Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-985-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-985-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)
Ronald G. Prinn
CORRESPONDING AUTHOR
Center for Global Change Science, Massachusetts Institute of
Technology, Cambridge, MA, USA
Ray F. Weiss
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Jgor Arduini
Department of Pure and Applied Sciences, University of Urbino,
Urbino, Italy
Tim Arnold
National Physical Laboratory, Teddington, Middlesex, UK and School
of GeoSciences, University of Edinburgh, Edinburgh, UK
H. Langley DeWitt
Center for Global Change Science, Massachusetts Institute of
Technology, Cambridge, MA, USA
Paul J. Fraser
Climate Science Centre, Oceans and Atmosphere, Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
Anita L. Ganesan
School of Geographical Sciences, University of Bristol, Bristol, UK
Jimmy Gasore
Rwanda Climate Observatory Secretariat, Ministry of Education of
Rwanda, Kigali, Rwanda
Christina M. Harth
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Ove Hermansen
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Jooil Kim
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Paul B. Krummel
Climate Science Centre, Oceans and Atmosphere, Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
Shanlan Li
Department of Oceanography, Kyungpook National University, Daegu,
Republic of Korea
Zoë M. Loh
Climate Science Centre, Oceans and Atmosphere, Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
Chris R. Lunder
Norwegian Institute for Air Research (NILU), Kjeller, Norway
Michela Maione
Department of Pure and Applied Sciences, University of Urbino,
Urbino, Italy
Alistair J. Manning
Hadley Centre, The Met Office, Exeter, UK
School of Chemistry, University of Bristol, Bristol, UK
Ben R. Miller
National Oceanic and Atmospheric Administration (NOAA), Earth System
Research Laboratory, Boulder, CO, USA
Blagoj Mitrevski
Climate Science Centre, Oceans and Atmosphere, Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
Jens Mühle
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Simon O'Doherty
School of Chemistry, University of Bristol, Bristol, UK
Sunyoung Park
Department of Oceanography, Kyungpook National University, Daegu,
Republic of Korea
Stefan Reimann
Laboratory for Air Pollution and Environmental Technology (Empa),
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
Matt Rigby
School of Chemistry, University of Bristol, Bristol, UK
Takuya Saito
National Institute for Environmental Studies (NIES), Tsukuba,
Japan
Peter K. Salameh
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Roland Schmidt
Scripps Institution of Oceanography, University of California San
Diego, La Jolla, CA, USA
Peter G. Simmonds
School of Geographical Sciences, University of Bristol, Bristol, UK
L. Paul Steele
Climate Science Centre, Oceans and Atmosphere, Commonwealth
Scientific and Industrial Research Organization (CSIRO), Aspendale, Victoria, Australia
Martin K. Vollmer
Laboratory for Air Pollution and Environmental Technology (Empa),
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
Ray H. Wang
Georgia Institute of Technology, Atlanta, GA, USA
Bo Yao
China Meteorological Administration (CMA), Beijing, China
Yoko Yokouchi
National Institute for Environmental Studies (NIES), Tsukuba,
Japan
Dickon Young
School of Chemistry, University of Bristol, Bristol, UK
Lingxi Zhou
China Meteorological Administration (CMA), Beijing, China
Related authors
Luke M. Western, Stephen Bourguet, Molly Crotwell, Lei Hu, Paul B. Krummel, Hélène De Longueville, Alistair J. Mainning, Jens Mühle, Dominique Rust, Isaac Vimont, Martin K. Vollmer, Minde An, Jgor Arduini, Andreas Engel, Paul J. Fraser, Anita L. Ganesan, Christina M. Harth, Chris Lunder, Michela Maione, Stephen A. Montzka, David Nance, Simon O’Doherty, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Roland Schmidt, Kieran M. Stanley, Thomas Wagenhäuser, Dickon Young, Matt Rigby, Ronald G. Prinn, and Ray F. Weiss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3000, https://doi.org/10.5194/egusphere-2025-3000, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We used atmospheric measurements to estimate emissions of two gases, called HCFC-123 and HCFC-124, that harm the ozone layer. Despite international regulation to stop their production, we found that their emissions have not fallen. This may be linked to how they are used to make other chemicals. Our findings show that some banned substances are still reaching the atmosphere, likely through leaks during chemical production, which could slow the recovery of the ozone layer.
Luke M. Western, Matthew Rigby, Jens Mühle, Paul B. Krummel, Chris R. Lunder, Simon O'Doherty, Stefan Reimann, Martin K. Vollmer, Dickon Young, Ben Adam, Paul J. Fraser, Anita L. Ganesan, Christina M. Harth, Ove Hermansen, Jooil Kim, Ray L. Langenfelds, Zoë M. Loh, Blagoj Mitrevski, Joseph R. Pitt, Peter K. Salameh, Roland Schmidt, Kieran Stanley, Ann R. Stavert, Hsiang-Jui Wang, Ray F. Weiss, and Ronald G. Prinn
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-348, https://doi.org/10.5194/essd-2025-348, 2025
Preprint under review for ESSD
Short summary
Short summary
We used global measurements and an atmospheric model to estimate how emissions and abundances of 42 chemically and radiatively important trace gases have changed over time. These gases affect the Earth's radiative balance and the ozone layer. Our data sets help track progress in reducing harmful. This work supports international efforts to protect the environment by providing clear, long-term, consistent data on how these gases are changing in the atmosphere.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024, https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary
Short summary
The hydroxyl radical determines the atmospheric lifetimes of numerous species including methane. Since OH is very short-lived, it is not possible to directly measure its concentration on scales relevant for understanding its effect on other species. Here, OH is inferred by looking at changes in hydrofluorocarbons (HFCs). We find that OH levels have been fairly stable over our study period (2004 to 2021), suggesting that OH is not the main driver of the recent increase in atmospheric methane.
Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park
Atmos. Chem. Phys., 23, 9401–9411, https://doi.org/10.5194/acp-23-9401-2023, https://doi.org/10.5194/acp-23-9401-2023, 2023
Short summary
Short summary
Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008–2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022, https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary
Short summary
Nitrous oxide is a potent greenhouse gas and ozone-depleting substance, whose atmospheric abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical Bayesian inversion to solve for nitrous oxide emissions. We derive increasing global nitrous oxide emissions over 2011–2020, which are mainly driven by emissions between 0° and 30°N, with the highest emissions recorded in 2020.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022, https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Short summary
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28–0.44 °C to 0.14–0.31 °C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04 °C in 2100.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys., 21, 2149–2164, https://doi.org/10.5194/acp-21-2149-2021, https://doi.org/10.5194/acp-21-2149-2021, 2021
Short summary
Short summary
Perfluorocarbons (PFCs) are potent greenhouse gases with exceedingly long lifetimes. We used atmospheric measurements from a global monitoring network to track the accumulation of these gases in the atmosphere. In the case of the two most abundant PFCs, recent measurements indicate that global emissions are increasing. In Europe, we used a model to estimate regional PFC emissions. Our results show that there was no significant decline in northwest European PFC emissions between 2010 and 2019.
Elena Fillola, Raul Santos-Rodriguez, Rachel Tunnicliffe, Jeffrey Clark, Nawid Keshtmand, Anita Ganesan, and Matthew Rigby
EGUsphere, https://doi.org/10.5194/egusphere-2025-2392, https://doi.org/10.5194/egusphere-2025-2392, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Satellite-based greenhouse gas measurements can be used in “inverse models” to improve emissions reporting, but one of the key components, the simulations of atmospheric transport, struggle to scale to large datasets. We introduce GATES, an AI-driven emulator that outputs transport plumes about 1000× faster than traditional models. Applied to Brazil’s methane emissions, GATES produces estimates consistent with physics-based methods, offering a scalable path for timely emissions monitoring.
Luke M. Western, Stephen Bourguet, Molly Crotwell, Lei Hu, Paul B. Krummel, Hélène De Longueville, Alistair J. Mainning, Jens Mühle, Dominique Rust, Isaac Vimont, Martin K. Vollmer, Minde An, Jgor Arduini, Andreas Engel, Paul J. Fraser, Anita L. Ganesan, Christina M. Harth, Chris Lunder, Michela Maione, Stephen A. Montzka, David Nance, Simon O’Doherty, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Roland Schmidt, Kieran M. Stanley, Thomas Wagenhäuser, Dickon Young, Matt Rigby, Ronald G. Prinn, and Ray F. Weiss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3000, https://doi.org/10.5194/egusphere-2025-3000, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We used atmospheric measurements to estimate emissions of two gases, called HCFC-123 and HCFC-124, that harm the ozone layer. Despite international regulation to stop their production, we found that their emissions have not fallen. This may be linked to how they are used to make other chemicals. Our findings show that some banned substances are still reaching the atmosphere, likely through leaks during chemical production, which could slow the recovery of the ozone layer.
Stephan Henne, Florian R. Storck, Henry Wöhrnschimmel, Markus Leuenberger, Martin K. Vollmer, and Stefan Reimann
EGUsphere, https://doi.org/10.5194/egusphere-2025-2861, https://doi.org/10.5194/egusphere-2025-2861, 2025
Short summary
Short summary
We observed the persistent, man-made trifluoroacetate (TFA) in precipitation and surface waters. Atmospheric simulations attributed TFA to precursor gases in the atmosphere. Although recently increasing concentrations could be followed, gaps in the budget indicate limited understanding of the atmospheric degradation of widely used fluorocarbons. Without additional regulation, environmental TFA concentrations are expected to rise strongly, necessitating continued monitoring and risk assessment.
Luke M. Western, Matthew Rigby, Jens Mühle, Paul B. Krummel, Chris R. Lunder, Simon O'Doherty, Stefan Reimann, Martin K. Vollmer, Dickon Young, Ben Adam, Paul J. Fraser, Anita L. Ganesan, Christina M. Harth, Ove Hermansen, Jooil Kim, Ray L. Langenfelds, Zoë M. Loh, Blagoj Mitrevski, Joseph R. Pitt, Peter K. Salameh, Roland Schmidt, Kieran Stanley, Ann R. Stavert, Hsiang-Jui Wang, Ray F. Weiss, and Ronald G. Prinn
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-348, https://doi.org/10.5194/essd-2025-348, 2025
Preprint under review for ESSD
Short summary
Short summary
We used global measurements and an atmospheric model to estimate how emissions and abundances of 42 chemically and radiatively important trace gases have changed over time. These gases affect the Earth's radiative balance and the ozone layer. Our data sets help track progress in reducing harmful. This work supports international efforts to protect the environment by providing clear, long-term, consistent data on how these gases are changing in the atmosphere.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Yuki Ota, Takuya Saito, Stephen J. Andrews, Tetsuo I. Kohyama, Yoshihisa Suyama, Yoshihiko Tsumura, and Tsutom Hiura
EGUsphere, https://doi.org/10.5194/egusphere-2025-2063, https://doi.org/10.5194/egusphere-2025-2063, 2025
Short summary
Short summary
We developed a portable system to measure biogenic volatile organic compounds (BVOCs) naturally emitted by trees, which can affect air quality and climate. Our tool reduces interference from contact with tree branches and allows measurements from several trees in a single day. Tests on Japanese cedar showed reliable results and revealed large differences between individual trees. This helps us better understand how forests influence the atmosphere.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Theobard Habineza, Allen L. Robinson, H. Langley Dewitt, Jimmy Gasore, Philip L. Croteau, and Albert A. Presto
EGUsphere, https://doi.org/10.5194/egusphere-2025-1700, https://doi.org/10.5194/egusphere-2025-1700, 2025
Short summary
Short summary
This study reports year-long PM1 chemical composition in Eastern Africa using aerosol mass spectrometry. Results show PM is dominated by organic aerosol (73 %), black carbon (16 %), and inorganics (11 %), with BC largely from fossil fuel (59 %) and biomass burning (41 %). Findings highlight the impact of solid fuels and aging vehicles and stress the need for regional mitigation strategies to reduce air pollution-related health risks.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
Atmos. Chem. Phys., 25, 4703–4718, https://doi.org/10.5194/acp-25-4703-2025, https://doi.org/10.5194/acp-25-4703-2025, 2025
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from the coastal upwelling systems of Peru and Chile.
Martin Vojta, Andreas Plach, Rona L. Thompson, Pallav Purohit, Kieran Stanley, Simon O’Doherty, Dickon Young, Joe Pitt, Xin Lan, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1095, https://doi.org/10.5194/egusphere-2025-1095, 2025
Short summary
Short summary
We determine European emissions of the highly potent greenhouse gas sulfur hexafluoride from 2005 to 2021 – focusing on high-emitting countries and the aggregated EU-27 emissions. Emissions declined in most regions, likely due to EU F-gas regulations. However, our results reveal that most studied countries underestimate their emissions in their national reports. Our sensitivity tests highlight the importance of dense observational networks for reliable inversion-based emission estimates.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Maitane Iturrate-Garcia, Thérèse Salameh, Paul Schlauri, Annarita Baldan, Martin K. Vollmer, Evdokia Stratigou, Sebastien Dusanter, Jianrong Li, Stefan Persijn, Anja Claude, Rupert Holzinger, Christophe Sutour, Tatiana Macé, Yasin Elshorbany, Andreas Ackermann, Céline Pascale, and Stefan Reimann
Atmos. Meas. Tech., 18, 371–403, https://doi.org/10.5194/amt-18-371-2025, https://doi.org/10.5194/amt-18-371-2025, 2025
Short summary
Short summary
Accurate and comparable measurements of oxygenated organic compounds (OVOCs) are crucial in assessing tropospheric ozone burdens and trends. However, the monitoring of many OVOCs remains challenging because of their low atmospheric abundance and lack of stable and traceable calibration standards. This paper describes the calibration standards developed for OVOCs at a low amount of substance fractions (<100 nmol mol-1) to transfer traceability of the International System of Units to the field.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025, https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Short summary
We present a protocol to improve confidence in atmospheric radon measurements, enabling site comparisons and integration with greenhouse gas data. As a natural tracer, radon provides an independent check of transport model performance. This standardized method enhances radon’s use as a metric for model evaluation. Beyond UK observatories, it can support broader networks like ICOS and WMO/GAW, advancing global atmospheric research.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Hideki Nara, Takuya Saito, Taku Umezawa, and Yasunori Tohjima
Atmos. Meas. Tech., 17, 5187–5200, https://doi.org/10.5194/amt-17-5187-2024, https://doi.org/10.5194/amt-17-5187-2024, 2024
Short summary
Short summary
We have developed a high-accuracy dynamic dilution system for generating reference gas mixtures containing carbonyl sulfide (COS). Although COS at ambient levels generally has poor storage stability, our approach involves the dilution of a gas mixture containing micromole-per-mole levels of COS, the stability of which was validated for more than 1 decade. The developed system has excellent dilution performance and will facilitate accurate instrumental calibration for atmospheric COS observation.
