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Abstract. Iodide in the sea-surface plays an important role in the Earth system. It modulates the oxidising
capacity of the troposphere and provides iodine to terrestrial ecosystems. However, our understanding of its
distribution is limited due to a paucity of observations. Previous efforts to generate global distributions have
generally fitted sea-surface iodide observations to relatively simple functions using proxies for iodide such as
nitrate and sea-surface temperature. This approach fails to account for coastal influences and variation in the
bio-geochemical environment. Here we use a machine learning regression approach (random forest regression)
to generate a high-resolution (0.125◦× 0.125◦, ∼ 12.5km× 12.5km), monthly dataset of present-day global
sea-surface iodide. We use a compilation of iodide observations (1967–2018) that has a 45 % larger sample
size than has been used previously as the dependent variable and co-located ancillary parameters (temperature,
nitrate, phosphate, salinity, shortwave radiation, topographic depth, mixed layer depth, and chlorophyll a) from
global climatologies as the independent variables. We investigate the regression models generated using different
combinations of ancillary parameters and select the 10 best-performing models to be included in an ensemble
prediction. We then use this ensemble of models, combined with global fields of the ancillary parameters, to
predict new high-resolution monthly global sea-surface iodide fields representing the present day. Sea-surface
temperature is the most important variable in all 10 models. We estimate a global average sea-surface iodide
concentration of 106 nM (with an uncertainty of ∼ 20 %), which is within the range of previous estimates (60–
130 nM). Similar to previous work, higher concentrations are predicted for the tropics than for the extra-tropics.
Unlike the previous parameterisations, higher concentrations are also predicted for shallow areas such as coastal
regions and the South China Sea. Compared to previous work, the new parameterisation better captures observed
variability. The iodide concentrations calculated here are significantly higher (40 % on a global basis) than the
commonly used MacDonald et al. (2014) parameterisation, with implications for our understanding of iodine in
the atmosphere. We envisage these fields could be used to represent present-day sea-surface iodide concentra-
tions, in applications such as climate and air-quality modelling. The global iodide dataset is made freely available
to the community (https://doi.org/10/gfv5v3, Sherwen et al., 2019), and as new observations are made, we will
update the global dataset through a “living data” model.

Published by Copernicus Publications.

https://doi.org/10/gfv5v3


1240 T. Sherwen et al.: A machine-learning-based global sea-surface iodide distribution

1 Introduction

Iodine in seawater exists in two major forms, iodide (I−) and
iodate (IO−3 ). Total inorganic iodine (I−+ IO−3 ) remains ap-
proximately constant across most of the oceans, but the ratio
of iodide to iodate varies. Chance et al. (2014) have shown
that the ratio will vary with latitude, depth, and oxygen level.
A small amount of iodine (< 10 %) is thought to be present in
organic forms in the open ocean (e.g. Wong, 1991); however,
this may be a larger fraction in coastal waters (e.g. Wong
and Cheng, 1998). The processes controlling the distribution
of the ratio between iodide and iodate remain poorly under-
stood (Chance et al., 2014).

A reason for gaps in our understanding is that the observa-
tional dataset of iodide and iodate remains relatively sparse
(Chance et al., 2014, 2019a). Despite this paucity in observa-
tions, iodine’s role in the Earth system has driven multidis-
ciplinary interest in the distribution of iodine compounds in
seawater from a number of different research communities,
including paleoceanography (e.g. Lu et al., 2016, 2018; Zhou
et al., 2015), atmospheric composition (e.g. Ganzeveld et al.,
2009; Saiz-Lopez et al., 2014; Sherwen et al., 2016a), and
air-quality prediction (e.g. Luhar et al., 2017, 2018; Sarwar
et al., 2015; Sherwen et al., 2017b).

The atmospheric science community has seen a particu-
larly large growth in interest in iodine chemistry in the at-
mosphere and at the sea-surface, as sea-surface I− is be-
lieved to be the main driver of atmospheric iodine emis-
sions. The reaction of I− with ozone in the sea-surface
micro-layer removes ozone from the atmosphere (dry de-
position) (Ganzeveld et al., 2009) and results in the emis-
sion of inorganic iodine (HOI and I2) into the atmosphere
(Carpenter et al., 2013), which can subsequently catalyti-
cally destroy ozone (Chameides and Davis, 1980). Models
have shown this can then lead to a feedback mechanism be-
tween the increased ozone from pre-industrial and present
day, counteracting human-driven increases in tropospheric
ozone (Prados-Roman et al., 2015; Sherwen et al., 2017a). A
number of model studies have discussed the impact of ocean-
sourced iodine on atmosphere composition in the context of
air quality (Gantt et al., 2017; Sarwar et al., 2016; Sherwen
et al., 2017b), climate (Sherwen et al., 2017b; Saiz-Lopez
et al., 2012), aerosols (Sherwen et al., 2017a), and strato-
spheric ozone (Saiz-Lopez et al., 2015). These atmospheric
modelling studies have used relatively simple parameterisa-
tions for predictions of sea-surface iodide.

Early parameterisations for sea-surface iodide were based
on limited datasets and used either an observed range of
iodide concentrations (Coleman et al., 2010; Chang et al.,
2004) or a reported relationship with biogeochemical param-
eters (e.g. chlorophyll in Oh et al., 2008, or nitrate Ganzeveld
et al., 2009). However, more recent attempts (Chance et al.,
2014; MacDonald et al., 2014) have focused on using corre-
lation analysis to fit compilations of observed iodide concen-
trations to a variety of commonly measured sea-surface vari-

ables, notably sea-surface temperature, but also chlorophyll,
salinity, and nitrate. A summary of parameterisations that
have been used in previous studies is given in Appendix Ta-
ble A1. Compilation of all available observations confirmed a
strong latitudinal gradient and identified sea-surface temper-
ature as the strongest single predictor of iodide concentra-
tion (Chance et al., 2014). This approach has led to Eq. (1)
from Chance et al. (2014) and Eq. (2) from MacDonald et al.
(2014).

I−aq (nM)= 0.225 · T (◦C)2
+ 19 (1)

I−aq (nM)= 1.46× 106
· exp

(
−9134
T (◦K)

)
· 1× 109 (2)

Figure 1 shows the global annual mean distribution of
sea-surface iodide calculated using these parameterisations
(Eqs. 1 and 2) and sea-surface temperature fields (Locarnini
et al., 2013). Although both equations predict a similar dis-
tribution (higher concentrations in tropical waters and lower
in polar waters), Eq. (1) generally predicts iodide concentra-
tions 2–4 times higher than Eq. (2). In developing Eq. (1),
Chance et al. (2014) compiled iodide observations from both
coastal and non-coastal sites. However, Eq. (2) used a rela-
tively small subset (14 %) of these observations, which did
not include coastal sites, which may explain the lower con-
centrations. Equation (2) also has an Arrhenius form, which
could be interpreted to suggest that iodide concentrations are
controlled by abiotic reaction kinetics. However, this has not
been demonstrated, and Chance et al. (2014) discussed how
microbiological activity and oceanic mixing are currently
thought to be the primary controls. The choice of parameter-
isation (Eq. 2 versus Eq. 1) results in a difference of 50 % in
the calculated global emissions of iodine into the atmosphere
(Sherwen et al., 2016a).

