Articles | Volume 11, issue 3
Earth Syst. Sci. Data, 11, 1239–1262, 2019
https://doi.org/10.5194/essd-11-1239-2019
Earth Syst. Sci. Data, 11, 1239–1262, 2019
https://doi.org/10.5194/essd-11-1239-2019
Data description paper
21 Aug 2019
Data description paper | 21 Aug 2019

A machine-learning-based global sea-surface iodide distribution

Tomás Sherwen et al.

Related authors

Nitrogen oxides in the free troposphere: Implications for tropospheric oxidants and the interpretation of satellite NO2 measurements
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
EGUsphere, https://doi.org/10.5194/egusphere-2022-656,https://doi.org/10.5194/egusphere-2022-656, 2022
Short summary
Fundamental Oxidation Processes in the Remote Marine Atmosphere Investigated Using the NO-NO2-O3 Photostationary State
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-390,https://doi.org/10.5194/acp-2022-390, 2022
Preprint under review for ACP
Short summary
Comparison of model and ground observations finds snowpack and blowing snow both contribute to Arctic tropospheric reactive bromine
William F. Swanson, Chris D. Holmes, William R. Simpson, Kaitlyn Confer, Louis Marelle, Jennie L. Thomas, Lyatt Jaeglé, Becky Alexander, Shuting Zhai, Qianjie Chen, Xuan Wang, and Tomás Sherwen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-44,https://doi.org/10.5194/acp-2022-44, 2022
Revised manuscript under review for ACP
Short summary
Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Tomás Sherwen, Rainer Volkamer, Theodore K. Koenig, Tanguy Giroud, and Thomas Peter
Geosci. Model Dev., 14, 6623–6645, https://doi.org/10.5194/gmd-14-6623-2021,https://doi.org/10.5194/gmd-14-6623-2021, 2021
Short summary
Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants
Xuan Wang, Daniel J. Jacob, William Downs, Shuting Zhai, Lei Zhu, Viral Shah, Christopher D. Holmes, Tomás Sherwen, Becky Alexander, Mathew J. Evans, Sebastian D. Eastham, J. Andrew Neuman, Patrick R. Veres, Theodore K. Koenig, Rainer Volkamer, L. Gregory Huey, Thomas J. Bannan, Carl J. Percival, Ben H. Lee, and Joel A. Thornton
Atmos. Chem. Phys., 21, 13973–13996, https://doi.org/10.5194/acp-21-13973-2021,https://doi.org/10.5194/acp-21-13973-2021, 2021
Short summary

Related subject area

Atmospheric chemistry and physics
Climatology of aerosol component concentrations derived from multi-angular polarimetric POLDER-3 observations using GRASP algorithm
Lei Li, Yevgeny Derimian, Cheng Chen, Xindan Zhang, Huizheng Che, Gregory L. Schuster, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Christian Matar, Fabrice Ducos, Yana Karol, Benjamin Torres, Ke Gui, Yu Zheng, Yuanxin Liang, Yadong Lei, Jibiao Zhu, Lei Zhang, Junting Zhong, Xiaoye Zhang, and Oleg Dubovik
Earth Syst. Sci. Data, 14, 3439–3469, https://doi.org/10.5194/essd-14-3439-2022,https://doi.org/10.5194/essd-14-3439-2022, 2022
Short summary
Reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China
Junting Zhong, Xiaoye Zhang, Ke Gui, Jie Liao, Ye Fei, Lipeng Jiang, Lifeng Guo, Liangke Liu, Huizheng Che, Yaqiang Wang, Deying Wang, and Zijiang Zhou
Earth Syst. Sci. Data, 14, 3197–3211, https://doi.org/10.5194/essd-14-3197-2022,https://doi.org/10.5194/essd-14-3197-2022, 2022
Short summary
A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021)
Fei Jiang, Weimin Ju, Wei He, Mousong Wu, Hengmao Wang, Jun Wang, Mengwei Jia, Shuzhuang Feng, Lingyu Zhang, and Jing M. Chen
Earth Syst. Sci. Data, 14, 3013–3037, https://doi.org/10.5194/essd-14-3013-2022,https://doi.org/10.5194/essd-14-3013-2022, 2022
Short summary
Multispecies and high-spatiotemporal-resolution database of vehicular emissions in Brazil
Leonardo Hoinaski, Thiago Vieira Vasques, Camilo Bastos Ribeiro, and Bianca Meotti
Earth Syst. Sci. Data, 14, 2939–2949, https://doi.org/10.5194/essd-14-2939-2022,https://doi.org/10.5194/essd-14-2939-2022, 2022
Short summary
The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016)
Enza Di Tomaso, Jerónimo Escribano, Sara Basart, Paul Ginoux, Francesca Macchia, Francesca Barnaba, Francesco Benincasa, Pierre-Antoine Bretonnière, Arnau Buñuel, Miguel Castrillo, Emilio Cuevas, Paola Formenti, María Gonçalves, Oriol Jorba, Martina Klose, Lucia Mona, Gilbert Montané Pinto, Michail Mytilinaios, Vincenzo Obiso, Miriam Olid, Nick Schutgens, Athanasios Votsis, Ernest Werner, and Carlos Pérez García-Pando
Earth Syst. Sci. Data, 14, 2785–2816, https://doi.org/10.5194/essd-14-2785-2022,https://doi.org/10.5194/essd-14-2785-2022, 2022
Short summary

Cited articles

Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Rosenberg, J. V., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009. a
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. a
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001. a, b
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001. a, b, c, d
Campos, M., Farrenkopf, A., Jickells, T., and Luther, G.: A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series Station and Hawaii Ocean Time-series Station, Deep Sea Res. Pt. II, 43, 455–466, https://doi.org/10.1016/0967-0645(95)00100-X, 1996. a
Download
Short summary
Iodine plays an important role in the Earth system, as a nutrient to the biosphere and by changing the concentrations of climate and air-quality species. However, there are uncertainties on the magnitude of iodine’s role, and a key uncertainty is our understanding of iodide in the global sea-surface. Here we take a data-driven approach using a machine learning algorithm to convert a sparse set of sea-surface iodide observations into a spatially and temporally resolved dataset for use in models.