Gabrielle Pétron, Andrew M. Crotwell, John Mund, Molly Crotwell, Thomas Mefford, Kirk Thoning, Bradley Hall, Duane Kitzis, Monica Madronich, Eric Moglia, Donald Neff, Sonja Wolter, Armin Jordan, Paul Krummel, Ray Langenfelds, and John Patterson
Atmos. Meas. Tech., 17, 4803–4823, https://doi.org/10.5194/amt-17-4803-2024, https://doi.org/10.5194/amt-17-4803-2024, 2024
Short summary
Short summary
Hydrogen (H2) is a gas in trace amounts in the Earth’s atmosphere with indirect impacts on climate and air quality. Renewed interest in H2 as a low- or zero-carbon source of energy may lead to increased production, uses, and supply chain emissions. NOAA measurements of weekly air samples collected between 2009 and 2021 at over 50 sites in mostly remote locations are now available, and they complement other datasets to study the H2 global budget.
Benjamin Hmiel, Vasilii V. Petrenko, Christo Buizert, Andrew M. Smith, Michael N. Dyonisius, Philip Place, Bin Yang, Quan Hua, Ross Beaudette, Jeffrey P. Severinghaus, Christina Harth, Ray F. Weiss, Lindsey Davidge, Melisa Diaz, Matthew Pacicco, James A. Menking, Michael Kalk, Xavier Faïn, Alden Adolph, Isaac Vimont, and Lee T. Murray
The Cryosphere, 18, 3363–3382, https://doi.org/10.5194/tc-18-3363-2024, https://doi.org/10.5194/tc-18-3363-2024, 2024
Short summary
Short summary
The main aim of this research is to improve understanding of carbon-14 that is produced by cosmic rays in ice sheets. Measurements of carbon-14 in ice cores can provide a range of useful information (age of ice, past atmospheric chemistry, past cosmic ray intensity). Our results show that almost all (>99 %) of carbon-14 that is produced in the upper layer of ice sheets is rapidly lost to the atmosphere. Our results also provide better estimates of carbon-14 production rates in deeper ice.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Yiming Xu, Qianlai Zhuang, Bailu Zhao, Michael Billmire, Christopher Cook, Jeremy Graham, Nancy French, and Ronald Prinn
EGUsphere, https://doi.org/10.5194/egusphere-2024-1324, https://doi.org/10.5194/egusphere-2024-1324, 2024
Preprint archived
Short summary
Short summary
We use a process-based model to simulate the fire impacts on soil thermal and hydrological dynamics and carbon budget of forest ecosystems in Northern Eurasia based on satellite-derived burn severity data. We find that fire severity generally increases in this region during the study period. Simulations indicate that fires increase soil temperature and water runoff. Fires lead the forest ecosystems to lose 2.3 Pg C, shifting the forests from a carbon sink to a source in this period.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Emily Dowd, Alistair J. Manning, Bryn Orth-Lashley, Marianne Girard, James France, Rebecca E. Fisher, Dave Lowry, Mathias Lanoisellé, Joseph R. Pitt, Kieran M. Stanley, Simon O'Doherty, Dickon Young, Glen Thistlethwaite, Martyn P. Chipperfield, Emanuel Gloor, and Chris Wilson
Atmos. Meas. Tech., 17, 1599–1615, https://doi.org/10.5194/amt-17-1599-2024, https://doi.org/10.5194/amt-17-1599-2024, 2024
Short summary
Short summary
We provide the first validation of the satellite-derived emission estimates using surface-based mobile greenhouse gas surveys of an active gas leak detected near Cheltenham, UK. GHGSat’s emission estimates broadly agree with the surface-based mobile survey and steps were taken to fix the leak, highlighting the importance of satellite data in identifying emissions and helping to reduce our human impact on climate change.
Rona L. Thompson, Stephen A. Montzka, Martin K. Vollmer, Jgor Arduini, Molly Crotwell, Paul B. Krummel, Chris Lunder, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Stefan Reimann, Isaac Vimont, Hsiang Wang, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 24, 1415–1427, https://doi.org/10.5194/acp-24-1415-2024, https://doi.org/10.5194/acp-24-1415-2024, 2024
Short summary
Short summary
The hydroxyl radical determines the atmospheric lifetimes of numerous species including methane. Since OH is very short-lived, it is not possible to directly measure its concentration on scales relevant for understanding its effect on other species. Here, OH is inferred by looking at changes in hydrofluorocarbons (HFCs). We find that OH levels have been fairly stable over our study period (2004 to 2021), suggesting that OH is not the main driver of the recent increase in atmospheric methane.
Tanja J. Schuck, Johannes Degen, Eric Hintsa, Peter Hoor, Markus Jesswein, Timo Keber, Daniel Kunkel, Fred Moore, Florian Obersteiner, Matt Rigby, Thomas Wagenhäuser, Luke M. Western, Andreas Zahn, and Andreas Engel
Atmos. Chem. Phys., 24, 689–705, https://doi.org/10.5194/acp-24-689-2024, https://doi.org/10.5194/acp-24-689-2024, 2024
Short summary
Short summary
We study the interhemispheric gradient of sulfur hexafluoride (SF6), a strong long-lived greenhouse gas. Its emissions are stronger in the Northern Hemisphere; therefore, mixing ratios in the Southern Hemisphere lag behind. Comparing the observations to a box model, the model predicts air in the Southern Hemisphere to be older. For a better agreement, the emissions used as model input need to be increased (and their spatial pattern changed), and we need to modify north–south transport.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech., 16, 5909–5935, https://doi.org/10.5194/amt-16-5909-2023, https://doi.org/10.5194/amt-16-5909-2023, 2023
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert Observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
John D. Patterson, Murat Aydin, Andrew M. Crotwell, Gabrielle Pétron, Jeffery P. Severinghaus, Paul B. Krummel, Ray L. Langenfelds, Vasilii V. Petrenko, and Eric S. Saltzman
Clim. Past, 19, 2535–2550, https://doi.org/10.5194/cp-19-2535-2023, https://doi.org/10.5194/cp-19-2535-2023, 2023
Short summary
Short summary
Atmospheric levels of molecular hydrogen (H2) can impact climate and air quality. Constraining past changes to atmospheric H2 is useful for understanding how H2 cycles through the Earth system and predicting the impacts of increasing anthropogenic emissions under the
hydrogen economy. Here, we use the aging air found in the polar snowpack to reconstruct H2 levels over the past 100 years. We find that H2 levels increased by 30 % over Greenland and 60 % over Antarctica during the 20th century.
Ioannis Katharopoulos, Dominique Rust, Martin K. Vollmer, Dominik Brunner, Stefan Reimann, Simon J. O'Doherty, Dickon Young, Kieran M. Stanley, Tanja Schuck, Jgor Arduini, Lukas Emmenegger, and Stephan Henne
Atmos. Chem. Phys., 23, 14159–14186, https://doi.org/10.5194/acp-23-14159-2023, https://doi.org/10.5194/acp-23-14159-2023, 2023
Short summary
Short summary
The effectiveness of climate change mitigation needs to be scrutinized by monitoring greenhouse gas (GHG) emissions. Countries report their emissions to the UN in a bottom-up manner. By combining atmospheric observations and transport models someone can independently validate emission estimates in a top-down fashion. We report Swiss emissions of synthetic GHGs based on kilometer-scale transport and inverse modeling, highlighting the role of appropriate resolution in complex terrain.
Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park
Atmos. Chem. Phys., 23, 9401–9411, https://doi.org/10.5194/acp-23-9401-2023, https://doi.org/10.5194/acp-23-9401-2023, 2023
Short summary
Short summary
Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008–2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
Adedayo R. Adedeji, Stephen J. Andrews, Matthew J. Rowlinson, Mathew J. Evans, Alastair C. Lewis, Shigeru Hashimoto, Hitoshi Mukai, Hiroshi Tanimoto, Yasunori Tohjima, and Takuya Saito
Atmos. Chem. Phys., 23, 9229–9244, https://doi.org/10.5194/acp-23-9229-2023, https://doi.org/10.5194/acp-23-9229-2023, 2023
Short summary
Short summary
We use the GEOS-Chem model to interpret observations of CO, C2H6, C3H8, NOx, NOy and O3 made from Hateruma Island in 2018. The model captures many synoptic-scale events and the seasonality of most pollutants at the site but underestimates C2H6 and C3H8 during the winter. These underestimates are unlikely to be reconciled by increases in biomass burning emissions but could be reconciled by increasing the Asian anthropogenic source of C2H6 and C3H8 by factors of around 2 and 3, respectively.
Sara M. Defratyka, James L. France, Rebecca E. Fisher, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, Camille Yver-Kwok, Jean-Daniel Paris, Philippe Bousquet, Tim Arnold, Chris Rennick, Jon Helmore, Nigel Yarrow, and Euan G. Nisbet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1490, https://doi.org/10.5194/egusphere-2023-1490, 2023
Preprint archived
Short summary
Short summary
We are focused on verification of δ13CH4 measurements in near-source conditions and we have provided an insight into the impact of chosen calculation methods for determined isotopic signatures. Our study offers a step forward for establishing an unified, robust, and reliable analytical technique to determine δ13CH4 of methane sources. Our recommended analytical approach reduces biases and uncertainties coming from measurement conditions, data clustering and various available fitting methods.
Alice Drinkwater, Paul I. Palmer, Liang Feng, Tim Arnold, Xin Lan, Sylvia E. Michel, Robert Parker, and Hartmut Boesch
Atmos. Chem. Phys., 23, 8429–8452, https://doi.org/10.5194/acp-23-8429-2023, https://doi.org/10.5194/acp-23-8429-2023, 2023
Short summary
Short summary
Changes in atmospheric methane over the last few decades are largely unexplained. Previous studies have proposed different hypotheses to explain short-term changes in atmospheric methane. We interpret observed changes in atmospheric methane and stable isotope source signatures (2004–2020). We argue that changes over this period are part of a large-scale shift from high-northern-latitude thermogenic energy emissions to tropical biogenic emissions, particularly from North Africa and South America.
Alison L. Redington, Alistair J. Manning, Stephan Henne, Francesco Graziosi, Luke M. Western, Jgor Arduini, Anita L. Ganesan, Christina M. Harth, Michela Maione, Jens Mühle, Simon O'Doherty, Joseph Pitt, Stefan Reimann, Matthew Rigby, Peter K. Salameh, Peter G. Simmonds, T. Gerard Spain, Kieran Stanley, Martin K. Vollmer, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 23, 7383–7398, https://doi.org/10.5194/acp-23-7383-2023, https://doi.org/10.5194/acp-23-7383-2023, 2023
Short summary
Short summary
Chlorofluorocarbons (CFCs) were used in Europe pre-1990, damaging the stratospheric ozone layer. Legislation has controlled production and use, and global emissions have decreased sharply. The global rate of decline in CFC-11 recently slowed and was partly attributed to illegal emission in eastern China. This study concludes that emissions of CFC-11 in western Europe have not contributed to the unexplained part of the global increase in CFC-11 observed in the last decade.
Elena Fillola, Raul Santos-Rodriguez, Alistair Manning, Simon O'Doherty, and Matt Rigby
Geosci. Model Dev., 16, 1997–2009, https://doi.org/10.5194/gmd-16-1997-2023, https://doi.org/10.5194/gmd-16-1997-2023, 2023
Short summary
Short summary
Lagrangian particle dispersion models are used extensively for the estimation of greenhouse gas (GHG) fluxes using atmospheric observations. However, these models do not scale well as data volumes increase. Here, we develop a proof-of-concept machine learning emulator that can produce outputs similar to those of the dispersion model, but 50 000 times faster, using only meteorological inputs. This works demonstrates the potential of machine learning to accelerate GHG estimations across the globe.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Peter Bergamaschi, Arjo Segers, Dominik Brunner, Jean-Matthieu Haussaire, Stephan Henne, Michel Ramonet, Tim Arnold, Tobias Biermann, Huilin Chen, Sebastien Conil, Marc Delmotte, Grant Forster, Arnoud Frumau, Dagmar Kubistin, Xin Lan, Markus Leuenberger, Matthias Lindauer, Morgan Lopez, Giovanni Manca, Jennifer Müller-Williams, Simon O'Doherty, Bert Scheeren, Martin Steinbacher, Pamela Trisolino, Gabriela Vítková, and Camille Yver Kwok
Atmos. Chem. Phys., 22, 13243–13268, https://doi.org/10.5194/acp-22-13243-2022, https://doi.org/10.5194/acp-22-13243-2022, 2022
Short summary
Short summary
We present a novel high-resolution inverse modelling system, "FLEXVAR", and its application for the inverse modelling of European CH4 emissions in 2018. The new system combines a high spatial resolution of 7 km x 7 km with a variational data assimilation technique, which allows CH4 emissions to be optimized from individual model grid cells. The high resolution allows the observations to be better reproduced, while the derived emissions show overall good consistency with two existing models.
Angharad C. Stell, Michael Bertolacci, Andrew Zammit-Mangion, Matthew Rigby, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Xin Lan, Manfredi Manizza, Jens Mühle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, Dickon Young, and Anita L. Ganesan
Atmos. Chem. Phys., 22, 12945–12960, https://doi.org/10.5194/acp-22-12945-2022, https://doi.org/10.5194/acp-22-12945-2022, 2022
Short summary
Short summary
Nitrous oxide is a potent greenhouse gas and ozone-depleting substance, whose atmospheric abundance has risen throughout the contemporary record. In this work, we carry out the first global hierarchical Bayesian inversion to solve for nitrous oxide emissions. We derive increasing global nitrous oxide emissions over 2011–2020, which are mainly driven by emissions between 0° and 30°N, with the highest emissions recorded in 2020.
Maria Paula Pérez-Peña, Jenny A. Fisher, Dylan B. Millet, Hisashi Yashiro, Ray L. Langenfelds, Paul B. Krummel, and Scott H. Kable
Atmos. Chem. Phys., 22, 12367–12386, https://doi.org/10.5194/acp-22-12367-2022, https://doi.org/10.5194/acp-22-12367-2022, 2022
Short summary
Short summary
We used two atmospheric models to test the implications of previously unexplored aldehyde photochemistry on the atmospheric levels of molecular hydrogen (H2). We showed that the new photochemistry from aldehydes produces more H2 over densely forested areas. Compared to the rest of the world, it is over these forested regions where the produced H2 is more likely to be removed. The results highlight that other processes that contribute to atmospheric H2 levels should be studied further.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Megan Jeramaz Lickley, John S. Daniel, Eric L. Fleming, Stefan Reimann, and Susan Solomon
Atmos. Chem. Phys., 22, 11125–11136, https://doi.org/10.5194/acp-22-11125-2022, https://doi.org/10.5194/acp-22-11125-2022, 2022
Short summary
Short summary
Halocarbons contained in equipment continue to be emitted after production has ceased. These
banksmust be carefully accounted for in evaluating compliance with the Montreal Protocol. We extend a Bayesian model to the suite of regulated chemicals subject to banking. We find that banks are substantially larger than previous estimates, and we identify banks by chemical and equipment type whose future emissions will contribute to global warming and delay ozone-hole recovery if left unrecovered.