Considering the need for spatially resolved sea-surface io-
dide fields by models and the paucity of observations, pa-
rameterisations are required that can yield predictions from
ancillary variables. This is a regression problem and a num-
ber of approaches are available. Conventional linear and lin-
ear multi-variant approaches have been used in the past (e.g.
see summary in Appendix Table A1). However, they need
to assume a functional relationship between the dependent
and independent variables. Another approach is machine
learning, which uses algorithms to build predictive models.
These algorithms take a different approach and use a non-
parametric formulation. Machine learning approaches range
from interpretable options such as the random forest algo-
rithm (Breiman, 2001) to less interpretable ones such as ar-
tificial neural networks (Gardner and Dorling, 1998). On the
more interpretable end, machine learning algorithms are be-
ing used increasingly within environmental sciences, with
recent examples including linear ridge regression and ran-
dom forest models to replace computationally expensive pro-
cesses (Keller and Evans, 2019; Nowack et al., 2018) and
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Table 1. Ancillary variables extracted onto a global 0.125◦× 0.125◦ (∼ 12.5km× 12.5km) grid on a monthly basis.

Field Abbreviation Resolution (space, time) Reference

Sea-surface temperature TEMP 0.25◦× 0.25◦, monthly WOA; Locarnini et al. (2013)
Salinity SAL 0.25◦× 0.25◦, monthly WOA; Zweng et al. (2013)
Dissolved oxygen O2 1◦× 1◦, monthly WOA; Garcia et al. (2010)
Bathymetric ocean depth DEPTH 9 km (∼ 0.08◦), n/a GEBCO; Becker et al. (2009), Smith and Sandwell (1997)
Nitrate NO3 1◦× 1◦, monthly WOA; Garcia et al. (2014)
Phosphate Phos 1◦× 1◦, monthly WOA; Garcia et al. (2014)
Silicate SIL 1◦× 1◦, monthly WOA; Garcia et al. (2014)
Chlorophyll ChlrA 9 km, monthly SeaWIFS; OBPG (2014)
Mixed layer depth MLD* 1◦× 1◦, monthly WOA; Monterey and Levitus (1997)
Shortwave radiation SWrad 1.9◦× 1.9◦, monthly NOAMADS; Large and Yeager (2009)

Expansion of Acronyms. WOA: World Ocean Atlas, SeaWIFS: Sea-Viewing Wide Field-of-View Sensor, GEBCO: General Bathymetric Chart of the Oceans, NOAMADS:
NOAA National Operational Model Archive and Distribution System. (*) Three available mixed layer depth (MLD) definitions in WOA (vd: variable potential density, pt:
potential temperature, pd: potential density) were processed from comma-separated value (CSV) to NetCDF files and extracted. Following Chance et al. (2014), the monthly
sum and maximum MLD was also computed (vd, pt, pd) and used for building predictions of iodide. When just the variable MLD is shown, it is MLD as defined by potential
temperature. n/a – not applicable

Figure 1. Annual average sea-surface iodide concentrations pre-
dicted by (a) Eq. (1) from Chance et al. (2014) and (b) Eq. (2)
from MacDonald et al. (2014). Temperature fields used to make spa-
tial predictions were from the World Ocean Atlas (Locarnini et al.,
2013). Earth raster and vector map data used are freely available
from Natural Earth (http://www.naturalearthdata.com/, last access:
23 July 2019).

Gaussian process emulation to explore model biases on a
global scale (Lee et al., 2011; Revell et al., 2018).

Here, we use a recently expanded compilation of sea-
surface iodide observations (Chance et al., 2019a) to build a
new sea-surface iodide parameterisation using a data-driven
machine learning approach. We choose to use the random
forest regressor (RFR) algorithm (Breiman, 2001; Pedregosa
et al., 2011), which is relatively simple and produces re-

Table 2. Splits of dataset used to evaluate outliers and their per-
formance against the withheld data. The root mean square error
(RMSE) statistic given as the mean of the performance against
the withheld data for 20 different models built from 20 different
pseudo-random initialisations (Sect. 3.2). The model used here in-
cludes ancillary variables of temperature, depth, and salinity which
were thought to intuitively give a reasonable result. “No.” gives the
number of samples in each dataset.

Description Mean RMSE vs. model No.
(withheld data), nM

Just coastal and no outliers 35.8 819
Salinity ≥ 30 PSU and no outliers 36.7 1278
No Skagerrak or outliers 37.3 1293
No outliers 37.6 1306
Just non-coastal and no outliers 40.4 487
All 95.1 1342

sults that are also easy to understand. We aim to be able to
predict global sea-surface iodide based on observations and
ancillary physical and chemical variables (e.g. sea-surface
temperature, depth, and salinity) from a number of publicly
available sources. We first describe the input datasets we use
(Sect. 2), then we explain the methodology taken (Sect. 3),
and finally we present the predictions at observational lo-
cations and globally (Sect. 4). This product should be con-
sidered a present-day climatology representing the period
of the iodide observations (1967–2018), which we envisage
could be useful in applications such as climate and air-quality
modelling. We make the resulting high-resolution, global,
monthly dataset of predicted iodide available to the commu-
nity (Sherwen et al., 2019; https://doi.org/10/gfv5v3). When
new observations become available, they will be incorpo-
rated into the model, and updated versions will be provided
through a “living data” model.
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2 Input datasets

Chance et al. (2019a) provides a compilation of the avail-
able 1342 sea-surface (< 20 m depth) iodide observations
between 1967 and 2018. The dataset is available from the
British Oceanographic Data Centre (BODC, Chance et al.,
2019b; https://doi.org/10/czhx). It includes 45 % more data
points, and has greater spatial coverage, than the previ-
ous compilation of 925 observations (Chance et al., 2014).
Observations are categorised in Chance et al. (2019a) as
“coastal” or “non-coastal”, according to the designation of
their static Longhurst biogeochemical province (Longhurst,
1998). We adopt the same categorisation here. This sea-
surface iodide dataset then forms the dependent variable for
our regression. We assume no inter-annual variability and use
all data from all years (1967–2018) in this work.

We require a number of physical, chemical, and biolog-
ical parameters as the independent variables in our regres-
sion models. Consistent in situ measurement of these param-
eters are not available for the iodide observations. Thus we
have used a number of ancillary datasets (Table 1) to pro-
vide this information. There are a number of criteria for these
datasets: they need to be available at an appropriately sim-
ilar resolution as a gridded product to the desired resolu-
tion of the predicted fields, they need to represent potential
processes that could control iodide concentrations, and they
need to be in some way orthogonal to the other independent
variables. Gridded datasets of dissolved organic carbon (e.g.
Roshan and DeVries, 2017) and phytoplankton primary pro-
ductivity (e.g. Behrenfeld and Falkowski, 1997) may have
some usefulness, but they themselves are built using statis-
tical models with other variables and thus we do not use
those here. The selected ancillary variables (Table 1) were
first extracted from their native resolution using the nearest-
neighbour method onto a consistent high-resolution monthly
grid (0.125◦× 0.125◦, ∼ 12.5km× 12.5km). This horizon-
tal resolution was used as this is the highest resolution of the
current generation of global atmospheric chemistry simula-
tions (Hu et al., 2018) and is also used for regional-scale air-
quality studies (e.g. Li et al., 2019). We calculate monthly
means because the chemical lifetime of iodide in the sur-
face oceans is thought to be at least several months (Campos
et al., 1996; Žic et al., 2013), and possibly years (Edwards
and Truesdale, 1997; Tsunogai and Henmi, 1971). Indeed,
the lifetime of iodide is thought to be sufficiently long that,
where deep vertical mixing occurs on a seasonal timescale,
this may be the dominant loss process from surface waters
(e.g. Chance et al., 2010). The values for bathymetric ocean
depth were set to a minimum depth of 2 m, to remove terres-
trial locations, and the same value was used for all months.

