputs located more than 50 km from the coast. The
results of these comparisons are summarised in Table 5.

The error metrics for the different coastal strips clearly in-
dicate the better performance for the comparisons obtained

further from the coast. For instance, the NRMSE increases
from ∼ 10 % for buoys located > 200 km from the coast to
∼ 24 % for buoys located less than 50 km from the coast, and
from ∼ 11 % for model outputs > 200 km from the coast to
∼ 17 % for model outputs within 50 and 100 km from the
coast. These results also reveal a ∼ 10 cm increase of the
bias between altimeter data and in situ measurements at less
than 50 km from the coast. This increased bias may be ex-
plained by the fact that match-ups between altimeter and in
situ stations close to the coast will contain a larger fraction
of altimeter records located offshore with respect to the buoy
position, with the altimeter records nearer to the coast be-
ing rejected during the data editing process (see Sect. 3.1).
As a result, the altimeter will systematically see larger waves
than the in situ sensor in the regions where sea states are
impacted by coastal features, such as shallow depths, island
blocking, or increased tidal currents. In regard to the basin
comparisons, we note a similar performance for each basin,
except for the Southern Ocean, where the bias is negative and
∼ 20 cm lower than for the other regions and the NRMSE is
∼ 14 %, whereas it is closer to 11 % for the other regions.
This may be explained by the poorer quality of both altime-
ter records and model simulations in this region that is dom-
inated by high sea states.

4.2 Cross-consistency analysis

One objective of the Sea State CCI project is to implement
a processing system able to produce accurate and consistent
long-term time series of EO-based SWH measurements. In-
deed, the time consistency of the produced dataset is partic-
ularly relevant for investigating the multi-decadal variability
of the Sea State ECV and its interactions with other com-
ponents of the Earth climate system. In order to ensure that
the produced altimeter SWH is consistent over the altime-
ter time period, we inspected the monthly global mean SWH
for each mission, within 60◦ S and 60◦ N. Figure 12 shows
the time series of the global monthly means for the raw,
calibrated and denoised SWH, with the corresponding mean
values computed over the available measurement period. We
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Figure 12. Monthly global mean of raw (a), calibrated (b) and de-
noised (c) SWH over the period 1991–2018. The horizontal lines
and the values correspond to the mean values computed for each
mission over the duration of the measurements.

see that the global means of raw SWH present large differ-
ences from one mission to the other, with an overall stan-
dard deviation (σ ) of the mean values equal to 15 cm. The
lowest mean value (2.00 m) is obtained for the earliest mis-
sion, ERS-1, while the highest mean value (2.54 m) is ob-
tained for CRYOSAT-2. These differences are strongly re-
duced after calibration is applied to SWH (σ = 2.5 cm). We
note that denoising the calibrated SWH has a minor impact
on the mean values, with maximum changes of the global
mean lower than 2 %. The remaining differences in the mean
values between each mission can be partly attributed to the
different calibration methodology applied to the GlobWave
dataset and to the most recent missions included in the Sea
State CCI dataset v1 but also to the natural variability of
the sea states, which is partly controlled by inter-annual and
decadal climate modes, such as the North Atlantic Oscilla-
tion, the El Niño–Southern Oscillation or the Southern An-
nular Mode (Dodet et al., 2010; Reguero et al., 2019).

5 Applications of the Sea State CCI dataset

5.1 Global wave height climatology

A first evaluation of the Sea State CCI dataset v1 is shown in
Fig. 13a as the global distribution of the climatological an-
nual mean significant wave height calculated over the period
1992–2017. This is based on the CCI Sea State Level 4 (L4)
gridded product and is presented here at its native 1◦ reso-
lution. Further evaluations and analyses of the L4 product
over climatological timescales, including intercomparisons
with other high-quality sea state data sources, are provided
in Timmermans et al. (2020). The climatology clearly shows
the typical features of global wave fields, with high sea states
at mid-to-high latitudes in both hemispheres corresponding
to the imprint of extratropical storm tracks and the persis-
tently high winds of the Southern Ocean. The 1◦ resolution
of the product also makes it possible to distinguish regions of
lower mean wave heights in enclosed and sheltered seas and
close to islands and land, for example in the Gulf of Mexico,
the Mediterranean Sea, the Baltic Sea and the Indo-Pacific
Warm Pool.