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022, https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Short summary
The production of ozone-destroying gases is being phased out. Even though production of one of the main ozone-depleting gases, called HCFC-141b, has been declining for many years, the amount that is being released to the atmosphere has been increasing since 2017. We do not know for sure why this is. A possible explanation is that HCFC-141b that was used to make insulating foams many years ago is only now escaping to the atmosphere, or a large part of its production is not being reported.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 22, 8897–8934, https://doi.org/10.5194/acp-22-8897-2022, https://doi.org/10.5194/acp-22-8897-2022, 2022
Short summary
Short summary
We study the interannual variability in Australian carbon fluxes for 2015–2019 derived from OCO-2 satellite data. Our results suggest that Australia's semi-arid ecosystems are highly responsive to variations in climate drivers such as rainfall and temperature. We found that high rainfall and low temperatures recorded in 2016 led to an anomalous carbon sink over savanna and sparsely vegetated regions, while unprecedented dry and hot weather in 2019 led to anomalous carbon release.
Mei Bai, Zoe Loh, David W. T. Griffith, Debra Turner, Richard Eckard, Robert Edis, Owen T. Denmead, Glenn W. Bryant, Clare Paton-Walsh, Matthew Tonini, Sean M. McGinn, and Deli Chen
Atmos. Meas. Tech., 15, 3593–3610, https://doi.org/10.5194/amt-15-3593-2022, https://doi.org/10.5194/amt-15-3593-2022, 2022
Short summary
Short summary
The open-path laser (OPL) and open-path Fourier transform infrared (OP-FTIR) are used in agricultural research, but their error in emissions research has not been the focus of studies. We conducted trace gas release trials and herd and paddock emission studies to compare their applicability and performance. The OP-FTIR has better stability in stable conditions than OPL. The CH4 OPL accurately detects the low background level of CH4, but the NH3 OPL only detects background values >10 ppbv.
Taku Umezawa, Satoshi Sugawara, Kenji Kawamura, Ikumi Oyabu, Stephen J. Andrews, Takuya Saito, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 22, 6899–6917, https://doi.org/10.5194/acp-22-6899-2022, https://doi.org/10.5194/acp-22-6899-2022, 2022
Short summary
Short summary
Greenhouse gas methane in the Arctic atmosphere has not been accurately reported for 1900–1980 from either direct observations or ice core reconstructions. By using trace gas data from firn (compacted snow layers above ice sheet), air samples at two Greenland sites, and a firn air transport model, this study suggests a likely range of the Arctic methane reconstruction for the 20th century. Atmospheric scenarios from two previous studies are also evaluated for consistency with the firn data sets.
Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young
Atmos. Chem. Phys., 22, 6087–6101, https://doi.org/10.5194/acp-22-6087-2022, https://doi.org/10.5194/acp-22-6087-2022, 2022
Short summary
Short summary
The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28–0.44 °C to 0.14–0.31 °C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04 °C in 2100.
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys., 22, 5157–5173, https://doi.org/10.5194/acp-22-5157-2022, https://doi.org/10.5194/acp-22-5157-2022, 2022
Short summary
Short summary
We observed 12-year continuous CH3Br pollution signals at Gosan and estimated anthropogenic CH3Br emissions in eastern China. The analysis revealed a significant discrepancy between top-down estimates and the bottom-up emissions from the fumigation usage reported to the United Nations Environment Programme, likely due to unreported or inaccurately reported fumigation usage. This result provides information to monitor international compliance with the Montreal Protocol.
Alice E. Ramsden, Anita L. Ganesan, Luke M. Western, Matthew Rigby, Alistair J. Manning, Amy Foulds, James L. France, Patrick Barker, Peter Levy, Daniel Say, Adam Wisher, Tim Arnold, Chris Rennick, Kieran M. Stanley, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 22, 3911–3929, https://doi.org/10.5194/acp-22-3911-2022, https://doi.org/10.5194/acp-22-3911-2022, 2022
Short summary
Short summary
Quantifying methane emissions from different sources is a key focus of current research. We present a method for estimating sectoral methane emissions that uses ethane as a tracer for fossil fuel methane. By incorporating variable ethane : methane emission ratios into this model, we produce emissions estimates with improved uncertainty characterisation. This method will be particularly useful for studying methane emissions in areas with complex distributions of sources.
Peter Sperlich, Gordon W. Brailsford, Rowena C. Moss, John McGregor, Ross J. Martin, Sylvia Nichol, Sara Mikaloff-Fletcher, Beata Bukosa, Magda Mandic, C. Ian Schipper, Paul Krummel, and Alan D. Griffiths
Atmos. Meas. Tech., 15, 1631–1656, https://doi.org/10.5194/amt-15-1631-2022, https://doi.org/10.5194/amt-15-1631-2022, 2022
Short summary
Short summary
We tested an in situ analyser for carbon and oxygen isotopes in atmospheric CO2 at Baring Head, New Zealand’s observatory for Southern Ocean baseline air. The analyser was able to resolve regional signals of the terrestrial carbon cycle, although the analysis of small events was limited by analytical uncertainty. Further improvement of the instrument performance would be desirable for the robust analysis of distant signals and to resolve the small variability in Southern Ocean baseline air.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Dominique Rust, Ioannis Katharopoulos, Martin K. Vollmer, Stephan Henne, Simon O'Doherty, Daniel Say, Lukas Emmenegger, Renato Zenobi, and Stefan Reimann
Atmos. Chem. Phys., 22, 2447–2466, https://doi.org/10.5194/acp-22-2447-2022, https://doi.org/10.5194/acp-22-2447-2022, 2022
Short summary
Short summary
Artificial halocarbons contribute to ozone layer depletion and to global warming. We measured the atmospheric concentrations of halocarbons at the Beromünster tower, modelled the Swiss emissions, and compared the results to the internationally reported Swiss emissions inventory. For most of the halocarbons, we found good agreement, whereas one refrigerant might be overestimated in the inventory. In addition, we present first emission estimates of the newest types of halocarbons.
Haiyue Tan, Lin Zhang, Xiao Lu, Yuanhong Zhao, Bo Yao, Robert J. Parker, and Hartmut Boesch
Atmos. Chem. Phys., 22, 1229–1249, https://doi.org/10.5194/acp-22-1229-2022, https://doi.org/10.5194/acp-22-1229-2022, 2022
Short summary
Short summary
Methane is the second most important anthropogenic greenhouse gas. Understanding methane emissions and concentration growth over China in the past decade is important to support its mitigation. This study analyzes the contributions of methane emissions from different regions and sources over the globe to methane changes over China in 2007–2018. Our results show strong international transport influences and emphasize the need of intensive methane measurements covering eastern China.
Andrew Zammit-Mangion, Michael Bertolacci, Jenny Fisher, Ann Stavert, Matthew Rigby, Yi Cao, and Noel Cressie
Geosci. Model Dev., 15, 45–73, https://doi.org/10.5194/gmd-15-45-2022, https://doi.org/10.5194/gmd-15-45-2022, 2022
Short summary
Short summary
We present a framework for estimating the sources and sinks (flux) of carbon dioxide from satellite data. The framework is statistical and yields measures of uncertainty alongside all estimates of flux and other parameters in the underlying model. It also allows us to generate other insights, such as the size of errors and biases in the data. The primary aim of this research was to develop a fully statistical flux inversion framework for use by atmospheric scientists.
Yohanna Villalobos, Peter J. Rayner, Jeremy D. Silver, Steven Thomas, Vanessa Haverd, Jürgen Knauer, Zoë M. Loh, Nicholas M. Deutscher, David W. T. Griffith, and David F. Pollard
Atmos. Chem. Phys., 21, 17453–17494, https://doi.org/10.5194/acp-21-17453-2021, https://doi.org/10.5194/acp-21-17453-2021, 2021
Short summary
Short summary
Semi-arid ecosystems such as those in Australia are evolving and might play an essential role in the future of climate change. We use carbon dioxide concentrations derived from the OCO-2 satellite instrument and a regional transport model to understand if Australia was a carbon sink or source of CO2 in 2015. Our research's main findings suggest that Australia acted as a carbon sink of about −0.41 ± 0.08 petagrams of carbon in 2015, driven primarily by savanna and sparsely vegetated ecosystems.
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
Short summary
We provide a synthetic dataset on anthropogenic greenhouse gas (GHG) emissions for 1970–2018 with a fast-track extension to 2019. We show that GHG emissions continued to rise across all gases and sectors. Annual average GHG emissions growth slowed, but absolute decadal increases have never been higher in human history. We identify a number of data gaps and data quality issues in global inventories and highlight their importance for monitoring progress towards international climate goals.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Masanori Takeda, Hideaki Nakajima, Isao Murata, Tomoo Nagahama, Isamu Morino, Geoffrey C. Toon, Ray F. Weiss, Jens Mühle, Paul B. Krummel, Paul J. Fraser, and Hsiang-Jui Wang
Atmos. Meas. Tech., 14, 5955–5976, https://doi.org/10.5194/amt-14-5955-2021, https://doi.org/10.5194/amt-14-5955-2021, 2021
Short summary
Short summary
This paper presents the first observations of atmospheric HFC-23 abundances with a ground-based remote sensing technique. The increasing trend of the HFC-23 abundances analyzed by this study agrees with that derived from other existing in situ measurements. This study indicates that ground-based FTIR observation has the capability to monitor the trend of atmospheric HFC-23 and could allow for monitoring the distribution of global atmospheric HFC-23 abundances in more detail.
Alistair J. Manning, Alison L. Redington, Daniel Say, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Martin K. Vollmer, Jens Mühle, Jgor Arduini, Gerard Spain, Adam Wisher, Michela Maione, Tanja J. Schuck, Kieran Stanley, Stefan Reimann, Andreas Engel, Paul B. Krummel, Paul J. Fraser, Christina M. Harth, Peter K. Salameh, Ray F. Weiss, Ray Gluckman, Peter N. Brown, John D. Watterson, and Tim Arnold
Atmos. Chem. Phys., 21, 12739–12755, https://doi.org/10.5194/acp-21-12739-2021, https://doi.org/10.5194/acp-21-12739-2021, 2021
Short summary
Short summary
This paper estimates UK emissions of important greenhouse gases (hydrofluorocarbons (HFCs)) using high-quality atmospheric observations and atmospheric modelling. We compare these estimates with those submitted by the UK to the United Nations. We conclude that global concentrations of these gases are still increasing. Our estimates for the UK are 73 % of those reported and that the UK emissions are now falling, demonstrating an impact of UK government policy.
Ruth E. Hill-Pearce, Aimee Hillier, Eric Mussell Webber, Kanokrat Charoenpornpukdee, Simon O'Doherty, Joachim Mohn, Christoph Zellweger, David R. Worton, and Paul J. Brewer
Atmos. Meas. Tech., 14, 5447–5458, https://doi.org/10.5194/amt-14-5447-2021, https://doi.org/10.5194/amt-14-5447-2021, 2021
Short summary
Short summary
There is currently a need for gas reference materials with well-characterised delta values for monitoring N2O amount fractions. We present work towards the preparation of gas reference materials for calibration of in-field monitoring equipment, which target the WMO-GAW data quality objectives for comparability of amount fraction and demonstrate the stability of δ15Nα, δ15Nβ and δ18O values with pressure and effects of cylinder passivation.
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021, https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary
Short summary
This study introduces the in situ CO2 measurement system installed in Beijing (urban), Xianghe (suburban), and Xinglong (rural) in North China for the first time. The spatial and temporal variations in CO2 mole fractions at the three sites between June 2018 and April 2020 are discussed on both seasonal and diurnal scales.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Di Liu, Wanqi Sun, Ning Zeng, Pengfei Han, Bo Yao, Zhiqiang Liu, Pucai Wang, Ke Zheng, Han Mei, and Qixiang Cai
Atmos. Chem. Phys., 21, 4599–4614, https://doi.org/10.5194/acp-21-4599-2021, https://doi.org/10.5194/acp-21-4599-2021, 2021
Short summary
Short summary
It is difficult to directly observe the COVID-19 signals in CO2 due to the strong weather induced variations. Here, we determined the on-road CO2 concentration declines in Beijing using mobile observatory data before (BC), during (DC) and after COVID-19 (AC). We chose trips with the most similar weather and calculated the enhancement, the difference between on-road and the city “background”. We showed a clear on-road CO2 decrease in DC, which is consistent with the emissions reductions in DC.
Daniel Say, Alistair J. Manning, Luke M. Western, Dickon Young, Adam Wisher, Matthew Rigby, Stefan Reimann, Martin K. Vollmer, Michela Maione, Jgor Arduini, Paul B. Krummel, Jens Mühle, Christina M. Harth, Brendan Evans, Ray F. Weiss, Ronald G. Prinn, and Simon O'Doherty
Atmos. Chem. Phys., 21, 2149–2164, https://doi.org/10.5194/acp-21-2149-2021, https://doi.org/10.5194/acp-21-2149-2021, 2021
Short summary
Short summary
Perfluorocarbons (PFCs) are potent greenhouse gases with exceedingly long lifetimes. We used atmospheric measurements from a global monitoring network to track the accumulation of these gases in the atmosphere. In the case of the two most abundant PFCs, recent measurements indicate that global emissions are increasing. In Europe, we used a model to estimate regional PFC emissions. Our results show that there was no significant decline in northwest European PFC emissions between 2010 and 2019.
Angharad C. Stell, Luke M. Western, Tomás Sherwen, and Matthew Rigby
Atmos. Chem. Phys., 21, 1717–1736, https://doi.org/10.5194/acp-21-1717-2021, https://doi.org/10.5194/acp-21-1717-2021, 2021
Short summary
Short summary
Although it is the second-most important greenhouse gas, our understanding of the atmospheric-methane budget is limited. The uncertainty highlights the need for new tools to investigate sources and sinks. Here, we use a Gaussian process emulator to efficiently approximate the response of atmospheric-methane observations to changes in the most uncertain emission or loss processes. With this new method, we rigorously quantify the sensitivity of atmospheric observations to budget uncertainties.
Camille Yver-Kwok, Carole Philippon, Peter Bergamaschi, Tobias Biermann, Francescopiero Calzolari, Huilin Chen, Sebastien Conil, Paolo Cristofanelli, Marc Delmotte, Juha Hatakka, Michal Heliasz, Ove Hermansen, Kateřina Komínková, Dagmar Kubistin, Nicolas Kumps, Olivier Laurent, Tuomas Laurila, Irene Lehner, Janne Levula, Matthias Lindauer, Morgan Lopez, Ivan Mammarella, Giovanni Manca, Per Marklund, Jean-Marc Metzger, Meelis Mölder, Stephen M. Platt, Michel Ramonet, Leonard Rivier, Bert Scheeren, Mahesh Kumar Sha, Paul Smith, Martin Steinbacher, Gabriela Vítková, and Simon Wyss
Atmos. Meas. Tech., 14, 89–116, https://doi.org/10.5194/amt-14-89-2021, https://doi.org/10.5194/amt-14-89-2021, 2021
Short summary
Short summary
The Integrated Carbon Observation System (ICOS) is a pan-European research infrastructure which provides harmonized and high-precision scientific data on the carbon cycle and the greenhouse gas (GHG) budget. All stations have to undergo a rigorous assessment before being labeled, i.e., receiving approval to join the network. In this paper, we present the labeling process for the ICOS atmospheric network through the 23 stations that were labeled between November 2017 and November 2019.