For each iodide observation, the nearest point in space and
time was extracted from the high-resolution gridded ancil-
lary data. For the 31 iodide observations where a month was
not available (Luther and Cole, 1988; Tsunogai and Henmi,
1971; Wong and Cheng, 1998), an arbitrary month was cho-

sen (of March for northern hemispheric observations and
September for southern hemispheric observations). Outliers
within the observations are removed as described in Sect. 3.3.
A further single dataset (Truesdale et al., 2003) was also
excluded from this analysis. This is discussed in Appendix
Sect. A1.

3 Methods

Here we first explain the way in which we use the ma-
chine learning algorithm (Sect. 3.1). We then explain how
we have calculated uncertainty (Sect. 3.2), how observa-
tions considered outliers have been removed from the data
(Sect. 3.3), and how we have decided which ancillary vari-
ables (temperature, salinity, etc.) to use as independent vari-
ables for an ensemble prediction (Sect. 3.4). Finally we de-
scribe the interpretable ensemble prediction model that re-
sults from this methodology in both numerical and graphical
terms (Sect. 3.5).

3.1 Random forest regressor algorithm

As the aim here is to predict a continuous numerical value for
sea-surface iodide, a regression approach is taken. As dis-
cussed in the introduction, previous approaches have been
made to parameterise sea-surface iodide, and the most com-
monly used relationships employ sea-surface temperature as
the predictor variable. Here we take a different multivari-
ate and non-parametric approach, using the computationally
cheap and interpretable random forest regressor (RFR) algo-
rithm (Breiman, 2001; Pedregosa et al., 2011).

Random forest regression is based on finding a number of
decisions trees, which predict the dependent variable. All of
the trees contribute to the prediction, and they are collectively
referred to as a “forest”. These trees can be explained as a
record of the way the algorithm has linearly traversed a sub-
set of the training data, splitting the data into two parts at each
decision point or “node” in a way that minimised the inter-
nal differences of the parts. The best split is chosen between
the available variables based on an error metric (e.g. mean
square error), and this process is continued until a criterion
of purity is reached or a minimum number of data points are
left from a split. This is essentially a classification problem.
The prediction of the forest is the mean value of the predic-
tion of all of the different decision trees, which attempts to
make the results more of a regression problem. More details
of this approach can be found in Friedman et al. (2009).

This approach differs from previous approaches which
have individually tested proposed relationships and selected
the best-performing model(s) as a parameterisation (e.g. Ta-
ble A1). Here, an algorithm uses the data it is provided to
build a model that gives a prediction, and therefore it is the
data themselves that define the model that is used to predict
new values. A key difference of this approach is also that
only a subset, the training set, is used to build the model, and
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the rest (or withheld set) is then used to test the performance
of the model. Here we use 80 % of the data for the train-
ing set and use the remaining 20 % as the withheld set (also
commonly referred to as the “testing set”).

To ensure that the models built are generalisable and miti-
gate overfitting, the random forest approach used here artifi-
cially increases the randomness within the forest (Pedregosa
et al., 2011). This is done by randomly combining single
decision trees by an approach referred to as “bootstrap ag-
gregation” or “bagging” (Breiman, 2001; Tong et al., 2003).
This additional bagging approach randomly samples obser-
vations within the training dataset and so mitigates overfit-
ting of the trees to the dataset (Friedman et al., 2009). Fur-
thermore, a stratified sampling approach was taken. Specifi-
cally, the overall dataset was split into quartiles according to
iodide concentration value, and training data were randomly
selected from each quartile. This approach was used to main-
tain the same statistical distribution in the training/testing
data as the overall dataset.

Machine learning algorithms can generally be tuned to in-
crease performance using settings called hyperparameters.
However, random forests are known to generally perform
well without tuning. The default hyperparameters were there-
fore used here (Pedregosa et al., 2011), except for increas-
ing the number of trees (“n_estimators”) from 10 to 500.
Mean square error (MSE) was used as the criterion for eval-
uating each split (also referred to as a “node”). The maxi-
mum number of “features” (the ancillary variables provided
to the algorithm, such as temperature or nitrate concentra-
tion) considered when looking for the best split is set to
the number provided to the algorithm. The number of splits
a tree is allowed to make (“max_depth”) is not restricted,
and further nodes are made until leaves contain less than
two samples (“min_samples_split”) and a minimum of one
(“min_samples_leaf”). All the random forest models are built
using bootstrapping.

3.2 Error and uncertainty calculations

Understanding the errors and uncertainties in the global io-
dide distribution is important due to any sensitivities to this
value within the modelled Earth system. We consider three
sources of error in our predictions: the “dataset selection”
error due to the splitting of the dataset into training and with-
held parts, the “model selection error” due to the choice of
dependent variables, and the “observational error” on the io-
dide measurements.

To quantify the range of the dataset selection error, we
construct models from 20 pseudo-random splits of the dataset
into training and withheld parts. The hyperparameters and in-
put ancillary variables are kept the same for the generation of
the 20 models, so that the only difference between the models
is the training dataset. These 20 models are then used to pre-
dict the withheld data. Performance metrics (e.g. root mean
square error (RMSE) and average absolute prediction) can

then be calculated for each model. This gives a range of 20
values, which can then be converted to a percentage range as
the error. This is done by dividing the largest range in pre-
dicted values for a model by the minimum predicted value,
to give a maximum value for the range of error, and then tak-
ing the smallest range in the predicted values and dividing
this by the maximum value, to give a minimum value for the
error range. Significant differences between the model’s per-
formance metrics would suggest important sensitivity to the
training/withheld dataset splits.

We define the “model selection” error as the uncertainty
resulting from the choice of input ancillary variables. A num-
ber of combinations of input variables are possible in gener-
ating the models, and each will generate a different predic-
tion. We quantify this error as the difference in performance
against the withheld dataset and prediction value (e.g. aver-
age global value). Similarly to our calculation of the dataset
selection error, this can be converted to percentage error by
considering the range in these values and dividing them by
minimum and maximum values.

For the observational error we refer to Chance et al.
(2019a), who provide individual error estimates for each of
the iodide observations in the data compilation. Over half
(51 %) of the data points have an error of 5 % or less, and a
further∼ 25 % have an uncertainty in the range of 5 %–10 %.
We therefore use a value of 10 % as a conservative estimate
of the observational error.

3.3 Outlier identification and removal

Our dataset consists of values for ancillary variables and io-
dide concentration for all of the 1342 measurement loca-
tions in the observational dataset (Sect. 2). As discussed in
Sect. 3.1, we split this dataset into two parts: (i) a training set
for use in building and optimising models, and (ii) a withheld
set to evaluate the models built. Particular care was taken to
ensure the withheld and training datasets were representative
of the entire dataset in the way the models are built, there-
fore improving performance and generalisability to unseen
data (see Sect. 3.1).

We take a random forest regressor model built with vari-
ables that were intuitively assumed to give a reasonable abil-
ity to differentiate the observations (using depth, tempera-
ture, and salinity as the independent variables – abbrevi-
ated to “RFR(DEPTH+TEMP+SAL)” following Table 1).
The RFR(DEPTH+TEMP+SAL) model was then used to ex-
plore the variation of error in the predictions using the dataset
selection error approach described in Sect. 3.2. This builds
multiple versions of the same model with different splits of
training and test data and yields a distribution of root mean
square error in the predicted iodide for withheld data as sum-
marised in the final column of Table 2 and shown graphically
in Appendix Fig. A1.