Focusing now on Fig. 13b, we see the normalised clima-
tological difference (expressed as a percentage of SWH) be-
tween the CCI product and the climatological mean obtained
from the calibrated multi-mission altimeter data published by
Ribal and Young (2019). The overall agreement between the
two altimeter-based datasets is generally good, with differ-
ences typically of less than ± 2.5 %, although some spatially
coherent differences (both positive and negative) are clearly
visible, most noticeably on either side of the Equator. While
a detailed explanation for the differences is subject to further
analysis, a number of factors are likely to be relevant. We
note some differences in source missions (omission here of
SARAL in the analysis of Ribal and Young, 2019, for exam-
ple) and differences in the calibration methodology, such as
the use of different sets of reference data buoys between the
two products, and subsequent mission cross-calibration. See
Timmermans et al. (2020), Sect. 4 for more details.

Finally, Fig. 13c presents a similar comparison, this time
between the CCI and ERA5. ERA5 (Hersbach et al., 2020)
is the most recent of the reanalysis products developed
and distributed by ECMWF, which features a number of
innovations, including higher spatial and temporal res-
olution and hourly assimilation of altimeter significant
wave height data. In these results, the comparisons indicate
that, even though ERA5 assimilates altimeter data, the
ERA5 climatological mean SWH is substantially lower
than CCI almost everywhere, except the eastern tropical
Pacific and southern tropical Atlantic, where ERA5 clearly
overestimates the wave climate. Once again, as for the
comparison against Ribal and Young (2019), strong sig-
natures are observed either side of the Equator. These are
likely attributable to at least two factors. Firstly, ERA5
generally underestimates SWH in stormy areas, except
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in the deep tropics where the wave climate is dominated
by long period swell. Recent changes have been made
to the ERA5 wave physics package to try to solve some
of these issues (https://www.ecmwf.int/en/about/media-
centre/news/2019/forecasting-system-upgrade-set-improve-
global-weather-forecasts, last access: 25 August 2020).
Secondly, in the tropical Pacific Ocean, the impacts of
the equatorial and counter-equatorial currents are clearly
visible. This corresponds to the absence of ocean surface
currents, both in the atmosphere boundary layer and in the
wave model component of ERA5. It is also affected by the
relatively coarse (32 km) wind fields, which lead to loss of
information in the wave model.

Similar examination of differences in climatological sea-
sonal (JFM, JJA) mean between the CCI and the product of
Ribal and Young is provided by Timmermans et al. (2020).
Differences were generally found not to be statistically sig-
nificant at a 10 % level (their Fig. S2 in supporting informa-
tion), with some possible exceptions in regions of low aver-
age sea state, such as the Bay of Bengal and the Indonesian
seas. However, a more rigorous assessment of robustness of
differences was recommended, noting high sea state variabil-
ity over the relatively short record and other possible sources
of systematic error that remain poorly understood.

5.2 Long-term wave height trends

The accurate representation of long term temporal variation
is crucial for many applications. Timmermans et al. (2020)
examined long-term global seasonal (JFM, JJA) SWH trends
from the CCI Level 4 dataset and intercompared those with
other high-quality sea state records over the period of con-
tinuous satellite coverage (their Figs. 3 and S4). Figure 14
shows the trend in annual mean SWH for the CCI L4 product,
with a similar intercomparison. Trends are calculated using
a linear regression approach, discussed further by Timmer-
mans et al. (2020).

Overall, there is remarkable variability across datasets,
although in all cases intra-dataset variability shows a high
degree of spatial coherence. While the maximum range of
trends across all datasets is approximately the same, a strik-
ing result is that trends from the CCI L4 (Fig. 14b) appear to
be substantially more positive than those from the Ribal and
Young (Fig. 14a) and in better agreement with the CY46R1
ERA5 hindcast. Some regional intra-dataset trends appear to
be robust at the 5 % significance level (w.r.t. the linear model)
but these are rarely consistent across products, with disagree-
ment in sign in a few locations. CCI L4 contrasts with Ribal
and Young with positive trends in the central Atlantic and
eastern Pacific, although there is qualitative agreement on
(negative) sign in the northern and southern Pacific.