Ashok K. Luhar, David M. Etheridge, Zoë M. Loh, Julie Noonan, Darren Spencer, Lisa Smith, and Cindy Ong
Atmos. Chem. Phys., 20, 15487–15511, https://doi.org/10.5194/acp-20-15487-2020, https://doi.org/10.5194/acp-20-15487-2020, 2020
Short summary
Short summary
With the sharp rise in coal seam gas (CSG) production in Queensland’s Surat Basin, there is much interest in quantifying methane emissions from this area and from unconventional gas production in general. We develop and apply a regional Bayesian inverse model that uses hourly methane concentration data from two sites and modelled backward dispersion to quantify emissions. The model requires a narrow prior and suggests that the emissions from the CSG areas are 33% larger than bottom-up estimates.
Rachel L. Tunnicliffe, Anita L. Ganesan, Robert J. Parker, Hartmut Boesch, Nicola Gedney, Benjamin Poulter, Zhen Zhang, Jošt V. Lavrič, David Walter, Matthew Rigby, Stephan Henne, Dickon Young, and Simon O'Doherty
Atmos. Chem. Phys., 20, 13041–13067, https://doi.org/10.5194/acp-20-13041-2020, https://doi.org/10.5194/acp-20-13041-2020, 2020
Short summary
Short summary
This study quantifies Brazil’s emissions of a potent atmospheric greenhouse gas, methane. This is in the field of atmospheric modelling and uses remotely sensed data and surface measurements of methane concentrations as well as an atmospheric transport model to interpret the data. Because of Brazil’s large emissions from wetlands, agriculture and biomass burning, these emissions affect global methane concentrations and thus are of global significance.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Cited articles
Allan, D. W.: Statistics of atomic frequency standards, P. IEEE, 54, 221–230,
https://doi.org/10.1109/PROC.1966.4634, 1966.
Arnold, T., Mühle, J., Salameh, P. K., Harth, C. M., Ivy, D. J., and
Weiss, R. F.: Automated Measurement of Nitrogen Trifluoride in Ambient Air, Anal. Chem.,
84, 4798–4804, https://doi.org/10.1021/ac300373e, 2012.
Arnold, T., Harth, C. M., Mühle, J., Manning, A. J., Salameh, P. K., Kim,
J., Ivy, D. J., Steele, L. P., Petrenko, V. V., Severinghaus, J. P.,
Baggenstos, D., and Weiss, R. F.: Nitrogen trifluoride global emissions
estimated from updated atmospheric measurements, P. Natl. Acad. Sci. USA,
110, 2029–2034, https://doi.org/10.1073/pnas.1212346110, 2013.
Arnold, T., Ivy, D. J., Harth, C. M., Vollmer, M. K.,
Mühle, J., Salameh, P. K., Steele, L. P., Krummel, P. B.,
Wang, J., Young, D., Lunder, C. R., Hermansen, O., Rhee, T. S., Kim, J.,
Reimann, S., O'Doherty, S., Fraser, P. J., Simmonds, P. G., Prinn, R. G., and
Weiss, R. F.: HFC-43-10mee atmospheric abundances and global emission estimates,
Geophys. Res. Lett., 41, 2228–2235, https://doi.org/10.1002/2013GL059143, 2014.
Bosilovich, M. G., Chen, J., Robertson, F. R., and Adler, R. F.: Evaluation of
Global Precipitation in Reanalyses, J. Appl. Meteorol. Clim., 47, 2279–2299, 2008.
Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.:
Two decades of OH variability as inferred by an inversion of atmospheric
transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5,
2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005.
Butler, J. H., Yvon-Lewis, S. A., Lobert, J. M., King, D. B., Montzka, S. A.,
Bullister, J. L., Koropalov, V., Elkins, J. W., Hall, B. D., Hu, L., and Liu,
Y.: A comprehensive estimate for loss of atmospheric carbon tetrachloride
(CCl+4) to the ocean, Atmos. Chem. Phys., 16, 10899–10910,
https://doi.org/10.5194/acp-16-10899-2016, 2016.
Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C.,
Hall, B. D., Hossaini, R., Laube, J. C., Yvon-Lewis, S. A.,
Blake, D. R., Dorf, M., Dutton, G. S., Fraser, P. J., Froidevaux, L.,
Hendrick, F., Hu, J., Jones, A., Krummel, P. B., Kuijpers, L. J. M., Kurylo,
M. J., Liang, Q., Mahieu, E., Mühle, J., O'Doherty, S., Ohnishi, K.,
Orkin, V. L., Pfeilsticker, K., Rigby, M., Simpson, I. J., Yokouchi, Y.,
Engel, A., and Montzka, S. A.: Update on Ozone-Depleting Substances (ODSs)
and Other Gases of Interest to the Montreal Protocol (Chapter 1), in:
Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and
Monitoring Project-Report No. 55, World Meteorological Organization, Geneva,
Switzerland, 2014.
Chen, Y.-H. and Prinn, R. G.: Atmospheric modeling of high-frequency methane
observations: Importance of interannually varying transport, J. Geophys.
Res., 110, D10303, https://doi.org/10.1029/2004JD005542, 2005.
Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions
between 1996–2001 using a 3D global chemical transport model, J. Geophys.
Res., 111, D10307, https://doi.org/10.1029/2005JD006058, 2006.
Chipperfield, M. P., Liang, Q., Rigby, M., Hossaini, R., Montzka, S. A.,
Dhomse, S., Feng, W., Prinn, R. G., Weiss, R. F., Harth, C. M., Salameh, P.
K., Mühle, J., O'Doherty, S., Young, D., Simmonds, P. G., Krummel, P. B.,
Fraser, P. J., Steele, L. P., Happell, J. D., Rhew, R. C., Butler, J.,
Yvon-Lewis, S. A., Hall, B., Nance, D., Moore, F., Miller, B. R., Elkins, J.
W., Harrison, J. J., Boone, C. D., Atlas, E. L., and Mahieu, E.: Model
sensitivity studies of the decrease in atmospheric carbon tetrachloride,
Atmos. Chem. Phys., 16, 15741–15754,
https://doi.org/10.5194/acp-16-15741-2016, 2016.
Chirkov, M., Stiller, G. P., Laeng, A., Kellmann, S., von Clarmann, T.,
Boone, C. D., Elkins, J. W., Engel, A., Glatthor, N., Grabowski, U., Harth,
C. M., Kiefer, M., Kolonjari, F., Krummel, P. B., Linden, A., Lunder, C. R.,
Miller, B. R., Montzka, S. A., Mühle, J., O'Doherty, S., Orphal, J., Prinn,
R. G., Toon, G., Vollmer, M. K., Walker, K. A., Weiss, R. F., Wiegele, A.,
and Young, D.: Global HCFC-22 measurements with MIPAS: retrieval, validation,
global distribution and its evolution over 2005–2012, Atmos. Chem. Phys.,
16, 3345–3368, https://doi.org/10.5194/acp-16-3345-2016, 2016.
Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S. T., Krummel, P. B., and
O'Doherty, S.: Regional sources of methyl chloride, chloroform and
dichloromethane identified from AGAGE observations at Cape Grim, Tasmania,
1998–2000, J. Atmos. Chem., 45, 79–99, 2003.
Cunnold, D. M., Fraser, P. J., Weiss, R. F., Prinn, R. G., Simmonds, P. G.,
Miller, B. R., Alyea, F. N., and Crawford, A. J.: Global trends and annual
releases of CCl3F and CCl2F2 estimated from ALE/GAGE and
other measurements from July 1978 to June 1991, J. Geophys. Res., 99,
1107–1126, 1994.
Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G.,
Weiss, R. F., Porter, L. W., Langenfelds, R. L., Krummel, P. B., Wang, H. J.,
Emmons, L., Tie, X. X., and Dlugokencky, E. J.: In-Situ measurements of
atmospheric methane at GAGE/AGAGE sites during 1985–1999 and resulting
source inferences, J. Geophys. Res., 107, ACH 20-1–ACH 20-18,
https://doi.org/10.1029/2001JD001226, 2002.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G.,
Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J.-C., Leblanc,
T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer, G., Simon,
P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the Detection of
Atmospheric Composition Change (NDACC): history, status and perspectives,
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018,
2018.
Derwent, R. G, Simmonds, P. G., Greally, B. R., O'Doherty, S., McCulloch, A.,
Manning, A., Reimann, S., Folini, D., and Vollmer, M. K.: The phase-in and
phase-out of European emissions of HCFC-141b and HCFC-142b under the Montreal
Protocol: Evidence from observations at Mace Head, Ireland from 1994–2004,
Atmos. Environ., 41, 757–767, 2007.
Derwent, R. G., Simmonds, P. G., O'Doherty, S., Grant, A., Young, D.,
Cooke, M. C., Manning, A. J., Utembe, S. R., Jenkin, M. E., and Shallcross,
D. E.: Seasonal cycles in short-lived hydrocarbons in baseline air masses
arriving at Mace Head, Ireland, Atmos. Environ., 62, 89–96,
https://doi.org/10.1016/j.atmosenv.2012.08.023, 2012.
Draxler, R. D. and Hess, G. D.: Description of the HYSPLIT-4 modelling system,
NOAA Tech. Memo. ERL ARL-224, 24 pp., Air Resour. Lab., Silver Spring, MD,
1997.
Dunse, B., Steele, P., Wilson, S., Fraser, P., and Krummel, P.: Trace gas
emissions from Melbourne Australia, based on AGAGE observations at Cape Grim,
Tasmania, 1995–2000, Atmos. Environ., 39, 6334–6344, 2005.
Elkins, J. W., Butler, J. H., Hall, B., Montzka, S. A., and Moore, F. L.:
Halocarbon and Other Trace Gases Group/Global Monitoring Division/Earth
Systems Research Laboratory (NOAA/ESRL) website: available atg:
http://www.esrl.noaa.gov/gmd/, Boulder, CO, updated data available on
anonymous ftp site at: http://www.esrl.noaa.gov/gmd/dv/ftpdata.html
(last access: 21 May 2018), 2015.
Enting, I. G.:
Inverse Problems in Atmospheric Constituent Transport, Cambridge University
Press, Cambridge CB2 2RU, UK, 2002.
Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G.,
Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando,
J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.:
Description and evaluation of the Model for Ozone and Related chemical
Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67,
https://doi.org/10.5194/gmd-3-43-2010, 2010.
Eyer, S., Tuzson, B., Popa, M. E., van der Veen, C., Röckmann, T., Rothe,
M., Brand, W. A., Fisher, R., Lowry, D., Nisbet, E. G., Brennwald, M. S.,
Harris, E., Zellweger, C., Emmenegger, L., Fischer, H., and Mohn, J.:
Real-time analysis of δ13C- and δD−CH4 in
ambient air with laser spectroscopy: method development and first
intercomparison results, Atmos. Meas. Tech., 9, 263–280,
https://doi.org/10.5194/amt-9-263-2016, 2016.
Fang, X., Thompson, R. L., Saito, T., Yokouchi, Y., Kim, J., Li, S., Kim, K.
R., Park, S., Graziosi, F., and Stohl, A.: Sulfur hexafluoride (SF6)
emissions in East Asia determined by inverse modeling, Atmos. Chem. Phys.,
14, 4779–4791, https://doi.org/10.5194/acp-14-4779-2014, 2014.
Fang, X., Stohl, A., Yokouchi, Y., Kim, J., Li, S., Saito, T., Park, S., and
Hu, J.: Multiannual Top-Down Estimate of HFC-23 Emissions in East Asia,
Environ. Sci. Technol., 49, 4345–4353, https://doi.org/10.1021/es505669j, 2015.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.,
Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G.,
Schulz, M., Van Dorland, R.: Changes in Atmospheric Constituents and in
Radiative Forcing, in: Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, S.,
Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., and Miller,
H.: Cambridge University Press, Cambridge, UK and New York, USA, chap. 2,
129–234, 2007.
Fortems-Cheiney, A., Chevallier, F., Saunois, M., Pison, I., Bousquest, P.,
Cressot, C., Wang, R. H. J., Yokouchi, Y., and Artuso, F.: HCFC-22 emissions
at global and regional scales between 1995 and 2010: Trends and variability.
J. Geophys. Res.-Atmos., 118, 7379–7388, 2013.
Fortems-Cheiney, A., Saunois, M., Pison, I., Chevallier, F., Bousquet, P.,
Cressot, C., Montzka, S. A., Fraser, P. J., Vollmer, M. K., Simmonds, P. G.,
Young, D., O'Doherty, S., Weiss, R. F., Artuso, F., Barletta, B., Blake, D. R.,
Li, S., Lunder, C., Miller, B. R., Park, S., Prinn, R., Saito, T., Steele, L.
P., and Yokouchi, Y.: Increase in HFC-134a emissions in response to the
success of the Montreal Protocol, J. Geophys. Res.-Atmos., 120,
11728–11742, https://doi.org/10.1002/2015JD023741, 2015.
Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R.,
Dlugokencky, E. J., Fraser, P. J., Krummel, P. B., Langenfelds, R. L.,
O'Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R.
F.: Estimating regional methane surface fluxes: the relative importance of
surface and GOSAT mole fraction measurements, Atmos. Chem. Phys., 13,
5697–5713, https://doi.org/10.5194/acp-13-5697-2013, 2013.
Fraser, P. J., Dunse, B. L., Manning, A. J., Walsh, S., Wang, R. H. J.,
Krummel, P. B., Steele, L. P., Porter, L. W., Allison, C., O'Doherty, S.,
Simmonds, P. G., Mühle, J., Weiss, R. F., and Prinn, R. G.: Australian
carbon tetrachloride (CCl4) emissions in a global context, Environ.
Chem., 11, 77–88, https://doi.org/10.1071/EN13171, 2014.
Fraser, P. J., Pearman, G. I., and Derek, N.: CSIRO non-carbon dioxide
greenhouse gas research. Part 1: 1975–1990, Hist. Rec. Aust. Sci., 29,
1–13, https://doi.org/10.1071/HR17016, 2017.
Ganesan, A. L., Rigby, M., Zammit-Mangion, A., Manning, A. J., Prinn, R. G.,
Fraser, P. J., Harth, C. M., Kim, K.-R., Krummel, P. B., Li, S., Mühle, J.,
O'Doherty, S. J., Park, S., Salameh, P. K., Steele, L. P., and Weiss, R. F.:
Characterization of uncertainties in atmospheric trace gas inversions using
hierarchical Bayesian methods, Atmos. Chem. Phys., 14, 3855–3864,
https://doi.org/10.5194/acp-14-3855-2014, 2014.
