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Abstract. Understanding long-term terrestrial water storage (TWS) variations is vital for investigating hydro-
logical extreme events, managing water resources and assessing climate change impacts. However, the lim-
ited data duration from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on mission
(GRACE-FO) poses challenges for comprehensive long-term analysis. In this study, we reconstruct TWS anoma-
lies (TWSAs) for the period from January 1960 to December 2022, thereby filling data gaps between the GRACE
and GRACE-FO missions and generating a complete dataset for the pre-GRACE era. The workflow involves
identifying optimal predictors from land surface model (LSM) outputs, meteorological variables and climatic
indices using a novel Bayesian network (BN) technique for raster-based TWSA simulations. Climate indices,
like the Oceanic Niño Index and Dipole Mode Index, are selected as optimal predictors for a large number of
grid cells globally, along with TWSAs from LSM outputs. The most effective machine learning (ML) algorithms
among convolutional neural network (CNN), support vector regression (SVR), extra trees regressor (ETR) and
stacking ensemble regression (SER) models are evaluated at each grid cell to achieve optimal reproducibility.
Globally, ETR performs best for most of the grid cells; this is also noticed at the river basin scale, particularly for
the Ganga–Brahmaputra–Meghna, Godavari, Krishna, Limpopo and Nile river basins. The simulated TWSAs
(BNML_TWSA) outperformed the TWSAs from LSM outputs when evaluated against GRACE datasets. Im-
provements are particularly noted in river basins such as the Godavari, Krishna, Danube and Amazon, with
median correlation coefficient, Nash–Sutcliffe efficiency, and RMSE values for all grid cells in the Godavari
Basin, India, being 0.927, 0.839 and 63.7 mm, respectively. A comparison with TWSAs reconstructed in recent
studies indicates that the proposed BNML_TWSA outperforms them globally as well as for all of the 11 major
river basins examined. Furthermore, the uncertainty of BNML_TWSA is assessed for each grid cell in terms of
the standard error. Results show smaller standard error magnitudes in grid cells in arid regions compared to other
regions. The presented gridded dataset is published at https://doi.org/10.6084/m9.figshare.25376695 (Mandal
et al., 2024), featuring a spatial resolution of 0.50°× 0.50° and offering global coverage.
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1 Introduction

Terrestrial water storage (TWS) refers to the storage of wa-
ter on or above the surface of the Earth, including hydro-
logical elements such as groundwater, soil moisture, snow,
ice and surface water (Yu et al., 2021; Yang et al., 2021).
The fluctuations in TWS in both space and time have been
comprehensively simulated by employing physically based
land surface models (LSMs) and global hydrological models
(GHMs) (Humphrey et al., 2017; Felfelani et al., 2017; Sun
et al., 2021). These models have significant biases due to in-
herent uncertainty and the inadequate representation of some
physical processes, such as the lack of modeling of human
water resource interventions within LSMs (Bibi et al., 2024).
Furthermore, in snow-dominated basins, LSMs often under-
estimate peak terrestrial water storage anomalies (TWSAs),
whereas GHMs tend to overestimate them. Similarly, in tem-
perate, arid and tropical basins, both model types generally
underestimate TWSA peaks (Bibi et al., 2024), which limits
the application of these model outputs for long-term anal-
yses of climate change impact assessment, water resource
management and hydrological extreme event forecasting.
The Gravity Recovery and Climate Experiment (GRACE)
mission and its successor GRACE Follow-on (GRACE-FO)
have been providing unprecedented accurate measurements
of TWSAs since April 2002 (Mo et al., 2022). These TWSA
observations have been widely used in hydrological studies
to assess the impacts of climate change and human activi-
ties on large-scale water balance, droughts and floods, and
groundwater storage (Rodell et al., 2018). Similar to other
satellite observations, the GRACE mission has data gaps,
such as an 11-month gap between the end of the GRACE
mission in June 2017 and the start of the GRACE-FO mis-
sion in May 2018 as well as an additional few months of data
gap during each mission.

A reliable, long-term, continuous TWSA dataset is imper-
ative for the assessment of basin-scale water balance and lo-
cal hydrological extremes. Different studies have employed
various techniques to reconstruct long-term TWSAs beyond
the GRACE period. In a study by Becker et al. (2011),
the authors integrated spatial patterns of TWS derived from
GRACE data with long-term in situ river level records to
recreate the TWS for the Amazon Basin from 1980 to 2008.
Forootan et al. (2014) developed an autoregressive model
with exogenous variables (ARX), a statistical data-driven
approach, to reconstruct TWSAs for West Africa using the
GRACE dataset; rainfall data from the Tropical Rainfall
Measuring Mission (TRMM); and sea surface temperature
(SST) information spanning the Atlantic, Indian and Pacific
oceans. Ahmed et al. (2019) employed an ARX model to
establish a relationship between GRACE TWS and meteo-
rological variables, as well as vegetation indices. Nie et al.
(2016) utilized the Global Land Data Assimilation System
(GLDAS) products and GRACE-based TWSA data to recon-
struct TWSAs using the water balance approach from 1948

to 2012 over the Amazon Basin. Humphrey et al. (2017) es-
tablished a statistical data-driven model that linked GRACE
TWSAs with deviations in both temperature and precipita-
tion to recreate TWSAs from 1985 to 2015 for the entire
globe.