As already highlighted (see also Timmermans et al., 2020,
Sect. 4), differences in source missions and calibration ap-
proaches are likely relevant. In particular, Timmermans et al.
(2020) reveal (their Fig. 2) that the CCI dataset tends to pro-

vide the largest values (or various datasets, including buoys)
in SWH time series at two specific locations, a phenomenon
likely linked to the use of JASON-2 as a reference calibra-
tion mission. Further factors include the impact of interan-
nual variability and changes in observation space–time sam-
pling density over the period, both of which may affect the
evaluation of a linear trend, particularly if bias is present at
the beginning or end of the record. Finally, the relatively high
degree of spatial heterogeneity seen for all products suggests
that relatively short-term variability has localised influence.
In general, on much longer timescales more homogeneous
trends might be expected. See also Timmermans et al. (2020)
for analysis of seasonal trends (JFM, JJA).

5.3 Spectral variability at regional scales

The Sea State CCI dataset v1 provides a unique opportu-
nity to analyse global and regional sea state variability in
the mesoscale range below several hundreds kilometres up
to ∼ 50 km. Indeed, the wave field in this scale range is
strongly modulated by wave–current interactions (Ardhuin
et al., 2017; Quilfen et al., 2018) that were hitherto neglected
in the analysis of altimeter signals due to noise contami-
nation. Moreover, in most ocean basins, altimeter data are
the only available measurements of wave heights. Fig. 15a
shows the yearly averaged mean surface current vorticity
computed from altimeter-derived geostrophic surface cur-
rents (Rio et al., 2014). Six 1◦× 1◦ regions that are well
exposed to swell events and characterised by different sur-
face dynamics are displayed as coloured rectangles. Regions
(a) (Agulhas Current, in red) and (b) (Drake Passage, in
green) are characterised by strong surface vorticity (> 1×
10−5 s−1), with many surface mesoscale and sub-mesoscale
features produced by instability processes (Tedesco et al.,
2019; Rocha et al., 2016). Regions (c) and (d) (Atlantic–
Pacific equatorial band, in orange and purple, respectively)
are characterised by intermediate surface vorticity (between
0.6× 10−5 and 0.4× 10−5 s−1). Regions (e) and (f) (north-
ern branch of southern Atlantic–Pacific gyre, in blue and
turquoise, respectively) are characterised by low surface vor-
ticity (< 0.2× 10−5 s−1).

For each of these regions, we performed a spectral analy-
sis on 8 years (2010–2018) of 1 Hz along-track SWH mea-
surements acquired by JASON-2. The wavenumber spectra
were computed along segments of 128 points (∼ 800 km) de-
trended and tapered with a Hanning window. For each region,
approximately 3000 1D spectra were averaged, and the mean
spectra are shown in Fig. 15b for each region with similar
surface current vorticity (from high vorticity on the left-hand
side to low vorticity in the right-hand side). The divergence
between the dotted line (original signal) and the solid lines
(denoised signal) highlights the scales at which the SWH
variability is dominated by noise. In our case, we used the
EMD-based filtering method described in Sect. 3.3 to reveal
the SWH variability at smaller scales. Interestingly, we note
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Figure 13. (a) Climatological annual mean SWH over the period 1992–2017 obtained with CCI v1 Level 4 data. (b) Normalised differ-
ence (% SWH) between climatological mean from CCI and Ribal and Young (2019). (c) Normalised difference (% SWH) between the
climatological mean from CCI and ERA5