Ganesan, A. L., Manning, A. J., Grant, A., Young, D., Oram, D. E., Sturges,
W. T., Moncrieff, J. B., and O'Doherty, S.: Quantifying methane and nitrous
oxide emissions from the UK and Ireland using a national-scale monitoring
network, Atmos. Chem. Phys., 15, 6393–6406,
https://doi.org/10.5194/acp-15-6393-2015, 2015.
Ganesan, A. L., Rigby, M., Lunt, M. F., Parker, R. J., Boesch, H., Goulding,
N., Umezawa, T., Zahn, A., Chatterjee, A., Prinn, R. G., Tiwari, Y. K., van
der Schoot, M., and Krummel, P. B.: Atmospheric observations show accurate
reporting and little growth in India's methane emissions, Nat. Commun., 8,
1–7, https://doi.org/10.1038/s41467-017-00994-7, 2017.
Grant, A., Yates, E. L., Simmonds, P. G., Derwent, R. G., Manning, A. J.,
Young, D., Shallcross, D. E., and O'Doherty, S.: A five year record of
high-frequency in situ measurements of non-methane hydrocarbons at Mace Head,
Ireland, Atmos. Meas. Tech., 4, 955–964,
https://doi.org/10.5194/amt-4-955-2011, 2011.
Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Kuijpers, L. J. M.,
Montzka, S. A., Miller, B. R., O'Doherty, S. J., Stohl, A., Bonasoni, P., and
Maione, M.: European emissions of HCFC-22 based on eleven years of high
frequency atmospheric measurements and a Bayesian inversion method, Atmos.
Environ., 112, 196–207, https://doi.org/10.1016/j.atmosenv.2015.04.042, 2015.
Graziosi, F., Arduini, J., Bonasoni, P., Furlani, F., Giostra, U., Manning,
A. J., McCulloch, A., O'Doherty, S., Simmonds, P. G., Reimann, S., Vollmer,
M. K., and Maione, M.: Emissions of carbon tetrachloride from Europe, Atmos.
Chem. Phys., 16, 12849–12859, https://doi.org/10.5194/acp-16-12849-2016,
2016.
Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Cristofanelli, P.,
Fang, X., Hermanssen, O., Lunder, C., Maenhout, G., O'Doherty, S., Reimann,
S., Schmidbauer, N., Vollmer, M. K., Young, D., and Maione, M.: European
emissions of the powerful greenhouse gases hydrofluorocarbons inferred from
atmospheric measurements and their comparison with annual national reports to
UNFCCC, Atmos. Environ., 158, 85–97, 2017.
Hall, B. D., Engel, A., Mühle, J., Elkins, J. W., Artuso, F., Atlas, E.,
Aydin, M., Blake, D., Brunke, E.-G., Chiavarini, S., Fraser, P. J., Happell,
J., Krummel, P. B., Levin, I., Loewenstein, M., Maione, M., Montzka, S. A.,
O'Doherty, S., Reimann, S., Rhoderick, G., Saltzman, E. S., Scheel, H. E.,
Steele, L. P., Vollmer, M. K., Weiss, R. F., Worthy, D., and Yokouchi, Y.:
Results from the International Halocarbons in Air Comparison Experiment
(IHALACE), Atmos. Meas. Tech., 7, 469–490,
https://doi.org/10.5194/amt-7-469-2014, 2014.
Harris, E., Nelson, D. D., Olszewski, W., Zahniser, M., Potter, K. E.,
McManus, B. J., Whitehill, A., Prinn, R. G., and Ono, S.: Development of a
Spectroscopic Technique for Continuous Online Monitoring of Oxygen and
Site-Specific Nitrogen Isotopic Composition of Atmospheric Nitrous Oxide,
Anal. Chem., 86, 1726–1734, https://doi.org/10.1021/ac403606u, 2013.
Hartley, D. E. and Prinn, R. G.: On the feasibility of determining surface
emissions of trace gases using an inverse method in a three-dimensional
chemical transport model, J. Geophys. Res., 98, 5183–5198, 1993.
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V.,
Brönnimann, S., Charabi, Y., Dentener, F. J., Dlugokencky, E. J.,
Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., and
Zhai, P. M.: Observations: Atmosphere and Surface, in: Climate Change 2013: The
Physical Science Basis, Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Heil, J., Wolf, B., Brüggemann, N., Emmenegger, L., Tuzson, B.,
Vereecken, H., and Mohn, J.: Site-specific 15N isotopic signatures
of aiotically produced N2O, Geochim. Cosmochim. Ac., 139, 72–82,
https://doi.org/10.1016/j.gca.2014.04.037, 2014.
Huang, J. and Prinn, R. G.: Critical evaluation of emissions for potential
new OH titrating gases, J. Geophys. Res., 107, 4784,
https://doi.org/10.1029/2002JD002394, 2002.
Huang, J., Golombek, A., Prinn, R., Weiss, R., Fraser, P., Simmonds, P.,
Dlugokencky, E. J., Hall, B., Elkins, J., Steele, P., Langenfelds, R.,
Krummel, P., Dutton, G., and Porter, L.: Estimation of regional emissions of
nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical
transport model, and an inverse method, J. Geophys. Res., 113, D17313,
https://doi.org/10.1029/2007JD009381, 2008.
Ivy, D. J., Arnold, T., Harth, C. M., Steele, L. P., Mühle, J., Rigby, M.,
Salameh, P. K., Leist, M., Krummel, P. B., Fraser, P. J., Weiss, R. F., and
Prinn, R. G.: Atmospheric histories and growth trends of , Atmos. Chem. Phys., 12,
4313–4325, https://doi.org/10.5194/acp-12-4313-2012, 2012a.
Ivy, D. J., Rigby, M., Baasandorj, M., Burkholder, J. B., and Prinn, R. G.:
Global emission estimates and radiative impact of and C8F18, Atmos. Chem. Phys., 12, 7635–7645,
https://doi.org/10.5194/acp-12-7635-2012, 2012b.
Jones, A., Thomson, D., Hort, M., and Devenish, B.: The UK Met Office's
next-generation atmospheric dispersion model, NAME III, Air Pollution
Modeling and Its Applications Xvii, 17, 580–589,
https://doi.org/10.1007/978-0-387-68854-1_62, 2007.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A.,
Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.
C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR
40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Kaminski, T., Rayner, P. J., Heimann, M., and Enting, I. G.: On aggregation
errors in atmospheric transport inversions, J. Geophys. Res., 106,
4703–4715, 2001.
Kasibhatla, P., Heimann, M., Rayner, P., Mahowald, N., Prinn, R. G., and
Hartley, D. (Eds): Inverse Methods in Global Biogeochemical Cycles,
Geophysical Monograph Series, Volume 114, American Geophysical Union,
Washington DC, 324 pp., 2000.
Keller, C. A., Brunner, D., Henne, S., Vollmer, M. K., O'Doherty,
S., and Reimann, S.: Evidence for under-reported Western European emissions
of the potent greenhouse gas HFC-23, Geophys. Res. Lett., 38, L15808,
https://doi.org/10.1029/2011GL047976, 2011.
Keller, C. A., Hill, M., Vollmer, M. K., Henne, S., Brunner, D., Reimann, S.,
O'Doherty, S., Arduini, J., Maione, M., Ferenczi, Z., Haszpra, L., Manning,
A. J., and Peter, T.: European emissions of halogenated greenhouse gases
inferred from atmospheric measurements, Environ. Sci. Technol., 46,
217–225, https://doi.org/10.1021/es202453j, 2012.
Kim, J., Li, S., Kim, K.-R., Stohl, A., Mühle, J., Kim, S.-K.,
Park, M.-K., Kang, D.-J., Lee, G., Harth, C. M., Salameh, P. K., and Weiss,
R. F.: Regional atmospheric emissions determined from measurements at Jeju
Island, Korea: Halogenated compounds from China, Geophys. Res. Lett., 37,
L12801, https://doi.org/10.1029/2010gl043263, 2010.
Kim, J., Li, S., Mühle, J., Stohl, A., Kim, S.-K., Park, S.. Park, M.-K.,
Weiss, R. F., and Kim, K.-R.: Overview of the findings from measurements of
halogenated compounds at Gosan (Jeju Island, Korea) quantifying emissions in
East Asia, J. Integr. Environ. Sci., 9, Supplement 1, 71–80,
https://doi.org/10.1080/1943815X.2012.696548, 2012.
K
im, J., Fraser, P. J., Li, S., Mühle, J., Ganesan, A. L., Krummel, P. B.,
Steele, L. P., Park, S., Kim, S.-K., Park, M.-K., Arnold, T., Harth, C. M.,
Salameh, P. K., Prinn, R. G., Weiss, R. F., and Kim, K.-R.: Quantifying
aluminum and semiconductor industry perfluorocarbon emissions from
atmospheric measurements, Geophys. Res. Lett., 41, 4787–4794,
https://doi.org/10.1002/2014GL059783, 2014.
Kirschke, S., Bousquet, P., Ciais, P., Marielle Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Fraser, P. J., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Krummel,
P. B, Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V.,
O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R.
G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T.,
Simpson, I. J., Spahni, R., Steele, L.P., Strode, S. A., Sudo, K., Szopa, S.,
van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams,
J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nat.
Geosci., 6, 813–823, https://doi.org/10.1038/NGEO1955, 2013.
Kleiman, G. and Prinn, R. G.: Measurement and deduction of emissions of
trichloroethene, tetrachloroethene and trichloromethane (chloroform) in the
Northeastern U.S. and Southeastern Canada, J. Geophys. Res., 105,
28875–28893, 2000.
Krol, M. and Lelieveld, J.: Can the variability in tropospheric OH be
deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)?, J.
Geophys. Res., 108, ACH16, https://doi.org/10.1029/2002JD002423, 2003.
Krol, M., Lelieveld, J., Oram, D. E., Sturrock, G. A., Penkett, S. A.,
Brenninkmeijer, C. A. M., Gros, V., Williams, J., and Scheeren, H. A.:
Continuing emissions of methyl chloroform from Europe, Nature, 421,
131–135, 2003.
Lawrence, M. G., Crutzen, P. J., Rasch, P. J., Eaton, B. E., and Mahowald, N. M.: A
model for studies of tropospheric photochemistry: description, global
distributions and evaluation, J. Geophys. Res., 104, 26245–26277, 1999.
Li, J., Cunnold, D. M., Wang, H.-J., Weiss, R. F., Miller, B. R.,
Harth, C., Salameh, P., and Harris, J. M.: Halocarbon emissions estimated from Advanced Global
Atmospheric Gases Experiment measured pollution events at Trinidad Head,
California, J. Geophys. Res., 110, D14308, https://doi.org/10.1029/2004JD005739,
2005.
Li, S., Kim, J., Kim, K.-R., Mühle, J., Kim, S.-K., Park, M.-K., Stohl,
A., Kang, D.-J., Arnold, T., Harth, C. M., Salameh, P. K., and Weiss, R.F.:
Emissions of halogenated compounds in East Asia determined from measurements
at Jeju Island, Korea, Environ. Sci. Technol., 45, 5668–5675,
https://doi.org/10.1021/es104124k, 2011.
Li, S., Kim, J., Park, S., Kim, S.-K., Park, M.-K., Mühle, J., Lee, G.,
Lee, M., Jo, C. O., and Kim, K.-R.: Source Identification and Apportionment
of Halogenated Compounds Observed at a Remote Site in East Asia, Environ.
Sci. Technol., 48, 491–498, https://doi.org/10.1021/es402776w, 2014.
Liang, Q., Chipperfield, M. P., Fleming, E. L., Abraham, N. L., Braesicke,
P., Burkholder, J. B., Daniel, J. S., Dhomse, S., Fraser, P. J., Hardiman, S.
C., Jackman, C. H., Kinnison, D.E., Krummel, P. B., Montzka, S. A.,
Morgenstern, O., McCulloch, A., Mühle, J., Newman, P.A., Orkin, V. L.,
Pitari, G., Prinn, R. G., Rigby, M., Rozanov, E., Stenke, A., Tummon, F.,
Velders, G. J. M., Visioni, D., and Weiss, R. F.: Deriving global OH
abundance and atmospheric lifetimes for long-lived gases: A search for
CH3CCl3 alternatives, J. Geophys. Res.-Atmos., 122, 11914–11933,
https://doi.org/10.1002/2017JD026926, 2017.
Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S.,
Saunois, M., Agusti-Panareda, A., Bergmann, D., Bian, H., Cameron-Smith, P.,
Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra,
P. K., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.: Impact of
transport model errors on the global and regional methane emissions estimated
by inverse modelling, Atmos. Chem. Phys., 13, 9917–9937,
https://doi.org/10.5194/acp-13-9917-2013, 2013.
Loh, Z. M., Law, R. M., Haynes, K. D., Krummel, P. B., Steele, L. P., Fraser,
P. J., Chambers, S. D., and Williams, A. G.: Simulations of atmospheric
methane for Cape Grim, Tasmania, to constrain southeastern Australian methane
emissions, Atmos. Chem. Phys., 15, 305–317,
https://doi.org/10.5194/acp-15-305-2015, 2015.
Lo Vullo, E., Furlani, F., Arduini, J., Giostra, U., Cristofanelli, P., Williams,
M. L., and Maione, M.: Non- Methane Volatile Organic Compounds in the
Background Atmospheres of a Southern European Mountain Site (Mt. Cimone,
Italy): Annual and Seasonal Variability, Aerosol Air Qual. Res., 16,
581–592, https://doi.org/10.4209/aaqr.2015.05.0364, 2016a.
Lo Vullo, E., Furlani, F., Arduini, J., Giostra, U., Graziosi, F.,
Cristofanelli, P., Williams, M. L., and Maione, M.: Anthropogenic non-methane
volatile hydrocarbons at Mt. Cimone (2165 m a.s.l, Italy): Impact of sources
and transport on atmospheric composition, Atmos. Environ., 140, 395–440,
https://doi.org/10.1016/j.atmosenv.2016.05.060, 2016b.
Lunt, M. F., Rigby, M., Ganesan, A. L., Manning, A. J., Prinn, R. G.,
O'Doherty, S., Muhle, J., Harth, C. M., Salameh, P. K., Arnold, T., Weiss, R.
F., Saito, T., Yokouchi, Y., Krummel, P. B., Steele, L. P., Fraser, P. J.,
Li, S., Park, S., Reimann, S., Vollmer, M. K., Lunder, C., Hermansen, O.,
Schmidbauer, N., Maione, M., Young, D., and Simmonds, P. G.: Reconciling
reported and unreported HFC emissions with atmospheric observations, P.
Natl. Acad. Sci. USA, 112, 5927–5931, https://doi.org/10.1073/pnas.1420247112, 2015.