We define outliers here as values greater than the third
quartile plus 1.5 times the interquartile range (Frigge et al.,
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1989). Removing these 49 values categorised as outliers
(> 309.5 nM) leads to a vast improvement in the RMSE error
in the ensemble prediction from 95.1 to 37.6 nM (Table 2).
This is shown graphically in Appendix Fig. A1, with the
other subsets of the data explored (Table 2). This demon-
strates that the high values are not well enough represented
by the dataset to be able to be captured by the RFR approach.
The removal of these high values from the dataset can also be
justified as the driver for these concentrations is not yet well
understood (Chance et al., 2014, 2019c; Cutter et al., 2018).

Removing these outliers reduces RMSE in the prediction
with the 20 independent model builds from 48.2 to 2.3 nM
(third quartile–first quartile). Once these outliers are ex-
cluded, more modest changes in average RMSE are then seen
if models are built only using coastal or non-coastal data. Fig-
ure A1 also shows this is seen when removing lower salinity
data (“Salinity ≥ 30 PSU and no outliers”), which is indica-
tive of estuarine water. This highlights the strength in this
approach’s ability to predict iodide in different biogeochem-
ical regions (i.e. not just coastal or non-coastal locations).

An additional removal of a single dataset of 19 observa-
tions from the Skagerrak strait (Truesdale et al., 2003) was
made due to it exerting a disproportionate influence on iodide
prediction in high northern latitudes (≥ 65◦ N), an area that
is almost entirely unconstrained by local observations. We
note that the Skagerrak is relatively unusual oceanographi-
cally, being an estuarine location with high ship traffic, and
is considered unlikely to be an analogue for iodine speciation
in the Arctic. This is decision is discussed further in the Ap-
pendix (Sect. A1), and the predictions made including this
dataset are also provided in the shared output (Sect. 5).

From here, only the 1293 observational points excluding
outliers and the data from the Skagerrak strait (Truesdale
et al., 2003) are used.

3.4 Selection of ancillary variables and building an
ensemble prediction

To decide which ancillary variables (temperature, salinity,
etc.; see Table 1 and Sect. 2) should be used to predict sea-
surface iodide concentration, RFR models were built and
evaluated with different combinations of variables. Thirty
eight combinations were considered (see first column of Ap-
pendix Table A2).

The top 20 performing models, based on their root mean
square error against the withheld data, are plotted in Fig. 2,
alongside existing parameterisations. The standard deviation
for all predicted values is also shown to illustrate variation
in the predictions. A complete list of the performance and of
all models built here and their performance is given in the
appendix (Table A2).

The RMSE values in Fig. 2 show the increased skill
present in the new predictions compared to the existing pa-
rameterisations. The RMSE improves from the 75.3 and
50.2 nM found for the Chance et al. (2014) and MacDonald

et al. (2014) parameterisations, respectively, to 33.2–37.4 nM
for the top 10 models created here. Only modest gains are
seen in RMSE between models with three variables or more.

The best-performing model in the list is only marginally
better than the 10th best-performing one; therefore there is
not an obvious “best” performing set of ancillary variables.
Thus going forward we use an ensemble prediction approach
based on the mean value from an ensemble of the 10 top-
performing models.

3.5 Model descriptions

Unlike many machine learning approaches, the random for-
est regressor algorithm is interpretable. The decision trees
can be visualised to explain the main features driving the
splits. Figure 3 shows schematically the whole regression ap-
proach taken here. Panel (a) shows single trees, of which 500
are built with the same input variables and then combined
into forest (b). Then this forest is combined with the nine
other top-performing models (made from different combina-
tions of ancillary variables) to make an ensemble (c). The 10
predictions of (c) are then arithmetically averaged into a sin-
gle prediction, which thus includes the predictions of 5000
trees with 10 different combinations of input variables. In
Fig. 3a, the colour of a limb or “branch” following a node
is given by the variable driving that split within the training
dataset. For Fig. 3b and c it shows the percent of times that
a variable drives that node within the forest. The value of the
ancillary variable that sets the split is shown inside the circle
(a, b, c). The thickness of the branch scales to the throughput
of training dataset samples contained within that split. The
trees are shown to a depth of five nodes for aesthetic reasons
and due to increased divergence of the trees within a forest
the deeper you go. However the trees themselves are unlim-
ited in the depth they can reach.

The first and larger splits in the data at decision nodes in
the models can be simply read, which can provide under-
standing of the main variables driving the initial and largest
splits in the prediction. For all models in the ensemble, the
initial split is driven by temperature, with a split occurring
at around 21.1 ◦C (with a standard deviation of 1.2 ◦C). The
data are then split by two further nodes from this, a left-
and right-hand split (e.g. Fig. 3b). If depth or temperature is
present as a variable, then they drive the majority of the next
splits. If depth is not present as a variable, then either nitrate
or mixed layer depth (MLD) is the most common variable to
dictate the split in the data at the next node in the tree. Thus a
qualitative way of interpreting the initial splits of the dataset
would be to say that the model is primarily differentiating
between warmer and shallower locations.

4 Results

Here we evaluate the performance of the ensemble predic-
tion against the observational dataset (Sect. 4.1), and then we
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Figure 2. Random forest regression (RFR) model performance (root mean square error (RMSE), blue) against the withheld data for the top
20 models on the left-hand y axis, along with values from the parameterisations from Chance et al. (2014) and MacDonald et al. (2014). The
right-hand y axis is standard deviation of the prediction for the withheld data (orange). The top 10 performing models and the two exiting
parameterisations considered here (Chance et al., 2014; MacDonald et al., 2014) are shown in bold. Parameterisations are ordered by their
RMSE. Abbreviations are given in Table 1.

explore the predicted global monthly surface concentrations
(Sect. 4.2).

4.1 Prediction of iodide at observational locations

Figure 4 shows a point-by-point comparison between param-
eterised and observed iodide for the entire dataset, the with-
held dataset, and the withheld coastal dataset and withheld
non-coastal dataset. Predictions are shown for the ensemble
random forest regressor approach described here and for both
the Chance et al. (2014) and MacDonald et al. (2014) pa-
rameterisations. The root mean square errors of observed and
predicted values are given in Fig. 4 and in Table 3.

The new ensemble prediction is the best performing, with
a lower RMSE (35 nM) compared to the existing parameter-
isations (75 and 50 nM for the MacDonald et al., 2014, and
Chance et al., 2014, respectively) for the withheld data. Both
the new parameterisation and Chance et al. (2014) parameter-
isation are relatively unbiased (both have best-fit-line slopes
of 0.84, against the withheld data), but the new parameteri-
sation shows less noise than Chance et al. (2014). MacDon-
ald et al. (2014) shows a significant low bias and significant
noise. The improved skill from the RFR ensemble is consis-
tent for both coastal and non-coastal observations.

Figure 5 shows comparisons between the probability dis-
tribution functions (PDFs) of the observed iodide and the pre-

dictions, together with the PDFs of the biases for the entire,
coastal, and non-coastal withheld datasets. The PDF of the
new parameterisation shows the greatest similarity to the ob-
servations. The PDF from Chance et al. (2014) shows a sim-
ilar range to the observations and structure to the observa-
tions, whereas the PDF from MacDonald et al. (2014) shows
again a significant underestimate. The bias plots show the
new predictions are generally clustered around zero with a
relatively narrow peak. Chance et al. (2014) is again roughly
clustered around zero but shows a wider peak. The largest
biases are found from MacDonald et al. (2014), which sys-
tematically underestimates observed iodide concentrations.