that the scale at which the divergence takes place depends on
the dynamics of the region considered (from ∼ 125 km for
the high-vorticity regions to∼ 200 km for the lower-vorticity
regions). Spectral slopes were computed with linear regres-
sion over the range 250–50 km (unshaded area in Fig. 15b),
for which the spectral slope is nearly constant. These slopes
are around k−2.5 in regions where surface vorticity is in-
tense (i.e. Agulhas Current and Drake Passage), as already
evidenced by Ardhuin et al. (2017) from combined altime-
ter data and numerical model results in the Gulf Stream and
the Drake Passage. In regions where the vorticity is lower,
such as the equatorial band or in the northern branch of At-

lantic and Pacific tropical gyres, the spectral slopes becomes
less steep (around k−1.5). This regional distribution of SWH
spectral shape presents some similarities with the one ob-
tained for the sea surface height, with a steeper slope in high
energy area and milder slopes in low energy regions (e.g.
Vergara et al., 2019; Xu and Fu, 2011). The difference in the
wave height power spectral density between Fig. 15b and the
two others (Fig. 15c and 15d) is due to the contrasting wave
height climatology in the considered regions (see Sect. 5.1).

These preliminary results highlight the benefit of the EMD
denoising method in investigating the small mesoscale SWH
variability. Further investigation will be carried out to under-
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Figure 14. Global distribution of annual mean SWH trend estimates on a 2◦× 2◦ grid over 1992–2017 for (a) Ribal and Young (2019),
(b) CCI L4, (c) ERA5, and (d) CY46R1 ERA5 (see Timmermans et al., 2020, for details). Dots indicate grid cells where the trend coefficient
is significant at the 5 % level.
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Figure 15. (a) Global map of surface current averaged vorticity (0.25◦×0.25◦) over 2015 from altimeter-derived geostrophic surface currents
(Rio et al., 2014). Coloured rectangles are the studied areas through a spectral analysis. (b) The associated 8-year-averaged significant wave
height power spectral density (PSD) as a function of wavelength and wavenumber. In solid lines the SWH spectra obtained from denoised
SWH data are given, and in dotted lines the spectra for raw data (including estimation noise) are given. Note that, for reading convenience,
the y axis is not the same for the three subplots in (b).

stand the impact of surface currents on sea state mesoscale
variability over multi-decadal scales.

6 Current limitations and future developments

This section discusses the current status of the Sea State CCI
dataset v1, the main limitations of the data and the perspec-
tives for the future releases of the dataset.

6.1 Definition of a reference in situ dataset for sea
states

Routine observations from moored buoys now exceed
40 years for several locations worldwide, which make them
practical for analysing long-term trends. The most abun-

dant open-source network is NOAA’s National Data Buoy
Center (NDBC), which has maintained an expansive net-
work since the 1970s. Despite the multi-decadal time series
from moored buoys, the data homogeneity is a critical issue
(Gemmrich et al., 2011). Buoy hulls, payloads and data pro-
cessing algorithms change over time, and often the changes
through metadata are not well documented. The changes in
buoy configurations introduce spurious deviations in the time
series that are at least on the same order of magnitude (if
not larger) as changes due to inter-annual variability (ENSO,
NAO, SAM, etc.) or secular trends. Having detailed meta-
data is critical to correct the buoy time series. As a result, re-
ported trends from buoy records produce inconsistent results,
with changes in magnitude and even sign between buoys sep-
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Figure 16. (a) Schematic of how conventional waveforms are affected by varying wave height and proximity to land. (b) Variability within
a 1 s ensemble as a function of mean conditions. Illustration is from the default retracker for JASON-3, with grey shading indicating the
population density for open-ocean conditions and the red lines indicating the 25th, 50th, and 75th percentiles for 0.5 m wide bins. Pink lines
show the same analysis for points within 15 km of the coast.

arated by a few hundred kilometres (Allan and Komar, 2000;
Gower, 2002; Ruggiero et al., 2010; Young et al., 2011).
These inconsistencies mean that, at present, very few long-
term buoy datasets exist that can be used reliably for trend
estimation. This is a major shortcoming as no agreed “ground
truth” exists to compare satellite or model estimates of trend.
There is a pressing need to produce long-term buoy datasets
that include both the measured quantities of interest (signifi-
cant wave height, wind speed) but also metadata document-
ing information such as buoy hull type, sampling details, in-
strument package, processing details, etc. With such meta-
data, it is potentially possible to correct for changes to such
quantities over time and hence produce a harmonised dataset,
in a similar manner to the careful reprocessing of sea surface
temperature records (Merchant et al., 2019).

