Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2575-2025
https://doi.org/10.5194/essd-17-2575-2025
Data description paper
 | 
13 Jun 2025
Data description paper |  | 13 Jun 2025

Machine-learning-based reconstruction of long-term global terrestrial water storage anomalies from observed, satellite and land-surface model data

Nehar Mandal, Prabal Das, and Kironmala Chanda

Related subject area

Domain: ESSD – Land | Subject: Hydrology
Mapping the world's inland surface waters: an upgrade to the Global Lakes and Wetlands Database (GLWD v2)
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Philippe Bousquet, Josep G. Canadell, Nick Davidson, Meng Ding, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Liangyun Liu, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, Xiao Zhang, and Michele Thieme
Earth Syst. Sci. Data, 17, 2277–2329, https://doi.org/10.5194/essd-17-2277-2025,https://doi.org/10.5194/essd-17-2277-2025, 2025
Short summary
One year of high-frequency monitoring of groundwater physico-chemical parameters in the Weierbach experimental catchment, Luxembourg
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025,https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Discrete global grid system-based flow routing datasets in the Amazon and Yukon basins
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025,https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025,https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary

Cited articles

Ahmad, M. W., Reynolds, J., and Rezgui, Y.: Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees, J. Clean. Prod., 203, 810–821, https://doi.org/10.1016/j.jclepro.2018.08.207, 2018. a, b
Ahmed, A. A., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., and Yang, L.: Hybrid deep learning method for a week-ahead evapotranspiration forecasting, Stoch. Env. Res. Risk A., 36, 831–849, https://doi.org/10.1007/s00477-021-02078-x, 2022. a
Ahmed, M., Sultan, M., Elbayoumi, T., and Tissot, P.: Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks, Remote Sensing, 11, 1769, https://doi.org/10.3390/rs11151769, 2019. a
Alibabaei, K., Gaspar, P. D., and Lima, T. M.: Modeling soil water content and reference evapotranspiration from climate data using deep learning method, Appl. Sci., 11, 5029, https://doi.org/10.3390/app11115029, 2021. a
Ashouri, H., Hsu, K.-L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83, 2015. a
Download
Short summary
Optimal features among hydroclimatic variables and land surface model (LSM) outputs are selected using a novel Bayesian network (BN) approach for simulating terrestrial water storage anomalies (TWSAs). TWSAs are reconstructed (BNML_TWSA) with grid-specific leader models (among four machine learning models) from January 1960 to December 2022 to generate a continuous global gridded dataset. The uncertainty in the reconstructed BNML_TWSA product is also assessed in terms of standard error.
Share
Altmetrics
Final-revised paper
Preprint