The dataset selection error range, which shows the in-
fluence of the choice of how the dataset is split into train-
ing and withheld data on model prediction, is described in
Sect. 3.2. Within the 20-member ensemble of different test-
ing/withdrawn choices, the average variation in RMSE was
8.4 nM (5.9–11.02 nM), and in the range of average pre-
dicted values it was 6.1 nM (5.4–6.6 nM). This translates to a
percentage error range of 13.9 %–36.3 % on the RMSE and
5.4 %–7.3 % on the average predicted value.

The model selection error, which is the influence of the dif-
ferent independent variables used, is described in Sect. 3.2.
The difference in the average prediction of the 10 members
of the ensemble is 1.8 nM (with a range of average predic-
tion from 96.0 to 97.8 nM), and the range of the difference
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Figure 3. Schematic illustration of how (a) multiple decision trees are combined into (b) a forest and then combined into (c) a further
10-member ensemble. (a) shows individual trees in a forest. (b) represent a forest of 500 trees as a single figurative tree. (c) shows the 10
forests of 500 trees combined into a single prediction. The branches in plots (a)–(c) are coloured by the percentage of the decisions at a
given node that are driven by a given variable. That value within the circle gives the value of the main ancillary variable driving a split. The
thickness of branches gives the throughput of the dataset through a given node for single trees (a) or the average for plots of forests (b, c).
The 10 forests shown as thumbnails in panel (c) are also shown in larger form in Appendix Fig. A5. Variable names are coloured as per the
following coloured text: temperature (blue, ◦C), depth (orange, metres), chlorophyll a (green, mg m−3), salinity (pink, PSU), nitrate (brown,
µg m−3), mixed layer depth (MLD; purple, metres), phosphate (red, µgm−3), and shortwave radiation (grey, W m−2).
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Figure 4. Regression plots showing comparisons between predicted values and observations in the entire (blue, N = 1293) and withheld
data (orange, N = 259), withheld data classed as coastal (green, N = 157), and the withheld data classed as non-coastal (pink, N = 102).
Solid lines give the orthogonal distance regression line of best fit. The dashed grey line gives the 1 : 1 line. Root mean square error for each
line is annotated by subplot in nanomolar (nM).

Table 3. Statistics for observations and predictions by the ensemble prediction (RFR(ensemble)) and existing parameterisations against the
entire dataset of observations. The root mean square error is shown against the entire and the withheld data.

Mean SD 25 % median 75 % RMSE RMSE
nM nM nM nM nM (withheld), nM (entire), nM

Observations 94.8 67.2 36.8 85 140 – –
RFR(Ensemble) 95.6 60.3 41.5 89.4 139.1 34.7 23
Chance et al. (2014) 93.7 60 38.3 86.2 149.8 50.2 49.2
MacDonald et al. (2014) 39.7 30.5 13.1 32.1 66.1 75.3 75

in model performance is 3.9 nM (33.2–37.2 nM). As a per-
centage this model selection translates to a percentage uncer-
tainty on the RMSE of 10.6 %–11.9 % and on the average of
1.8 %–1.9 %.

The dataset selection and model selection compare to
an error on the observations of ∼ 10 %. Uncertainty from
dataset selection has a far greater effect on the prediction
error than model selection. This is expected due to the
small dataset size. The combined error in the prediction
(dataset selection + model selection error) is either compara-
ble to (7.2 %–9.2 % in terms of average prediction) or greater
(24 %–48 % in terms of RMSE) than the observational error.

From this analysis we have shown that the new ensemble
RFR model performs significantly better than those currently
in the literature. We now turn to explore the predicted global
distribution of sea-surface iodide using our ensemble model.

4.2 Global sea-surface iodide distribution

From the ensemble prediction system we calculate monthly
global grids (0.125◦× 0.125◦, ∼ 12.5km× 12.5km) of sea-
surface iodide using the gridded ancillary data (Sect. 2).

The annual average spatial predictions are shown in Fig. 6
with the observations overlaid in circles. Similar to previous
work, annual average maximum concentrations of 220 nM
are found in tropical and coastal regions (e.g. Oceania and in
the Caribbean/Gulf of Mexico), with the lowest concentra-
tions in mid-latitude waters (22.4 nM). Seasonal variability is
also seen within the monthly prediction (Appendix Fig. A3).
However, this spatial and temporal variability is not well con-
strained by observations. For example, some of the highest
concentrations are predicted for the South China Sea, a re-
gion without any observations (Fig. 6). Some features visible
in the concentration field appear to be associated with deep
bathymetric features (e.g. the higher concentrations over the
Mid-Atlantic Ridge – Fig. 6), even though a physical expla-
nation for such a link seems unlikely.

Summary statistics on the global predictions are shown in
Table 4. These show that, as for comparisons at the observed
locations (Sect. 4.1), the ensemble prediction is broadly in
between the two existing parameters. The new ensemble
model predicts a mean value of 106 nM (with members rang-
ing from 102.3 to 108.8 nM), with predicted values from
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Figure 5. Probability density function (bars) and Gaussian kernel density (lines) estimate of observations and predicted concentrations (left),
and bias (right, model minus observations) in entire withheld dataset (upper, N = 259), the withheld coastal dataset (middle, N = 157), and
the withheld non-coastal dataset (lower, N = 102).

Figure 6. Annual average predicted sea-surface iodide by the 10-
member ensemble of models (RFR(Ensemble)), overlaid with io-
dide observations from Chance et al. (2019a) without outliers. Out-
liers are defined here as values greater than the third quartile plus
1.5 times the interquartile range (Frigge et al., 1989). Only locations
that are entirely water are included in the spatial average. Earth
raster and vector map data used are freely available from Natural
Earth (http://www.naturalearthdata.com/, last access: 23 July 2019).

existing parameterisations ranging from 58.9 (MacDonald
et al., 2014) to 128.1 nM (Chance et al., 2014).

The annual latitudinal average of these fields, together
with predictions from Chance et al. (2014) and MacDon-
ald et al. (2014), and the observations are shown in Fig. 7.

Far greater structure is seen compared to the two existing
parameterisations (Fig. 7) due to the multivariate and non-
parametric ensemble approach used here. All parameterisa-
tions capture the broad observed feature of decreasing iodide
from lower to higher latitude. The new predicted values lie
between Chance et al. (2014) and MacDonald et al. (2014)
in the tropics; however, within the polar regions, the new
prediction is significantly higher than both of the previous
parameterisations. The lower concentrations in the predicted
values from MacDonald et al. (2014) for most of the global
sea surface are clear.

The range of dataset error is found for the 20 models
with different training data splits, as described in Sect. 3.2.
This gives an uncertainty in the form of a average range in
predicted global mean surface iodide for all of the multiple
builds of ensemble members of 4.0 nM (2.8–5.0) compared
to a annual mean prediction of 106 nM. This maximum and
minimum of this range in predicted values can then be di-
vided by the minimum and maximum predicted global mean
surface iodide values (98 and 109.3 nM, respectively) to give
percent range of 2.5 % to 5.1 %. This is lower than that calcu-
lated for the individual locations of observations (Sect. 4.1)
due to large global areas being similar in chemical and phys-
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Table 4. Statistics on predicted global annual sea-surface values from new and existing parameters at a horizontal resolution of 0.125◦×
0.125◦. Existing parameterisations (Chance et al., 2014; MacDonald et al., 2014) and the ensemble prediction are shown in bold.