Lunt, M. F., Rigby, M., Ganesan, A. L., and Manning, A. J.: Estimation of
trace gas fluxes with objectively determined basis functions using
reversible-jump Markov chain Monte Carlo, Geosci. Model Dev., 9, 3213–3229,
https://doi.org/10.5194/gmd-9-3213-2016, 2016.
MacFarling-Meure, C., Etheridge, D., Trudinger, C., Steele, P.,
Langenfelds, R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome
CO2, CH4, and N2O ice core records extended to 2000
years BP, Geophys. Res. Lett., 33, L14810, https://doi.org/10.1029/2006GL026152, 2006.
Mahowald, N. M., Prinn, R. G., and Rasch, P. J.: Deducing CCl3F emissions
using an inverse method and chemical transport models with assimilated winds,
J. Geophys. Res., 102, 28153–28168, 1997.
Maione, M., Giostra, U., Arduini, J., Furlani, F., Graziosi, F., Lo
Vullo, E., and Bonasoni, P.: Ten years of continuous observations of
stratospheric ozone depleting gases at Monte Cimone (Italy) – Comments on
the effectiveness of the Montreal Protocol from a regional perspective, Sci.
Total Environ., 445–446, 155–164, 2013.
Maione, M., Graziosi, F., Arduini, J., Furlani, F., Giostra, U., Blake, D.
R., Bonasoni, P., Fang, X., Montzka, S. A., O'Doherty, S. J., Reimann, S.,
Stohl, A., and Vollmer, M. K.: Estimates of European emissions of methyl
chloroform using a Bayesian inversion method, Atmos. Chem. Phys., 14,
9755–9770, https://doi.org/10.5194/acp-14-9755-2014, 2014.
Manning, A., O'Doherty, S., Jones, A. R., Simmonds, P. G., and
Derwent, R. G.: Estimating UK methane and nitrous oxide emissions from 1990
to 2007 using an inversion modeling approach, J. Geophys. Res., 116,
D02305, https://doi.org/10.1029/2010JD014763, 2011.
Manning, M. R., Lowe, D. C., Moss, R. C., Bodeker, G. E., and Allan, W.: Short term
variations in the oxidizing power of the atmosphere, Nature, 436,
1001–1004, 2005.
McCulloch, A. and Midgley, P.: The history of methyl chloroform
emissions: 1951–2000, Atmos. Environ., 35, 5311–5319, 2001.
McNorton, J., Chipperfield, M. P., Gloor, M., Wilson, C., Feng, W., Hayman,
G. D., Rigby, M., Krummel, P. B., O'Doherty, S., Prinn, R. G., Weiss, R. F.,
Young, D., Dlugokencky, E., and Montzka, S. A.: Role of OH variability in the
stalling of the global atmospheric CH4 growth rate from 1999 to 2006,
Atmos. Chem. Phys., 16, 7943–7956, https://doi.org/10.5194/acp-16-7943-2016,
2016.
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N.,
Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C.
M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I.
G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S.,
Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.:
Historical greenhouse gas concentrations for climate modelling (CMIP6),
Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017,
2017.
Meirink, J. F., Bergamaschi, P., and Krol, M. C.: Four-dimensional
variational data assimilation for inverse modelling of atmospheric methane
emissions: method and comparison with synthesis inversion, Atmos. Chem.
Phys., 8, 6341–6353, https://doi.org/10.5194/acp-8-6341-2008, 2008.
Miller, B. R., Weiss, R. F., Prinn, R. G., Huang, J., and Fraser, P. J.: Atmospheric
trend and lifetime of chlorodifluoromethane (HCFC-22) and the global
tropospheric OH concentration, J. Geophys. Res., 103, 13237–13248, 1998.
Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R.,
Mühle, J., and Simmonds, P.: Medusa: a sample preconcentration and GC-MSD
system for in situ measurements of atmospheric trace halocarbons,
hydrocarbons and sulfur compounds, Anal. Chem., 80, 1536–1545, 2008.
Miller, B. R., Rigby, M., Kuijpers, L. J. M., Krummel, P. B., Steele, L. P.,
Leist, M., Fraser, P. J., McCulloch, A., Harth, C., Salameh, P., Mühle, J.,
Weiss, R. F., Prinn, R. G., Wang, R. H. J., O'Doherty, S., Greally, B. R.,
and Simmonds, P. G.: HFC-23 (CHF3) emission trend response to HCFC-22
(CHClF2) production and recent HFC-23 emission abatement measures,
Atmos. Chem. Phys., 10, 7875–7890, https://doi.org/10.5194/acp-10-7875-2010,
2010.
Mohn, J., Guggenheim, C., Tuzson, B., Vollmer, M. K., Toyoda, S., Yoshida,
N., and Emmenegger, L.: A liquid nitrogen-free preconcentration unit for
measurements of ambient N2O isotopomers by QCLAS, Atmos. Meas. Tech.,
3, 609–618, https://doi.org/10.5194/amt-3-609-2010, 2010.
Mohn, J., Wolf, B., Toyoda, S., Lin, C.-T., Liang, M.-C., Brüggemann,
N., Wissel, H., Steiker, A. E., Dyckmans, J., Szwec, L., Ostrom, N. E.,
Casciotti, K. L., Forbes, M., Giesemann, A., Well, R., Doucett, R. R.,
Yarnes, C. T., Ridley, A. R., Kaiser, J., and Yoshida, N., Interlaboratory
assessment of nitrous oxide isotopomer analysis by isotope ratio mass
spectrometry and laser spectroscopy: current status and perspectives. Rapid
Commun. Mass Spectrom., 28, 1995–2007, https://doi.org/10.1002/rcm.6982, 2014.
Montzka, S. A., Spivakovsky, C. M., Butler, J. H., Elkins, J. W., Lock, L. T.,
and Mondeel, D. J.: New observational constraints on atmospheric hydroxyl on
global and hemispheric scales, Science, 288, 500–503, 2000.
Montzka, S. A., Reimann, S., Engel, A., Krüger, K., O'Doherty, S.,
Sturges, W. T., Blake, D., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K.,
Kreher, K., Kurylo, M. J., Mellouki, A., Miller, J., Nielsen, O.-J.,
Orkin, V. L., Prinn, R. G., Rhew, R., Santee, M. L., Stohl, A., and Verdonik, D.: Ozone-Depleting
Substances (ODSs) and Related Chemicals, Chapter 1, in: Scientific
Assessment of Ozone Depletion: 2010, World Meteorological Organization,
Geneva, Switzerland, 2011a.
Montzka, S., Krol, M., Dlugokencky, E., Hall, B., Jockel, P., and
Lelieveld, J.: Small interannual variability of global atmospheric hydroxyl,
Science, 331, 67–69, https://doi.org/10.1126/science.1197640, 2011b.
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S.,
Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, D. J., Rigby, M.,
Manning, A. J., Hu, L., Moore, F., Miller, B. R., and Elkins, J. W.: A persistent and
unexpected increase in global emissions of ozone-depleting CFC-11, Nature,
557, 413–417, https://doi.org/10.1038/s41586-018-0106-2, 2018, 2018.
Mühle, J., Huang, J., Weiss, R. F., Prinn, R. G., Miller, B. R., Salameh,
P. K., Harth, C. M., Fraser, P. J., Porter, L. W., Greally, B. R., O'Doherty,
S., Simmonds, P. G., Krummel, P. B., and Steele, L. P.: Sulfuryl Fluoride in
the Global Atmosphere, J. Geophys. Res., 114, D05306,
https://doi.org/10.1029/2008JD011162, 2009.
Mühle, J., Ganesan, A. L., Miller, B. R., Salameh, P. K., Harth, C. M.,
Greally, B. R., Rigby, M., Porter, L. W., Steele, L. P., Trudinger, C. M.,
Krummel, P. B., O'Doherty, S., Fraser, P. J., Simmonds, P. G., Prinn, R. G.,
and Weiss, R. F.: Perfluorocarbons in the global atmosphere:
tetrafluoromethane, hexafluoroethane, and octafluoropropane, Atmos. Chem.
Phys., 10, 5145–5164, https://doi.org/10.5194/acp-10-5145-2010, 2010.
Mulquiney, J. E., Taylor, J. A., Jakeman, A. J., Norton, J. P., and Prinn, R.
G.: A new inverse method for trace gas flux estimation, 2. Application to
tropospheric CFCl3 fluxes, J. Geophys. Res., 103, 1429–1442, 1998.
Nevison, C. D., Dlugokencky, E., Dutton, G., Elkins, J. W., Fraser, P., Hall,
B., Krummel, P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele,
L. P., and Weiss, R. F.: Exploring causes of interannual variability in the
seasonal cycles of tropospheric nitrous oxide, Atmos. Chem. Phys., 11,
3713–3730, https://doi.org/10.5194/acp-11-3713-2011, 2011.
Obersteiner, F., Bönisch, H., and Engel, A.: An automated gas
chromatography time-of-flight mass spectrometry instrument for the
quantitative analysis of halocarbons in air, Atmos. Meas. Tech., 9, 179–194,
https://doi.org/10.5194/amt-9-179-2016, 2016.
O'Doherty, S., Simmonds, P., Cunnold, D., Wang, R. H. J., Sturrock, G. A.,
Fraser, P. J., Ryall, D., Derwent, R. G., Weiss, R. F., Salameh, P., Miller,
B. R., and Prinn, R. G.: In Situ Chloroform Measurements at AGAGE Atmospheric
Research Stations from 1994–1998, J. Geophys. Res., 106, 20429–20444, 2001.
O'Doherty, S., Cunnold, D. M., Manning, A., Miller, B. R., Wang, R. H.,
Krummel, P. B., Fraser, P. J., Simmonds, P. G., McCulloch, A., Weiss, R. F.,
Salameh, P. Porter, L. W., Prinn, R. G., Huang, J., Sturrock, G., Ryall, D.,
Derwent, R. G., and Montzka, S. A.: Rapid growth of hydrofluorocarbon 134a
and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global
Atmospheric Gases Experiment (AGAGE) observations at Cape Grim Tasmania, and
Mace Head, Ireland, J. Geophys. Res.,109, D06310,
https://doi.org/10.1029/2003JD004277, 2004.
O'Doherty, S., Cunnold, D. M., Miller, B. R., Mühle, J.,
McCulloch, A., Simmonds, P. G., Manning, A. J., Reimann, S., Vollmer, M. K.,
Greally, B. R., Prinn, R. G., Fraser, P. J., Steele, L. P., Krummel, P. B.,
Dunse, B. L., Porter, L. W., Lunder, C. R., Schmidbauer, N.,. Hermansen, O.,
Salameh, P. K., Harth, C. M., Wang, R. H. J., and Weiss, R. F.: Global and
regional emissions of HFC-125 (CHF2CF3) from in situ and air
archive atmospheric observations at AGAGE and SOGE observatories, J. Geophys.
Res., 114, D23304, https://doi.org/10.1029/2009JD012184, 2009.
O'Doherty, S., Rigby, M., Mühle, J., Ivy, D. J., Miller, B. R., Young, D.,
Simmonds, P. G., Reimann, S., Vollmer, M. K., Krummel, P. B., Fraser, P. J.,
Steele, L. P., Dunse, B., Salameh, P. K., Harth, C. M., Arnold, T., Weiss, R.
F., Kim, J., Park, S., Li, S., Lunder, C., Hermansen, O., Schmidbauer, N.,
Zhou, L. X., Yao, B., Wang, R. H. J., Manning, A. J., and Prinn, R. G.:
Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2)
from in situ and air archive atmospheric observations, Atmos. Chem. Phys.,
14, 9249–9258, https://doi.org/10.5194/acp-14-9249-2014, 2014.
Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann,
D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K.,
Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R.,
Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G.,
Rigby, M., Saito, R., and Wilson, C.: TransCom model simulations of CH4 and
related species: linking transport, surface flux and chemical loss with CH4
variability in the troposphere and lower stratosphere, Atmos. Chem. Phys.,
11, 12813–12837, https://doi.org/10.5194/acp-11-12813-2011, 2011.
Patra, P. K., Krol, M. C., Montzka, S. A., Arnold, T., Atlas, E. L.,
Lintner, B. R., Stephens, B. B., Xiang, B., Elkins, J. W., Fraser, P. J.,
Ghosh, A., Hintsa, E. J., Hurst, D. F., Ishijima, K., Krummel, P. B., Miller,
B. R., Miyazaki, K., Moore, F. L., Mühle, J., O'Doherty, S., Prinn, R.
G., Steele, L. P., Takigawa, M., Wang, H. J., Weiss, R. F., Wofsy, S. C., and
Young, D.: Observational evidence for interhemispheric hydroxyl-radical
parity, Nature, 513, 219–223, https://doi.org/10.1038/nature13721, 2014.
Potter, K. E., Ono, S., and Prinn, R. G.: Fully automated, high-precision
instrumentation for the isotopic analysis of tropospheric N2O using
continuous flow isotope ratio mass spectrometry, Rapid Commun. Mass. Sp., 27,
1723–1728, https://doi.org/10.1002/rcm.662, 2013.
Prinn, R. G.: Measurement equation for trace chemicals in fluids and solution
of its inverse, in: Inverse Methods in Global Biogeochemical Cycles, edited
by: Kasibhatla, P., Heimann, M., Rayner P., Mahowald, N., Prinn, R. G., and
Hartley, D. E., Geophysical Monograph, 114, American Geophysical Union,
Washington DC, 3–18, 2000.
Prinn, R. G., Simmonds, P. G., Rasmussen, R. A., Rosen, R. D., Alyea, F. N.,
Cardelino, C. A., Crawford, A. J., Cunnold, D. M., Fraser, P. J., and
Lovelock, J. E.: The Atmospheric Lifetime Experiment, I: Introduction,
Instrumentation and Overview, J. Geophys. Res., 88, 8353–8367, 1983a.
Prinn, R. G., Rasmussen, R. A., Simmonds, P. G., Alyea, F. N., Cunnold, D.
M., Lane, B. C., Cardelino, C. A., and Crawford, A. J.: The Atmospheric
Lifetime Experiment, 5: results for CH3CCl3 based on three years of
data, J. Geophys. Res., 88, 8415–8426, 1983b.
Prinn, R. G., Cunnold, D. M., Rasmussen, R., Simmonds, P. G., Alyea, F. N.,
Crawford, A., Fraser, P. J., and Rosen, R.: Atmospheric trends in
methylchloroform and the global average for the hydroxyl radical, Science,
238, 945–950, 1987.
Prinn, R. G., Cunnold, D. M., Simmonds, P. G., Alyea, F. N., Boldi, R.,
Crawford, A., Fraser, P. J., Gutzler, D., Hartley, D. E., Rosen, R., and
Rasmussen, R.: Global average concentration and trend for hydroxyl radicals
deduced from ALE/GAGE trichloroethane (methyl chloroform) data for
1978–1990, J. Geophys. Res., 97, 2445–2461, 1992.
Prinn, R. G., Weiss, R. F., Miller, B. R., Huang, J., Alyea, F. N., Cunnold,
D. M., Fraser, P. J., Hartley, D. E., and Simmonds, P. G.: Atmospheric trends
and lifetime of CH3CCl3 and global OH concentrations, Science,
269, 187–192, 1995.
Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmonds, P. G., Cunnold, D. M.,
Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R.
H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P.
M., and McCulloch, A.: A history of chemically and radiatively important
gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 115,
17751–17792, 2000.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J.,
Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang,
R. H. J., Porter, L., and Miller, B. R.: Evidence for substantial variations
of atmospheric hydroxyl radicals in the past two decades, Science, 292,
1882–1888, 2001, Correction, Science, 293, p. 1054, 2001.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J.,
Simmonds, P. G., McCulloch, A., Harth, C., Reimann, S., Salameh, P.,
O'Doherty, S., Wang, R. H. J., Porter, L., Miller, B. R., and Krummel, P.:
Evidence for variability of atmospheric hydroxyl radicals over the past
quarter century, Geophys. Res. Lett., 32, L07809, https://doi.org/10.1029/2004GL022228,
2005.
Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., Fraser, P. J., Ganesan,
A. L., Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li,
S., Loh, Z. M., Lunder, C. R., Maione, M., Manning, A. J., Miller, B. R.,
Mitrevski, B., Mühle, J., O'Doherty, S., Park, S., Reimann, S., Rigby,
M., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P., Vollmer, M.
K., Wang, R. H., and Young, D.: The ALE/GAGE/AGAGE Network (DB 1001),
http://cdiac.ess-dive.lbl.gov/ndps/alegage.html
(https://doi.org/10.3334/CDIAC/atg.db1001), last access: June 2018.
Rasch, P. J., Mahowald, N. M., and Eaton, B. E.: Representations of
transport, convection, and the hydrologic cycle in chemical transport models:
Implications for the modeling of short-lived and soluble species, J. Geophys.
Res., 102, 28127–28138, 1997.
Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous Oxide
(N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st
Century, Science, 27, 1–4, https://doi.org/10.1126/science.1176985, 2009.
Reimann, S., Manning, A. J., Simmonds, P. G., Cunnold, D. M., Wang, H. J.,
Li, J., McCulloch, A., Prinn, R. G., Huang, J., Weiss, R. F., Fraser, P. J.,
O'Doherty, S., Greally, B. R., Stemmler, K., Hill, M., and Folini, D.:
Assessment of European methyl chloroform emissions by analysis of long-term
measurements, Nature, 433, 506–508, 2005.
Rhew, R. C. and Happell, J. D.: The atmospheric partial lifetime of carbon
tetrachloride with respect to the global soil sink: CCl4 Soil Sink and
Partial Lifetime, Geophys. Res. Lett., 43, 2889–2895,
https://doi.org/10.1002/2016GL067839, 2016.
Rigby, M., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Langenfelds, R. L.,
Huang, J., Cunnold, D. M., Steele, L. P., Krummel, P. B., Weiss, R. F.,
O'Doherty, S., Salameh, P. K., Wang, H. J., Harth, C. M., Mühle, J., and
Porter, L. W.: Renewed growth of atmospheric methane, Geophys. Res. Lett.,
35, L22805, https://doi.org/10.1029/2008GL036037, 2008.
Rigby, M., Mühle, J., Miller, B. R., Prinn, R. G., Krummel, P. B., Steele,
L. P., Fraser, P. J., Salameh, P. K., Harth, C. M., Weiss, R. F., Greally, B.
R., O'Doherty, S., Simmonds, P. G., Vollmer, M. K., Reimann, S., Kim, J.,
Kim, K.-R., Wang, H. J., Olivier, J. G. J., Dlugokencky, E. J., Dutton, G.
S., Hall, B. D., and Elkins, J. W.: History of atmospheric SF6 from 1973
to 2008, Atmos. Chem. Phys., 10, 10305–10320,
https://doi.org/10.5194/acp-10-10305-2010, 2010.
Rigby, M., Manning, A. J., and Prinn, R. G.: Inversion of long-lived trace
gas emissions using combined Eulerian and Lagrangian chemical transport
models, Atmos. Chem. Phys., 11, 9887–9898,
https://doi.org/10.5194/acp-11-9887-2011, 2011.
Rigby, M., Manning, A. J., and Prinn, R. G.: The value of high-frequency,
high-precision methane isotopologue measurements for source and sink
estimation, J. Geophys. Res.-Atmos., 117, D12312,
https://doi.org/10.1029/2011JD017384, 2012.
Rigby, M., Prinn, R. G., O'Doherty, S., Montzka, S. A., McCulloch, A., Harth,
C. M., Mühle, J., Salameh, P. K., Weiss, R. F., Young, D., Simmonds, P. G.,
Hall, B. D., Dutton, G. S., Nance, D., Mondeel, D. J., Elkins, J. W.,
Krummel, P. B., Steele, L. P., and Fraser, P. J.: Re-evaluation of the
lifetimes of the major CFCs and CH3CCl3 using atmospheric trends,
Atmos. Chem. Phys., 13, 2691–2702, https://doi.org/10.5194/acp-13-2691-2013,
2013.
Rigby, M., Prinn, R. G., O'Doherty, S., Miller, B. R., Ivy, D., Muhle, J.,
Harth, C. M., Salameh, P. K., Arnold, T., Weiss, R. F., Krummel, P. B.,
Steele, L. P., Fraser, P. J., Young, D., and Simmonds, P. G.: Recent and
future trends in synthetic greenhouse gas radiative forcing, Geophys. Res.
Letts., 41, 2623–2630, https://doi.org/10.1002/2013GL059099, 2014.
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D.,
O'Doherty, S, Lunt, M., Ganesan, A. L., Manning, A., Simmonds, P., Salameh,
P. K., Harth, C. M., Muhle, J., Weiss, R. F., Fraser, P. J., Steele, L. P.,
Krummel, P. B., McCulloch, A., and Park, S.: The role of atmospheric
oxidation in recent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377,
https://doi.org/10.1073/pnas.1616426114, 2017.
Rödenbeck, C., Gerbig, C., Trusilova, K., and Heimann, M.: A two-step
scheme for high-resolution regional atmospheric trace gas inversions based on
independent models, Atmos. Chem. Phys., 9, 5331–5342,
https://doi.org/10.5194/acp-9-5331-2009, 2009.
Ryall, D. B., Maryon, R. H., Derwent, R. G., and Simmonds, P. G.: Modelling
long-range transport of CFCs to Mace Head, Ireland, Q. J. Roy. Meteor. Soc.,
124, 417–446, 1998.
Ryall, D. B., Derwent, R. G., Manning, A. J., Simmonds, P. G., and
O'Doherty,S.: Estimating source regions of European emissions of trace gases
from observations at Mace Head, Atmos. Environ., 35, 2507–2523, 2001.
Saikawa, E., Rigby, M., Prinn, R. G., Montzka, S. A., Miller, B. R.,
Kuijpers, L. J. M., Fraser, P. J. B., Vollmer, M. K., Saito, T., Yokouchi,
Y., Harth, C. M., Mühle, J., Weiss, R. F., Salameh, P. K., Kim, J., Li, S.,
Park, S., Kim, K.-R., Young, D., O'Doherty, S., Simmonds, P. G., McCulloch,
A., Krummel, P. B., Steele, L. P., Lunder, C., Hermansen, O., Maione, M.,
Arduini, J., Yao, B., Zhou, L. X., Wang, H. J., Elkins, J. W., and Hall, B.:
Global and regional emission estimates for HCFC-22, Atmos. Chem. Phys., 12,
10033–10050, https://doi.org/10.5194/acp-12-10033-2012, 2012.
Saikawa, E., Prinn, R. G., Dlugokencky, E., Ishijima, K., Dutton, G. S.,
Hall, B. D., Langenfelds, R., Tohjima, Y., Machida, T., Manizza, M., Rigby,
M., O'Doherty, S., Patra, P. K., Harth, C. M., Weiss, R. F., Krummel, P. B.,
van der Schoot, M., Fraser, P. J., Steele, L. P., Aoki, S., Nakazawa, T., and
Elkins, J. W.: Global and regional emissions estimates for N2O,
Atmos. Chem. Phys., 14, 4617–4641, https://doi.org/10.5194/acp-14-4617-2014,
2014a.
Saikawa, E., Rigby, M., Prinn, R. G., Montzka, S. A., Miller, B. R.,
Kuijpers, L. J. M., Fraser, P. J. B., Vollmer, M. K., Saito, T., Yokouchi,
Y., Harth, C. M., Mühle, J., Weiss, R. F., Salameh, P. K., Kim, J., Li, S.,
Park, S., Kim, K.-R., Young, D., O'Doherty, S., Simmonds, P. G., McCulloch,
A., Krummel, P. B., Steele, L. P., Lunder, C., Hermansen, O., Maione, M.,
Arduini, J., Yao, B., Zhou, L. X., Wang, H. J., Elkins, J. W., and Hall, B.:
Corrigendum to “Global and regional emission estimates for HCFC-22”, Atmos.
Chem. Phys., 12, 10033–10050, 2012, Atmos. Chem. Phys., 14, 4857–4858,
https://doi.org/10.5194/acp-14-4857-2014, 2014b.
Saito, R., Patra, P. K., Sweeney, C., Machida, T., Krol, M., Houweling, S.,
Bousquet, P., Agusti-Panareda, A., Belikov, D., Bergmann, D., Bian, H.,
Cameron-Smith, P., Chipperfield, M. P., Fortems-Cheiney, A., Fraser, A.,
Gatti, L. V., Gloor, E., Hess, P., Kawa, S. R., Law, R. M., Locatelli, R.,
Loh, Z., Maksyutov, S., Meng, L., Miller, J. B., Palmer, P. I., Prinn, R. G.,
Rigby, M., and Wilson, C.: TransCom model simulations of methane: Comparison
of vertical profiles with aircraft measurements, J. Geophys. Res., 118,
3891–3904, https://doi.org/10.1002/jgrd.50380, 2013.
Saito, T., Fang, X., Stohl, A., Yokouchi, Y., Zeng, J., Fukuyama, Y., and
Mukai, H.: Extraordinary halocarbon emissions initiated by the 2011 Tohoku
earthquake, Geophys. Res. Lett., 42, 2500–2507,
https://doi.org/10.1002/2014gl062814, 2015.
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.
G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S.,
Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe,
M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford,
G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C.,
Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim,
H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli,
R., Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik, V.,
O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S.,
Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Riley, W. J., Saito, M.,
Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Takizawa, A.,
Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss,
R., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y.,
Zhang, B., Zhang, Z., and Zhu, Q.: Variability and quasi-decadal changes in
the methane budget over the period 2000–2012, Atmos. Chem. Phys., 17,
11135–11161, https://doi.org/10.5194/acp-17-11135-2017, 2017.
Schoenenberger, F., Vollmer, M. K., Rigby, M., Hill, M., Fraser, P. J.,
Krummel, P. B., Langenfelds, R. L., Rhee, T. S., Peter, T., and Reimann, S.:
First observations, trends, and emissions of HCFC-31 (CH2ClF) in the
global atmosphere, Geophys. Res. Lett., 42, 7817–7824,
https://doi.org/10.1002/2015gl064709, 2015.
Sherry, D., McCulloch, A., Liang, Q., Reimann, S., and Newman, P. A.: Current
sources of carbon tetrachloride (CCl4) in our atmosphere, Environ.
Res. Lett., 13, 024004, https://doi.org/10.1088/1748-9326/aa9c87, 2017.
Simmonds, P. G., O'Doherty, S., Nickless, G., Sturrock, G. A., Swaby, R.,
Knight, R., Picketts, J., Woffendin, G., and Smith, R.: Automated gas
chromatograph/Mass spectrometer for routine atmospheric field measurements of
the CFC replacement compounds, the hydrofluorocarbons and
hydrochlorofluorocarbons, Anal. Chem., 67, 717–723,
https://doi.org/10.1021/Ac00100a005, 1995.
Simmonds, P. G., Manning, A. J., Derwent, R. G., Ciais, P., Ramonet, M.,
Kazan, V., and Ryall, D.: A burning question. Can recent growth rate
anomalies in the greenhouse gases be attributed to large-scale biomass
burning events?, Atmos. Environ., 39, 2513–2517,
https://doi.org/10.1016/j.atmosenv.2005.02.018, 2005.
Simmonds, P. G., Manning, A. J., Athanassiadou, M., Scaife, A. A., Derwent,
R. G., O'Doherty, S., Harth, C. M., Weiss, R. F., G. S., Dutton, Hall, B. D.,
Sweeney, C., and Elkins, J. W.: Interannual fluctuations in the seasonal
cycle of nitrous oxide and chlorofluorocarbons due to the Brewer-Dobson
circulation, J. Geophys. Res., 118, 10694–10706, 2013.
Simmonds, P. G., Derwent, R. G., Manning, A. J., McCulloch, A., and O'Doherty,
S.: USA emissions estimates of CH3CHF2, CH2FCF3,
CH3CF3, and CH2F2 based on in situ observations at
Mace Head, Atmos. Environ., 104, 27–38,
https://doi.org/10.1016/j.atmosenv.2015.01.010, 2015.
Simmonds, P. G., Rigby, M., Manning, A. J., Lunt, M. F., O'Doherty, S.,
McCulloch, A., Fraser, P. J., Henne, S., Vollmer, M. K., Mühle, J., Weiss,
R. F., Salameh, P. K., Young, D., Reimann, S., Wenger, A., Arnold, T., Harth,
C. M., Krummel, P. B., Steele, L. P., Dunse, B. L., Miller, B. R., Lunder, C.
R., Hermansen, O., Schmidbauer, N., Saito, T., Yokouchi, Y., Park, S., Li,
S., Yao, B., Zhou, L. X., Arduini, J., Maione, M., Wang, R. H. J., Ivy, D.,
and Prinn, R. G.: Global and regional emissions estimates of
1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive
observations, Atmos. Chem. Phys., 16, 365–382,
https://doi.org/10.5194/acp-16-365-2016, 2016.
Simmonds, P. G., Rigby, M., McCulloch, A., O'Doherty, S., Young, D., Mühle,
J., Krummel, P. B., Steele, P., Fraser, P. J., Manning, A. J., Weiss, R. F.,
Salameh, P. K., Harth, C. M., Wang, R. H. J., and Prinn, R. G.: Changing
trends and emissions of hydrochlorofluorocarbons (HCFCs) and their
hydrofluorocarbon (HFCs) replacements, Atmos. Chem. Phys., 17, 4641–4655,
https://doi.org/10.5194/acp-17-4641-2017, 2017.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: update and
evaluation, J. Geophys. Res., 105, 8931–8979, 2000.
Stohl, A., Seibert, P., Arduini, J., Eckhardt, S., Fraser, P., Greally, B.
R., Lunder, C., Maione, M., Mühle, J., O'Doherty, S., Prinn, R. G.,
Reimann, S., Saito, T., Schmidbauer, N., Simmonds, P. G., Vollmer, M. K.,
Weiss, R. F., and Yokouchi, Y.: An analytical inversion method for
determining regional and global emissions of greenhouse gases: Sensitivity
studies and application to halocarbons, Atmos. Chem. Phys., 9, 1597–1620,
https://doi.org/10.5194/acp-9-1597-2009, 2009.