Machine-learning-based algorithms have gained popular-
ity over the past 2 decades, presenting new opportunities in
hydrology and related fields, including the reconstruction of
TWSAs. Long et al. (2014) made one of the first attempts
to hindcast TWSAs for the period from February 1979 to
September 2012 by developing an artificial neural network
(ANN) model using GRACE data and other in situ modeling
data to study extreme climate events in the Yungui Plateau,
China. Sun et al. (2019) used a deep convolutional neural
network (CNN) with three model architectures to predict the
spatiotemporal variations in TWSAs over India. Similarly,
Li et al. (2020) and Sun et al. (2020) utilized multiple lin-
ear regression (MLR) and neural-network-based models, in
conjunction with ARX, to reconstruct TWSAs globally. Jing
et al. (2020) generated a GRACE-like TWSA prior to the
GRACE period, dating back to 1979, over the Nile Basin us-
ing the Random Forest and eXtreme Gradient Boosting en-
semble learning algorithms. Yu et al. (2021) used three deep
learning models to hindcast TWSAs over Canada from 1972
to 2002 based on land surface model (LSM) output as a pre-
dictor. Satish Kumar et al. (2023) reconstructed GRACE-like
time series of TWSAs from 1960 to 2016 across four river
basins in southern India.

The reconstruction of TWSAs has been a significant area
of research, with studies such as that by Sun et al. (2020)
emphasizing the need to enhance the performance accuracy
of machine learning (ML) and statistical algorithms. Most
global TWSA reconstruction studies primarily employ a sin-
gle ML algorithm to model TWSAs (Sun et al., 2020; Mo
et al., 2022; Li et al., 2020). However, some studies, includ-
ing those by Li et al. (2020) and Sun et al. (2020), also em-
ploy statistical algorithms in conjunction with ML. Conse-
quently, the reliance on a single ML algorithm for each grid
cell presents a limitation that needs to be addressed to im-
prove the robustness and accuracy of TWSA reconstructions.
Different algorithms have varying strengths with respect to
handling the nonlinearities and complexities inherent in re-
gional hydrological systems. Testing multiple ML algorithms
can ensure methodological robustness and help identify the
appropriate approach for TWSA reconstruction.

The ML models used in hydrological studies so far can be
broadly divided into two main categories: single-algorithm
usage and multiple-algorithm usage. Most ML investigations
predominantly belong to a single-algorithm-usage category,
where the performance of a specific algorithm is evaluated
against the baseline performance (Raghavendra and Deka,
2014; Sun et al., 2014; Mo et al., 2022; Khan and Maity,
2020). Other studies compare the performance of different
ML models with the aim of finding the best algorithm, which
performs well across a wide range of situations (Mandal and

Earth Syst. Sci. Data, 17, 2575–2604, 2025 https://doi.org/10.5194/essd-17-2575-2025



N. Mandal et al.: ML-based reconstruction of long-term global TWSAs 2577

Chanda, 2023; Sun et al., 2021). Using a single-algorithm ap-
proach could prove satisfactory when dealing with a compact
research area or multiple study areas with similar hydrocli-
matic characteristics. However, it becomes insignificant for
large study areas, multi-site analysis with different hydro-
climatic conditions and in cases where the relative impor-
tance of predictors can vary spatially. This may greatly af-
fect the final performance of ML models. Previous studies
on grid-cell-scale reconstruction of GRACE TWSAs indicate
that there is no individual algorithm that consistently outper-
forms others across all global basins (Sun et al., 2020, 2021;
Li et al., 2020). Sun et al. (2020) found that a deep neural net-
work model performed better than the other two data-driven
methods for reconstructing TWSAs over global river basins
at a grid cell scale. Mo et al. (2022) employed Bayesian con-
volutional neural networks (BCNNs) to reliably interpolate
the TWSA data gap between GRACE and GRACE-FO glob-
ally. Deep convolutional autoencoders outperform CNNs and
BCNNs when filling the gaps between GRACE and GRACE-
FO globally (Uz et al., 2022). The integrated CNN-based
support vector machine has been found by Kalu et al. (2023)
to outperform other regression models in the Congo Basin,
Africa.