Mean SD 25 % Median 75 % Max

Chance et al. (2014) 128.1 64.9 49.1 122.1 179.4 226.2
MacDonald et al. (2014) 58.9 34.9 17.1 50.5 86.5 125.7
RFR(Ensemble) 105.8 45.6 51.5 106 138.5 220.4
RFR(TEMP+NO3+MLD+SAL) 108.8 44.2 62.1 105 141.8 208.6
RFR(TEMP+SWrad+NO3+MLD+SAL) 108.5 43.1 61.5 108.5 140.7 197.3
RFR(TEMP+DEPTH+NO3+SWrad) 106.9 47.6 48.1 108.5 140.9 227.3
RFR(TEMP+DEPTH+SAL+SWrad) 106.6 46.9 50.1 109.5 137.1 241.3
RFR(TEMP+DEPTH+NO3) 106.2 48.6 50.4 103.6 140.7 234.5
RFR(TEMP+DEPTH+SAL) 105.8 47.2 52.3 103.9 134.1 248.4
RFR(TEMP+DEPTH+SAL+Phos) 105.1 47.5 51.6 98.8 138.3 242.7
RFR(TEMP+DEPTH+SAL+NO3) 104.9 47.2 52.7 103.9 136.2 233.5
RFR(TEMP+DEPTH+SAL+ChlrA) 102.8 47.4 48 98.3 135 256
RFR(TEMP+DEPTH+ChlrA) 102.3 47.4 46.1 96.7 136.2 254

Figure 7. Predicted annual average sea-surface iodide plotted against latitude (lines), overlaid with observed concentrations (diamonds).
Solid lines give mean values and shaded regions give (±) the average standard deviation. The standard deviation is the monthly standard
deviation across a latitude between all 10 ensemble members (RFR(Ensemble)) or within a single prediction for existing parameterisations
(Chance et al., 2014; MacDonald et al., 2014). Filled diamonds show non-coastal observations and non-filled ones show coastal values.
Extent of x axis is shown for grid boxes that are entirely water.

ical regimes compared to the subset of sampled locations
within the observations.

The model selection error due to variability within ensem-
bles’ 10 members, generated with different independent vari-
ables, gives a global average surface concentration between
102.3 and 108.8 nM. This range in prediction gives a model
selection error of 6.45 nM, which equates to 6.0 %–6.3 %.
Like with the global uncertainty from dataset selection, the

global value would be expected to be lower than the uncer-
tainty at the specific locations of the observations (Sect. 4.1)
due to the more homogeneous nature of the predicted areas.
However, a greater variation is seen from different model
predictions than within predictions for the observation loca-
tions. This highlights the importance of the different ancil-
lary variables considered here and also therefore the strength
gained from the ensemble approach taken here.
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Figure 8. Annual average spatial percent uncertainty in predicted
sea-surface iodide for the ensemble of models. Percent spatial un-
certainty was calculated as the standard deviation in monthly av-
erage values for all models, divided by the annual mean. Values
are limited to 25 % for contrast, but the maximum plotted value
is 77 % in the northern high latitudes. Only locations that are en-
tirely water are included in the spatial average. Earth raster and
vector map data used are freely available from Natural Earth (http:
//www.naturalearthdata.com/, last access: 23 July 2019).

Within members of the ensemble, variation is modest ex-
cept for two ensemble members which diverge north of ≥
65◦ N (Appendix Fig. A2). As noted earlier (Sect. 2), the val-
ues in this region are very poorly constrained by the observa-
tional dataset (Fig. 6).

In addition to the three errors described above, we also at-
tempt to gain an understanding of the spatial uncertainty in
the 10-model ensemble prediction. We do this by calculating
the differences in the predicted spatial fields from the 10 en-
semble members. Figure 8 shows the monthly average of the
standard deviation of the 10 model ensemble as a percentage
of the annual mean of the ensemble prediction. This is also
shown in absolute terms in the Appendix (Fig. A4). Relative
uncertainties are largest at the poles where predicted concen-
trations are lowest and where (at least in the Northern Hemi-
sphere) very few observations are available to constrain the
system. The southern oceans show an distinct pattern, where
values close to coastal Antarctica appear well constrained but
values further north appear poorly constrained.

5 Data availability

The monthly ensemble mean and standard deviation be-
tween ensemble members for the main prediction pre-
sented here (RFR(Ensemble)), along with the individ-
ual ensemble members, are archived at the United King-
dom’s Centre for Environmental Data Analysis (CEDA) as
monthly files in NetCDF-4 format (Sherwen et al., 2019;
https://doi.org/10/gfv5v3). To enable use in atmospheric and
oceanic models, we have additionally bilinearly re-gridded
the outputted fields onto common model grids (Appendix
Table A4) using the open-source Python xESMF package
(Zhuang, 2018). Values are provided for all locations glob-
ally and indices of land–water–ice cover are provided to al-

low data users to choose how to treat locations where water
meets ice or land; however, we would not recommend the
use of predicted values where ice or land are present. We
recommended use of the standard output provided but have
also provided the predictions made by the model with the
Skagerrak dataset (Truesdale et al., 2003) included (which
was excluded from the analysis presented here, as discussed
further in Appendix Sect. A1).

Ancillary data extracted for observation locations and
used to predict spatial fields are available from sources
stated in Table 1. Iodide observations are described by
Chance et al. (2019a) and made available by the British
Oceanographic Data Centre (BODC, Chance et al., 2019b;
https://doi.org/10/czhx).

6 Code availability

Data analysis and processing used open-source Python
packages, including Pandas (McKinney, 2010), Xarray
(Hoyer and Hamman, 2017), and Scikit-learn (Pedregosa
et al., 2011). Spatial re-gridding used the xESMF package
(Zhuang, 2018). Plots presented here were created using the
Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017),
and Cartopy (Elson et al., 2018) Python packages. The spe-
cific routines used for this work are archived within the
sparse2spatial package (Sherwen, 2019), with the exception
of the decision tree figures (Figs. 3 and A5), which were
made using the TreeSurgeon package (Ellis and Sherwen,
2019).

7 Discussions and conclusions

Here we have explored the ability of an algorithmic ap-
proach combined with various physical and chemical vari-
ables to predict sea-surface iodide, without aiming to repre-
sent the biogeochemical or abiotic processes occurring. This
approach instead gives a data-driven best guess at concen-
trations and an ability to quantify where the greatest uncer-
tainty lies. However, certain features such as prediction of
an apparent relationship between ocean bathymetry and sea-
surface iodide concentrations, where the ocean is very deep
(e.g. over the Mid-Atlantic Ridge), are unlikely to have a
plausible physical explanation (Fig. 6).

The new spatial prediction presented here differs from
what has been used previously in atmospheric models (e.g.
Chance et al., 2014; MacDonald et al., 2014). Although the
average value lies between these parameterisations, the pre-
diction is closest to that from Chance et al. (2014) even with
larger values found at higher latitudes. As most atmospheric
models have used the iodide parameterisation from MacDon-
ald et al. (2014) to calculate ocean iodine emissions (Ap-
pendix Table A1), a higher emission would therefore now
be expected. This would result in larger decreases in tro-
pospheric ozone burden than previously suggested (Sher-
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wen et al., 2016a). A higher iodide sea-surface concentra-
tion would also result in a greater calculated ozone deposi-
tion (Ganzeveld et al., 2009; Luhar et al., 2017; Sarwar et al.,
2016).