6.2 Revisiting altimeter inter-calibration

In its current version (v1), the Sea State dataset uses the
GlobWave calibration formula for all missions prior to 2018
(except for JASON-1, as explained in Sect. 2.1), while
the most recent missions were inter-calibrated against the
JASON-2 data, as corrected in GlobWave. This strategy was
adopted in order to ensure the long-term consistency of this
merged dataset. However, the independent validation exer-
cise performed within the CCI project against an exhaus-
tive in situ dataset (see Sect. 4) has revealed some unex-
pected features of the corrected data. In particular, the cal-
ibrated JASON-2 SWH presents a positive bias of ∼ 8 cm,
larger than the one computed from the raw data. This dis-
crepancy could be due to the different in situ data (time cov-
erage and selected networks) used for the GlobWave calibra-
tion and the CCI validation. Since JASON-2 is used as a ref-
erence for inter-calibrating other missions, this bias also im-
pacts the most recent missions. Moreover, comparisons be-

tween the CCI dataset and the one of Ribal and Young (2019)
have revealed significant differences in the long-term statis-
tics between these two datasets, which may be partly related
to the calibration methodologies and reference in situ data
(Timmermans et al., 2020). Future developments in the CCI
dataset will therefore require an improved inter-calibration
methodology that will be systematically applied to all altime-
ter missions included in the dataset, in order to reduce the
uncertainties in the long-term sea state statistics.

6.3 Assessment and implementation of new retracking
algorithms

In order to accurately estimate physical variables of rele-
vance in satellite altimetry, average waveforms (usually at
a rate of 20 Hz) are fitted to a mathematical model and an
optimisation algorithm, in a process called “retracking”. For
conventional (low-resolution mode) altimetry, all the infor-
mation on SWH is encrypted in the few bins on the leading
edge of the waveform (Fig. 16a). The actual echo observed at
any bin is the sum of the contributions from many incoherent
reflecting points on the sea surface; the effect of this “fad-
ing noise” is that the power recorded in the mean waveform
has an intrinsic variability that will have a strong effect on
parameters calculated from only a few waveform bins. Also,
in the coastal zone, unwanted reflections from nearby land
or sheltered bays (Gomez-Enri et al., 2010) and changes in
the wave shape due to wave–bottom and wave–current in-
teractions (Ardhuin et al., 2012) can affect the quantity and
quality of SWH estimations within 20 km of the coast (Pas-
saro et al., 2015). The uncertainty in estimates due to fading
noise typically increases with SWH, but the uncertainty is
much more pronounced in the near-shore region (Fig. 16b).
Similar challenges exist in the marginal ice zone. The ad-
vent of delay Doppler altimetry (DDA) offers the potential
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for improved SWH accuracy near land (Nencioli and Quar-
tly, 2019) and reduced sensitivity to fading noise through be-
ing able to utilise a greater number of independent echoes
(Raney, 1998).

There is now a strong demand to improve the quality of
altimetric wave height data from both LRM and DDA in-
struments through improved retracking methods in order to
(1) enhance the precision (i.e. short-scale repeatability of
20 Hz estimates), (2) increase robustness and accuracy in
the coastal zone and ice-affected areas, (3) observe the true
spectra of waves unencumbered by retracker resolving issues
such as the “spectral hump” (Dibarboure et al., 2014), (4) ac-
curately record the extreme waves despite uncertainty in-
creasing (Fig. 16b), and (5) improve estimation at low SWH
where the slope of the leading edge is inadequately resolved
(Smith and Scharroo, 2015). DDA shows promise for these
aspects, although it is worth noting that the much narrower
footprint with DDA may be leading to an underestimation
bias associated with wave direction (Moreau et al., 2018).