In recent times, a relatively new approach has been
adopted by many studies, wherein the optimal features are
selected before applying a single and/or multiple ML algo-
rithms to evaluate the prediction accuracy (Das and Chanda,
2020; Das et al., 2022). The significance of predictor selec-
tion has been emphasized by several studies, which point out
the inadequacies of current algorithms for identifying effi-
cient or optimal predictors (Mo et al., 2022; Sun et al., 2020;
Li et al., 2020). Sun et al. (2020) specifically raises concerns
about determining which set of predictors or predictor groups
play a more significant role, which is crucial for enhancing
the interpretability and explainability of ML solutions. To the
best of our knowledge, the selection of optimal predictors for
the reconstruction of TWSAs using Bayesian networks is ex-
ercised for the first time in this study, which also highlights
the novelty of the study. Selection of optimal predictors is
not only a methodological novelty but also a critical step to
ensure that the model prioritizes the most relevant and phys-
ically meaningful predictors. This approach reduces noise,
minimizes overfitting and enhances interpretability, making
the final product more scientifically robust and practically
useful (Das and Chanda, 2024).

In the present study on the reconstruction of TWSAs, the
potential of Bayesian networks is utilized for the selection
of optimal predictors from a broad set of inputs compris-
ing observed, satellite and land-surface-based data products.
The input and target datasets are used without prior inter-
polation of intermittent gaps, detrending, deseasoning or de-
composing signals, in order to prevent the introduction of
bias. We applied different ML models to each global grid
cell in this study and selected the most appropriate model for
each grid cell based on their performance to ensure optimal

reproducibility. Furthermore, we conduct the analysis at the
basin scale across 11 global river basins with varied hydrocli-
matic characteristics from six different continents: Amazon,
Danube, Ganga–Brahmaputra–Meghna (GBM), Godavari,
Indus, Krishna, Limpopo, Mississippi, Murray–Darling, Nile
and Zambezi. Among these rivers, the Amazon, GBM and
Mississippi exhibit humid hydrologic characteristics, while
the Nile is semiarid and the Zambezi is semi-humid (Uz
et al., 2022). Furthermore, a diverse range of basin sizes has
been taken into account, spanning from the vast Mississippi
Basin, which covers 2 918 820 km2, to the relatively small
Krishna Basin, with an area of 258 948 km2. The study aims
to achieve three objectives. First, it aims to specifically se-
lect the optimal predictors for TWSAs from a number of
meaningful inputs, including LSM outputs, meteorological
variables and climate indices, for each grid cell, utilizing the
potential of Bayesian networks. Second, it aims to select a
leader model for each grid cell from a number of ML models,
including kernel-based, network-based and ensemble mod-
els, based on their performance. Finally, it aims to simu-
late GRACE-like TWSAs and reconstruct a global TWSA
datasets for the historical period starting from 1960 and in-
cluding the data gap periods of the GRACE and GRACE-FO
missions.

In the rest of the paper, Sect. 2 describes the data used and
the processing of data products. In Sect. 3, the methodologi-
cal details of the predictor section process, the description of
ML algorithms and the overall workflow are presented. The
results and discussions are presented in Sect. 4, followed by
a summary of the conclusions in Sect. 7.

2 Data and processing

The complete set of predictors used in this study includes
TWSA data products from GLDAS LSMs, climate forcing
data (precipitation and temperature) and a number of climate
indices. Brief descriptions of data products used in this study
and their sources are discussed in the subsections below. The
entire period of analysis spans from 1960 to 2022.

2.1 GRACE terrestrial water storage anomalies
(TWSAs)

This study makes use of the Coastline Resolution Improved
version of the GRACE mascon product (RL06.1Mv03)
downloaded from the Jet Propulsion Laboratory (JPL RL06)
website (https://grace.jpl.nasa.gov, last access: 27 May
2023). The JPL RL06 has a 0.5°× 0.5° (latitude× longitude)
spatial resolution; however, it naturally symbolizes 3°× 3°
equal-area caps, which match the mass concentration (mas-
con) functions used to estimate and parameterize the monthly
gravity fields globally (Wiese et al., 2016; Watkins et al.,
2015). Compared to classic solutions that use traditional
spherical harmonic basis functions, mascon solutions offer
significant improvements. Furthermore, mascon solutions do
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not require postprocessing filters to mitigate errors, unlike
spherical harmonics. JPL mascon is employed in this study,
as this dataset is widely utilized and validated in the litera-
ture (Bibi et al., 2024; Scanlon et al., 2021; Watkins et al.,
2015). The GRACE datasets are provided as anomalies with
respect to the 2004 to 2009 mean terrestrial water storage
(TWS). Two missions covered the observation period of the
GRACE dataset: from April 2002 to June 2017, during the
GRACE mission, and from June 2018 to the present day,
under the GRACE-FO mission, with an 11-month gap be-
tween the two missions. Additionally, there are intermittent
data gaps within each mission. In this study, short data gaps
(1–2 months) are also filled using trained ML models, un-
like some previous studies where the data from neighboring
months are used to fill in these gaps (Mo et al., 2022; Yang
et al., 2021).