We have calculated the errors in sea-surface iodide con-
centrations at observational locations due to the dataset se-
lection of 13.9 %–36.3 % and due to the model selection of
1.8 %–1.9 % (Sect. 4.1 and 4.2). These error estimates can
be compared to an approximated error in the observations
of ∼ 10 % (Chance et al., 2019a). Considering that the aver-
age predicted global concentration here is 106 nM (Sect. 4.2),
these errors are notable. The greatest driver in error is the
dataset selection. More observations, and particularly obser-
vations representative of under-sampled areas (e.g. Arctic)
and seasons, will be required to reduce this error. The error
caused by dataset selection is also reduced when the predic-
tions are considered spatially over the global sea surface.

The choice of the algorithm used here is subjective and nu-
merous other options are available. The random forest regres-
sor was chosen due to its appropriateness for the continuous
regression task performed here, its relatively cheap compu-
tation cost, and its interpretability. Considering the greatest
uncertainty is driven by the paucity and sparsity of obser-
vations, using more complex techniques would not be ex-
pected to yield particularly different or drastically better re-
sults, considering other trade-offs.

We have developed a new way to build a spatially and
temporally resolved dataset from a spatially and temporally
sparse input of observations. This has allowed for the use of
more observations than traditional approaches, which is par-
ticularly important with a paucity of data. This approach has
demonstrated a large improvement in skill in terms of captur-
ing observations compared to the existing parameterisations
in use. It captures the pattern of decreasing iodide with higher
latitude seen in the observations, as well as the greater spatial
variation seen in the observations.
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Appendix A

A1 Removed Skagerrak dataset

Ideally with sparse datasets as much data as possible would
be included for training the regression models used. If a fea-
ture in the data is different enough to the rest of the dataset
and not sufficiently represented for the regressor model to
characterise it, then it has the potential to introduce a large
dataset error (see Sect. 3.2 for details). This was shown when
the iodide values above the outlier threshold were included
(Sect. 3.2). There could be many other effects of including
data that are significantly different to the rest of the dataset.

The data from the Skagerrak strait (Truesdale et al., 2003),
which are included in the (Chance et al., 2019a) compilation
of iodide data, were excluded from this analysis. This is be-
cause, upon inclusion, high iodide at high latitudes (≥ 65◦ N)
is calculated (Appendix Fig. A6). An increasing trend is seen
with latitude, reaching values comparable to the highest pre-
dicted values in the tropics. This region has a paucity of ob-
servations within the Chance et al. (2019a) compilation and
there are none further north than Iceland. This means that any
prediction in this region would be unconstrained by observa-
tions. Exclusion of these data leads to Fig. 7 where iodide is
generally constant above 65◦ N.

The Skagerrak strait data (Truesdale et al., 2003) are also
from a region where the observed ancillary variables com-
pare poorly with those extracted from ancillary datasets. Ob-
served salinity is between 24.0 and 33.5 PSU, whereas the
climatological value is 31.7 to 35.8 PSU. This equates to a
bias of the climatology versus the in situ observations of up
to 9.6 PSU or 40 %. The Skagerrak is biogeochemically dif-
ferent from the Arctic, and its large influence on predicted
values in the Arctic may arise simply from its latitudinal
proximity, given the lack of observations from the regions
themselves.

The area this dataset is sampling in is also unusual in the
Chance et al. (2019a) compilation due to its estuarine na-
ture. However, this cannot entirely explain its behaviour as
their are other estuarine datasets included (such as those from
around the Chesapeake Bay, Luther and Cole, 1988; Wong
and Cheng, 1998, 2008) which do not cause the same issue.

As the feature of high predicted Arctic iodide is driven by
a single dataset of 19 samples (of which 4 would be removed
as outliers) from a different region, it is highly uncertain. Not
only do the in situ salinity observations compare poorly to
the extracted ancillary ones, but the location itself represents
a heterogeneity within the Chance et al. (2019b) compilation
as it has relatively high observed iodide concentrations. It
was therefore omitted from the analysis presented within this
paper. However results with this dataset are included in the
shared data outputs. It is hoped that further observations >

65◦ N can offer more insight into this uncertain region and
also into the observations in the Skagerrak strait.
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Figure A1. Combined kernel density and violin plots showing the distribution of the root mean square error (RMSE) for 20 different models
built from 20 different pseudo-random initialisations for a different selection of the dataset as described in Table 2 and Sect.3.2. Models built
using the whole dataset (“all”), including outliers, show a significantly higher RMSE due to observations with higher iodide concentrations.
The model used here includes ancillary variables of temperature, depth, and salinity which were thought to intuitively give a reasonable
result.

Figure A2. Predicted global sea-surface iodide for all ensemble members plotted against latitude, overlaid with observed concentrations.
Shaded regions give (±) the average standard deviation for a given latitude. The standard deviation is the monthly standard deviation for a
single ensemble members (RFR(Ensemble)) or within a single prediction for existing parameterisations (Chance et al., 2014; MacDonald
et al., 2014). Filled diamonds show non-coastal observations and unfilled ones show coastal values. Extent of x axis is shown for grid boxes
that are entirely water.
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Figure A3. Percentage difference in monthly sea-surface iodide from the annual mean field predicted by the 10-model member ensemble.
Only locations that are entirely water are included. Earth raster and vector map data used are freely available from Natural Earth (http:
//www.naturalearthdata.com/, last access: 23 July 2019).

Figure A4. Annual average spatial uncertainty in predicted sea-surface iodide for the ensemble of 10 models. Spatial variation was calculated
as the standard deviation in monthly average values for all models. Values are limited to 30 nM for contrast, and the maximum value plotted
is 52 nM in the northern high latitudes. Only locations that are entirely water are included in spatial the average. Earth raster and vector map
data used are freely available from Natural Earth (http://www.naturalearthdata.com/, last access: 23 July 2019).
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Figure A5. Representation of all forests within the 10-member ensemble (also shown as thumbnails in Fig. 3c). The branches are coloured
by percentage of each variable that drives the decision at a given node. The thickness of branches gives the average throughput of the
dataset through a given node. Variable names are coloured as per the following coloured text: temperature (blue, ◦C), depth (orange,metres),
chlorophyll a (green, mg m−3), salinity (pink, PSU), nitrate (brown, µgm−3), mixed layer depth (MLD; purple, metres), phosphate (red,
µg m−3), and shortwave radiation (grey, W m−2)

Figure A6. Predicted latitudinal average sea-surface iodide plotted against latitude, overlaid with observed concentrations. Figure is equiv-
alent to Fig. 7, but the dashed line shows the prediction including data from the Skagerrak strait (Truesdale et al., 2003). Solid lines give
mean values and shaded regions give ± the average standard deviation. For the ensemble the standard deviation is the monthly standard
deviation within all ensemble members. Filled diamonds show non-coastal observations and unfilled ones show coastal values. Extent of x

axis is shown for grid boxes that are entirely water.
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Table A1. Summary of sea-surface iodide parameterisations in global and regional atmospheric models.