To address these limitations, new retracking techniques
have been developed, which generally involve one or more of
the following features: numerical solution of the radar equa-
tion (as opposed to using an analytical model), fitting of a se-
lected portion of the waveform (Passaro et al., 2014; Thibaut
et al., 2017; Peng and Deng, 2018), finding a smooth trajec-
tory through a cloud of solutions (Roscher et al., 2017), and
post-processing aimed at reducing correlated errors among
consecutive estimations (Quilfen and Chapron, 2020; Quar-
tly et al., 2019; Quartly, 2019). On top of this, several
flavours exist of an analytical model to describe the view-
ing geometry of the DDA acquisitions (Moreau et al., 2018;
Buchhaupt et al., 2018; Ray et al., 2015).

In the framework of the Sea State CCI, a set of rules and
statistics for a so-called round robin exercise have been de-
fined, which is common in such projects (e.g. Brewin et al.,
2015) but to date has never been applied to altimetry. The
aim is to ensure that these new algorithms can be evalu-
ated in a rigorous and transparent way, taking into account
all the different applications. The procedure involves com-
parison with external datasets (buoys and models), internal
analysis of outlier rejection, quality flags, precision and spec-
tral properties. The results of this study show that a number
of specially designed algorithms can deliver improved SWH
retrieval in both open ocean and close to the coast and for a
range of sea state conditions (Schlembach et al., 2020). The
gains are achieved both through the design of the retracking
algorithms, e.g. to avoid spurious signals in the tail of the
waveform, and also through enhanced data selection using
a data quality flag tuned to that specific retracker. However,
a procedure for identifying good pairings of buoys and al-
timeter tracks is essential in order to achieve robust results
(Nencioli and Quartly, 2019; Quartly and Kurekin, 2020).

7 Data availability

The Sea State CCI dataset v1 is freely available on the
ESA CCI website (http://cci.esa.int/data, last access: 25 Au-
gust 2020) at
ftp://anon-ftp.ceda.ac.uk/neodc/esacci/sea_state/data/
v1.1_release/. The following three products are avail-
able: a multi-mission along-track L2P product (http:
//dx.doi.org/10.5285/f91cd3ee7b6243d5b7d41b9beaf397e1,
Piollé et al., 2020a), a daily merged multi mission
along-track L3 product (http://dx.doi.org/10.5285/
3ef6a5a66e9947d39b356251909dc12b, Piollé et al., 2020b)
and a multi-mission monthly gridded L4 product (http://
dx.doi.org/10.5285/47140d618dcc40309e1edbca7e773478,
Piollé et al., 2020c). The ice masks from SSMI ra-
diometers were obtained from the Centre de Recherche
et d’Exploitation Satellitaire (CERSAT), at IFREMER,
Plouzané (France).

8 Conclusions

The Climate Change Initiative programme launched by ESA
in 2010 has fostered the production of climate quality long-
term global datasets of Essential Climate Variables, whose
analysis is needed for understanding the mechanisms of cli-
mate change and the associated societal impact. In this con-
text, the Sea State CCI project is in charge of reprocess-
ing and developing dedicated algorithms for historical and
current EO missions dedicated to the observations of sea
state (radar altimeters and SAR missions) in order to pro-
duce a continuous, consistent and robust long-term dataset
of sea state parameters. The first version of the Sea State
CCI dataset, presented in this study, covers the period 1991–
2018 and includes observations from 10 altimeter missions.
The implementation of quality flags and auxiliary parame-
ters in a systematic way, the update of calibration formula
for the most recent missions, the development of an EMD-
based denoising method, and the validation against an exten-
sive network of in situ data buoy and state-of-the art model
results, resulted in a unique dataset designed for the study
of wave climate variability. This dataset has already proved
really useful in investigating sea state variability at global
and regional scales, in terms of wave climatology and spec-
tral variability. Future releases of the Sea State CCI dataset
will extend the capacity of this dataset even further, through
(1) the implementation of dedicated retracking algorithms for
estimating the SWH with improved accuracy, (2) the revision
of the calibration formula based on a high-quality and con-
sistent dataset of in situ buoy measurements, and (3) the in-
clusion of spectral wave parameters derived from SAR mis-
sions.
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