Stohl, A., Kim, J., Li, S., O'Doherty, S., Mühle, J., Salameh, P. K.,
Saito, T., Vollmer, M. K., Wan, D., Weiss, R. F., Yao, B., Yokouchi, Y., and
Zhou, L. X.: Hydrochlorofluorocarbon and hydrofluorocarbon emissions in East
Asia determined by inverse modeling, Atmos. Chem. Phys., 10, 3545–3560,
https://doi.org/10.5194/acp-10-3545-2010, 2010.
Tarantola, A.: Inverse problem theory and methods for model parameter
estimation, Philadelphia, USA, Society for Industrial and Applied
Mathematics, 2005.
Thompson R. L., Dlugokencky, E., Chevallier, F., Ciais, P., Dutton, G.,
Elkins, J. W., Langenfelds, R. L., Prinn, R. G., Weiss, R. F., Tohjima, Y.,
Krummel, P. B., Fraser, P., and Steele, L. P.: Inter-annual variability in
tropospheric nitrous oxide, Geophys. Res. Lett., 40, 4426–4431,
https://doi.org/10.1002/grl.50721, 2013.
Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R.
L., Prinn, R. G., Weiss, R. F., Tohjima, Y., Nakazawa, T., Krummel, P. B.,
Steele, L. P., Fraser, P., O'Doherty, S., Ishijima, K., and Aoki, S.: Nitrous
oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos.
Chem. Phys., 14, 1801–1817, https://doi.org/10.5194/acp-14-1801-2014, 2014a.
Thompson, R. L., Patra, P. K., Ishijima, K., Saikawa, E., Corazza, M.,
Karstens, U., Wilson, C., Bergamaschi, P., Dlugokencky, E., Sweeney, C.,
Prinn, R. G., Weiss, R. F., O'Doherty, S., Fraser, P. J., Steele, L. P.,
Krummel, P. B., Saunois, M., Chipperfield, M., and Bousquet, P.: TransCom
N2O model inter-comparison – Part 1: Assessing the influence of
transport and surface fluxes on tropospheric N2O variability, Atmos.
Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, 2014b.
Thompson, R. L., Ishijima, K., Saikawa, E., Corazza, M., Karstens, U., Patra,
P. K., Bergamaschi, P., Chevallier, F., Dlugokencky, E., Prinn, R. G., Weiss,
R. F., O'Doherty, S., Fraser, P. J., Steele, L. P., Krummel, P. B.,
Vermeulen, A., Tohjima, Y., Jordan, A., Haszpra, L., Steinbacher, M., Van der
Laan, S., Aalto, T., Meinhardt, F., Popa, M. E., Moncrieff, J., and Bousquet,
P.: TransCom N2O model inter-comparison – Part 2: Atmospheric
inversion estimates of N2O emissions, Atmos. Chem. Phys., 14,
6177–6194, https://doi.org/10.5194/acp-14-6177-2014, 2014c.
Thompson, R. L., Stohl, A., Zhou, L. X., Dlugokencky, E., Fukuyama, Y.,
Tohjima, Y., Kim, S.-Y., Lee, H., Nisbet, E. G., Fisher, R. E., Lowry, D.,
Weiss, R. F., Prinn, R. G., O'Doherty, S., Young, D., and White, J. W. C.:
Methane emissions in East Asia for 2000–2011 estimated using an atmospheric
Bayesian inversion, J. Geophys. Res.-Atmos., 120, 4352–4369,
https://doi.org/10.1002/2014JD022394, 2015.
Trudinger, C. M., Fraser, P. J., Etheridge, D. M., Sturges, W. T., Vollmer,
M. K., Rigby, M., Martinerie, P., Mühle, J., Worton, D. R., Krummel, P. B.,
Steele, L. P., Miller, B. R., Laube, J., Mani, F. S., Rayner, P. J., Harth,
C. M., Witrant, E., Blunier, T., Schwander, J., O'Doherty, S., and Battle,
M.: Atmospheric abundance and global emissions of perfluorocarbons CF4,
C2F6 and C3F8 since 1800 inferred from ice core, firn, air
archive and in situ measurements, Atmos. Chem. Phys., 16, 11733–11754,
https://doi.org/10.5194/acp-16-11733-2016, 2016.
Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: Ambiguity
in the causes for decadal trends in atmospheric methane and hydroxyl, P.
Natl. Acad. Sci. USA, 114, 5367–5372, https://doi.org/10.1073/pnas.1616020114, 2017.
Vollmer, M. K., Miller, B. R., Rigby, M., Reimann, S., Mühle, J., Krummel,
P. B., O'Doherty, S., Kim, J., Rhee, T. S., Weiss, R. F., Fraser, P. J.,
Simmonds, P. G., Salameh, P. K., Harth, C. M., Wang, R. H. J., Steele, L. P.,
Young, D., Lunder, C. R., Hermansen, O., Ivy, D., Arnold, T., Schmidbauer,
N., Kim, K.-R., Greally, B. R., Hill, M., Leist, M., Wenger, A., and Prinn,
R.G.: Atmospheric histories and global emissions of the anthropogenic
hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa, J.
Geophys. Res., 116, D08304, https://doi.org/10.1029/2010JD015309, 2011.
Vollmer, M. K., Reimann, S., Hill, M., and Brunner, D.: First observations of
the fourth generation synthetic halocarbons HFC-1234yf, HFC-1234ze(E) and
HCFC-1233zd(E) in the atmosphere, Environ. Sci. Technol., 49, 2703–2708,
https://doi.org/10.1021/es505123x, 2015a.
Vollmer, M. K., Rhee, T. S., Rigby, M., Hofstetter, D., Hill, M.,
Schoenenberger, F., and Reimann, S.: Modern inhalation anesthetics: potent
greenhouse gases in the global atmosphere, Geophys. Res. Lett., 42,
1606–1611, https://doi.org/10.1002/2014GL062785, 2015b.
Vollmer, M. K., Rigby, M., Laube, J. C., Henne, S., Rhee, T. S., Gooch, L.
J., Wenger, A., Young, D., Steele, L.P., Langenfelds, R. L., Brenninkmeijer,
C. A. M., Wang, J.-L., Ou-Yang, C.-F., Wyss, S. A., Hill, M., Oram, D. E.,
Krummel, P. B., Schoenenberger, F., Zellweger, C., Fraser, P. J., Sturges, W.
T., O'Doherty, S., and Reimann, S.: Abrupt reversal in emissions and
atmospheric abundance of HCFC-133a (CF3CH2Cl), Geophys. Res.
Lett., 42, 8702–8710, https://doi.org/10.1002/2015gl065846, 2015c.
Vollmer, M. K., Mühle, J., Trudinger, C., Rigby, M., Montzka, S. A.,
Harth, C. M., Miller, B. R., Henne, S., Krummel, P. B., Hall, B. D.,Young,
D., Kim, J., Arduini, J., Wenger, A., Yao, B., Reimann, S., O'Doherty, S.,
Maione, M., Etheridge, D. M., Li, S., Verdonik, D. P., Park, S., Dutton, G.,
Steele, L. P., Lunder, C. R., Rhee, T. S., Hermansen, O., Schmidbauer, N.,
Wang, R. H. J., Hill, M., Salameh, P. K., Langenfelds, R. L., Zhou, L.,
Blunier, T., Schwander, J., Elkins, J. W., Butler, J. H., Simmonds, P. G.,
Weiss, R. F., Prinn, R. G., and Fraser, P. J.: Atmospheric histories and
global emissions of halons H-1211 (CBrClF2), H-1301 (CBrF3), and H-2402
(CBrF2CBrF2), J. Geophys. Res., 121, 3663–3686,
https://doi.org/10.1002/2015jd024488, 2016.
Vollmer, M. K., Young, D., Trudinger, C. M., Mühle, J., Henne, S., Rigby,
M., Park, S., Li, S., Guillevic, M., Mitrevski, B., Harth, C. M., Miller, B.
R., Reimann, S., Yao, B., Steele, L. P., Wyss, S. A., Lunder, C. R., Arduini,
J., McCulloch, A., Wu, S., Rhee, T. S., Wang, R. H. J., Salameh, P. K.,
Hermansen, O., Hill, M., Langenfelds, R. L., Ivy, D., O'Doherty, S., Krummel,
P. B., Maione, M., Etheridge, D. M., Zhou, L., Fraser, P. J., Prinn, R. G.,
Weiss, R. F., and Simmonds, P. G.: Atmospheric histories and emissions of
chlorofluorocarbons CFC-13 (CClF3), SCFC-114 (C2Cl2F4), and
CFC-115 (C2ClF5), Atmos. Chem. Phys., 18, 979–1002,
https://doi.org/10.5194/acp-18-979-2018, 2018.
Waechter, H., Mohn, J., Tuzson, B., Emmenegger, L. and Sigrist, M.:
Determination of N2O isotopomers with quantum cascade laser based
absorption spectroscopy, Opt. Express, 16, 9239–9244, 2008.
Weiss, R. F. and Prinn, R. G.: Quantifying greenhouse-gas emissions from
atmospheric measurements: a critical reality check for climate legislation,
Philos. T. R. Soc. A, 369, 1925–1942,
https://doi.org/10.1098/rsta.2011.0006, 2011.
Weiss, R. F., Mühle, J., Salameh, P. K., and Harth, C. M.: Nitrogen
trifluoride in the global atmosphere, Geophys. Res. Lett., 35, L20821,
https://doi.org/10.1029/2008GL035913, 2008.
Welp, L. R., Keeling, R. F., Weiss, R. F., Paplawsky, W., and Heckman, S.:
Design and performance of a Nafion dryer for continuous operation at
CO2 and CH4 air monitoring sites, Atmos. Meas. Tech., 6,
1217–1226, https://doi.org/10.5194/amt-6-1217-2013, 2013.
Werle, P., Mücke, R., and Slemr, F.: The limits of signal averaging in
atmospheric trace-gas monitoring by tunable diode-laser absorption
spectroscopy (TDLAS), Appl. Phys. B, 57, 131–139, 1993.
Xiang, B., Patra, P. K., Montzka, S. A., Miller, S. M., Elkins, J. W.,
Moore, F., Atlas, E. L., Miller, B. R., Weiss, R. F., Prinn, R. G., and
Wofsy, S. C.: Global Emissions of Refrigerants HCFC-22 and HFC-134a:
Unforeseen Seasonal Contributions, P. Natl. Acad. Sci. USA, 111,
17379–17384, https://doi.org/10.1073/pnas.1417372111, 2014.
Xiao, X., Prinn, R. G., Simmonds, P. G., Steele, L. P., Novelli, P. C.,
Huang, J., Langenfelds, R. L., O'Doherty, S., Krummel, P. B., Fraser, P. J.,
Porter, L. W., Weiss, R. F., Salameh, P., and Wang, R. H. J.: Optimal
estimation of the soil uptake rate of molecular hydrogen from AGAGE and other
measurements, J. Geophys. Res., 112, D07303,
https://doi.org/10.1029/2006JD007241, 2007.
Xiao, X., Prinn, R. G., Fraser, P. J., Simmonds, P. G., Weiss, R. F.,
O'Doherty, S., Miller, B. R., Salameh, P. K., Harth, C. M., Krummel, P. B.,
Porter, L. W., Mühle, J., Greally, B. R., Cunnold, D., Wang, R., Montzka,
S. A., Elkins, J. W., Dutton, G. S., Thompson, T. M., Butler, J. H., Hall, B.
D., Reimann, S., Vollmer, M. K., Stordal, F., Lunder, C., Maione, M.,
Arduini, J., and Yokouchi, Y.: Optimal estimation of the surface fluxes of
methyl chloride using a 3-D global chemical transport model, Atmos. Chem.
Phys., 10, 5515–5533, https://doi.org/10.5194/acp-10-5515-2010, 2010a.
Xiao, X., Prinn, R. G., Fraser, P. J., Weiss, R. F., Simmonds, P. G.,
O'Doherty, S., Miller, B. R., Salameh, P. K., Harth, C. M., Krummel, P. B.,
Golombek, A., Porter, L. W., Butler, J. H., Elkins, J. W., Dutton, G. S.,
Hall, B. D., Steele, L. P., Wang, R. H. J., and Cunnold, D. M.: Atmospheric
three-dimensional inverse modeling of regional industrial emissions and
global oceanic uptake of carbon tetrachloride, Atmos. Chem. Phys., 10,
10421–10434, https://doi.org/10.5194/acp-10-10421-2010, 2010b.
Yao, B, Vollmer, M. K., Xia, L., Zhou, L., Simmonds, P. G., Stordal, F.,
Maione, M., Reimann, S., and O'Doherty, S.: A study of four-year HCFC-22 and
HCFC-142b, in-situ measurements at the Shangdianzi regional background
station in China, Atmos. Environ. 63, 43–49,
https://doi.org/10.1016/j.atmosenv.2012.09.011, 2012a.
Yao, B., Vollmer, M. K., Zhou, L. X., Henne, S., Reimann, S., Li, P. C.,
Wenger, A., and Hill, M.: In-situ measurements of atmospheric
hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) at the Shangdianzi
regional background station, China, Atmos. Chem. Phys., 12, 10181–10193,
https://doi.org/10.5194/acp-12-10181-2012, 2012b.
Yates, E. L., Derwent, R. G., Simmonds, P. G., Greally, B. R., O'Doherty,
S., and Shallcross, D. E.: The seasonal cycles and photochemistry of C2–C5
alkanes at Mace Head, Atmos. Environ., 44, 2705–2713,
https://doi.org/10.1016/j.atmos.env.2010.04.043, 2010.
Yokouchi, Y., Taguchi, S., Saito, T., Tohjima, Y., Tanimoto, H., and Mukai,
H.: High frequency measurements of hfcs at a remote site in east asia and
their implications for chinese emissions, Geophys. Res. Lett., 33, L21814,
https://doi.org/10.1029/2006GL026403, 2006.
Yokouchi, Y., Nojiri, Y., Toom-Sauntry, D., Fraser, P., Inuzuka, Y.,
Tanimoto, H., Nara, H., Murakami R., and Mukai, H.: Long-term variation of
atmospheric methyl iodide and its link to global environmental change,
Geophys. Res. Lett., 39, L23805, https://doi.org/10.29/2012GL053695, 2012.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(4605 KB) - Full-text XML
Short summary
We present the data and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). At high frequency and at multiple sites, AGAGE measures all the important chemicals in the Montreal Protocol for the protection of the ozone layer and the non-carbon-dioxide gases assessed by the Intergovernmental Panel on Climate Change. AGAGE uses these data to estimate sources and sinks of all these gases and has operated since 1978.
We present the data and accomplishments of the multinational global atmospheric measurement...
Altmetrics
Final-revised paper
Preprint