Model Parameterisation Refs

CMAQ Observed range Chang et al. (2004)
CMAQ Linearly fitting chlorophyll a to [I−aq]< range of 100–400 nM Oh et al. (2008)
REMOTE Observed range Coleman et al. (2010)
MESSy-ECHAM5 Campos NO−3 relationships Ganzeveld et al. (2009)
CAM-Chem Eq. (2) Prados-Roman et al. (2015), Saiz-Lopez et al. (2014)
CMAQ Eq. (2) Gantt et al. (2017), Sarwar et al. (2016, 2015)
GEOS-Chem Eq. (1) Sherwen et al. (2016a)
GEOS-Chem Eq. (2) Sherwen et al. (2016b, c, 2017a, b)
ACCESS-UKCA Eq. (2) Luhar et al. (2017, 2018)
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Table A2. Statistics on observations and predicted values from the new ensemble and existing parameterisations at locations of observations.
Root mean square error (RMSE) is shown against the withheld data and the entire dataset of observations. Ensemble members, ensemble
prediction (RFR(Ensemble)), and existing parameterisations shown in bold. Values are shown for all 38 models built, including those not
included in the ensemble.

Mean SD 25 % Median 75 % RMSE (withheld) RMSE (entire)

Observations 94.8 67.2 36.8 85 140 – –
MacDonald et al. (2014) 39.7 30.5 13.1 32.1 66.1 75.3 75
Chance et al. (2014) 93.7 60 38.3 86.2 149.8 50.2 49.2
RFR(Ensemble) 95.6 60.3 41.5 89.4 139.1 34.7 23
RFR(TEMP+DEPTH+SAL+Phos) 95.4 60.8 41.3 89.2 139.9 33.2 22.6
RFR(TEMP+DEPTH+NO3+SWrad) 95.5 60.4 40.8 89.2 139.8 34.9 23.3
RFR(TEMP+DEPTH+SAL+NO3) 95.5 60.6 41.8 89 140.2 35.2 23.3
RFR(TEMP+DEPTH+SAL+SWrad) 95.3 60.6 41.7 89.5 138.7 35.3 23.4
RFR(TEMP+DEPTH+SAL+ChlrA) 95.7 60.5 41.7 89.4 138.1 35.6 23.4
RFR(TEMP+DEPTH+SAL) 95.5 60.6 41.3 89.4 137.9 35.9 23.7
RFR(TEMP+SWrad+NO3+MLD+SAL) 95.6 60.7 41.1 89.4 140.9 36.2 24.1
RFR(TEMP+NO3+MLD+SAL) 95.8 60.6 41.3 88.9 140.9 36.6 24.3
RFR(TEMP+DEPTH+NO3) 95.6 60.5 41 89.3 140.4 36.9 24
RFR(TEMP+DEPTH+ChlrA) 95.8 60.3 41.3 89.4 139.9 37.2 24.3
RFR(TEMP+DEPTH) 95.6 60.6 41.1 88.6 139.2 37.4 24.4
RFR(TEMP+SAL+NO3) 95.6 60.6 42 89.3 141 37.5 24.6
RFR(SWrad+SAL+DEPTH) 95.5 58.2 46.3 89.4 135.5 37.5 24.7
RFR(SWrad+SAL+NO3) 95.7 59.8 42.7 90.4 137.4 38.3 25.2
RFR(NO3+SWrad) 95.6 58.8 41.8 94.6 136.9 38.9 27.9
RFR(TEMP+SAL) 95.5 60.5 41.4 88.7 140.2 39.8 25.6
RFR(TEMP+NO3) 96 60.5 41.5 88.1 139.9 40.3 25.9
RFR(DEPTH+SAL) 95.6 57.6 47.7 90.2 134.6 40.9 26.7
RFR(NO3+SAL) 95.6 58.9 42.7 90.3 138.9 43 27.5
RFR(Phos) 95.4 57.6 44.1 92.2 141.1 43.6 31.3
RFR(O2) 95.7 60.5 40.2 89.3 141.9 43.7 30.1
RFR(SWrad+SAL) 95.2 59 46.2 89.4 136.6 43.8 27.3
RFR(TEMP) 95.7 60.1 42.3 89.2 139.3 45.2 28.6
RFR(NO3) 95.6 58.6 43.5 90.2 141.1 46.6 32.1
RFR(MLDpd_max) 95.2 56.1 47 100.3 138.3 47.1 36.2
RFR(MLDpt_max) 95.1 54.4 45.6 100.3 138.3 47.2 38.5
RFR(SWrad) 95.7 58.7 47.2 89.4 137.5 47.5 32
RFR(MLDpd_sum) 95.3 57.2 47.6 93.9 141.2 48.3 34.3
RFR(MLDpt_sum) 95.7 57.6 46.5 94.3 140.2 49.1 34.5
RFR(MLDvd_sum) 95.2 55.8 47.9 91.8 139.6 49.1 35.4
RFR(Sil) 95.4 57.6 45.2 90.4 140 49.5 33
RFR(MLDvd_max) 94.9 52.5 47.9 99.1 134.1 51.5 40.8
RFR(MLDpt) 95.4 53.9 49.7 94.3 134 54.9 40.9
RFR(MLDpd) 95.8 52.2 55.5 91.7 126.4 55.2 41.8
RFR(SAL) 95.9 56.1 52.1 89.3 132.7 56.8 34.6
RFR(DEPTH) 96.5 53 51.7 90.8 135.3 57 39.6
RFR(MLDvd) 95.8 49.2 53.9 87.4 134.1 57.4 45.2
RFR(ChlrA) 95.6 53.4 53.9 89.6 131.6 59.6 36.1

Table A3. Statistics on observations and predicted values by ensemble and existing parameterisations at locations of observations but just
for the withheld dataset locations. Table 3 shows the values for both the withheld and entire dataset.

Mean SD 25 % Median 75 % RMSE

Observations 94.3 67.4 36.9 84 138.6 –
RFR(Ensemble) 96.7 57.8 47.2 93.1 137.4 34.7
Chance et al. (2014) (Eq. 1) 93.6 59.7 39 87.9 148.4 50.2
MacDonald et al. (2014) (Eq. 2) 39.6 30.2 13.4 32.8 65.1 75.3
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Table A4. Spatial and temporal resolutions of global monthly iodide fields available for download from the United Kingdom’s Centre from
Environmental Data Analysis (Sherwen et al., 2019; https://doi.org/10/gfv5v3). Re-gridding was performed in Python using the open-source
xESMF package (Zhuang, 2018).

Resolution Bottom-left grid edge
Lat. × long. Model/description Long. Lat.

0.125◦× 0.125◦ GEOS-Chem in GEOS5 (Hu et al., 2018) −180.0625 −90.0625
0.25◦× 0.25◦ Centred on 0.125◦ −180 −90
0.5◦× 0.5◦ Centred on 0.25◦ −180 −90
1◦× 1◦ Centred on unit degrees −180.5 −90.5
1◦× 1◦ Centred on 0.5◦ −180 −90
2◦× 2.5◦ GISS ModelE (Miller et al., 2014) −178.75 −90
2◦× 2◦ ACCMIP (Lamarque et al., 2013) −180 −90
2◦× 2.5◦ GEOS-Chem (Bey et al., 2001) −181.25 −91
2.5◦× 3.75◦ UKCA (O’Connor et al., 2014) −180 −90
4◦× 5◦ GEOS-Chem (Bey et al., 2001) −182.5 −92

Latitudes less than −90◦ indicate half-boxes at poles. Acronyms expand to United Kingdom Chemistry and Aerosols
(UKCA), Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), and Goddard Institute for
Space Studies (GISS).
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