2.2 GLDAS-simulated TWS

GLDAS-LSM-simulated TWS data from two different mod-
els, the Catchment Land Surface Model (CLSM) (Li et al.,
2019) and NOAH (Rodell et al., 2004), are used in
this study. Both LSM data products are retrieved from
GES DISC, a NASA Goddard Earth Sciences Data and
Information Services Center (https://disc.gsfc.nasa.gov, last
access: 28 July 2023). CLSM GLDAS CLSM025 v2.0
covers the period from January 1948 to December 2014,
while GLDAS CLSM025 v2.2 spans from February 2003
to the present; variables in these versions include TWS as
an output (Sun et al., 2021). On the other hand, NOAH
(GLDAS_NOAH025) TWS is estimated as an aggregate of
soil moisture content (in all four layers, ranging in depth
from 0 to 200 cm), canopy water storage and snow depth wa-
ter equivalent. These three variables are available from Jan-
uary 1948 to the present and consist of two data versions
(GLDAS_NOAH025 v2.0 and GLDAS_NOAH025 v2.1).
The spatiotemporal resolution and other details of all data
products used in this study are presented in Table 1. To ob-
tain the GLDAS TWSAs, the long-term TWS mean from
January 2004 to December 2009 is subtracted from the cor-
responding GLDAS TWS data (Sun et al., 2021). The cor-
responding TWSAs from NOAH and CLSM are denoted by
NTWSA and CTWSA, respectively. To hindcast the TWSAs
for the period from January 1960 to March 2002, older ver-
sions (v2.0) of the GLDAS LSM data products are used.

2.3 Meteorological data

Meteorological data, such as precipitation (P ) and temper-
ature (T ), have been included as predictors to enhance the
model’s predictive capability. Although precipitation and
temperature are components of LSM forcing, the LSM does
not utilize all of the data in the forcing to their full poten-
tial (Sun et al., 2021). The amount of precipitation affects
the recharge of groundwater and surface waters, while tem-

perature is an indicator of the energy available for evapotran-
spiration. Hence, precipitation and temperature may capture
some specific aspect that the LSM models may not simulate
accurately (Sun et al., 2019; Humphrey et al., 2017). These
climate forcing data (precipitation and temperature) are ob-
tained from GLDAS NOAH LSM output for the period of
analysis. These products are selected because of their global
coverage and successful usage in earlier investigations (Sun
et al., 2019).

2.4 Climate indices

The Dipole Mode Index (DMI), North Atlantic Oscillation
(NAO) and Oceanic Niño Index (ONI) have been widely uti-
lized as optimal teleconnection predictors for the seasonal-
ity of surface temperature and precipitation (Harou et al.,
2006; Brandimarte et al., 2011; Hafez, 2016). DMI is the
anomalous SST gradient between the western and south-
eastern equatorial Indian oceans associated with the Indian
Ocean Dipole (Saji et al., 1999; Saji and Yamagata, 2003).
The NAO characterizes the changes in strength between the
subtropical high-pressure and subpolar low-pressure patterns
in the atmosphere over the North Atlantic Ocean (Wallace
and Gutzler, 1981; Barnston and Livezey, 1987). The dif-
ference between a rolling 3-month average SST in the east-
ern central tropical Pacific and the long-term average of the
same 3 months is characterized as the ONI (Bamston et al.,
1997). Recent studies have utilized some climate indices as
predictors of TWSAs (Forootan et al., 2019; Phillips et al.,
2012; Sun et al., 2021). The prediction skills are spatially
impacted by specific climate phenomena or conditions, such
as El Niño and La Niña events, represented by those climate
indices (Sun et al., 2021).

3 Methodology

As mentioned earlier, TWS from CLSM is obtained directly
as one of the outputs (Sun et al., 2021), whereas TWS from
NOAH is obtained as the sum of the following components
(Sun et al., 2019):

TWS= SnWE+SMC+CWS, (1)

where SnWE represents snow depth water equivalent, SMC
is soil moisture content and CWS is canopy water stor-
age. For both of the aforementioned GLDAS products, the
anomalies are computed by subtracting the long-term mean
monthly TWS of the period from January 2004 to Decem-
ber 2009 from the monthly TWS values. Let the predictand
variable GRACE TWSAs be denoted by t and the set of pre-
dictors be denoted by X. Then, the regression problem can
be expressed as follows:

t = f (X,p), (2)

where f represents the regression model and p denotes the
model parameter to be solved using {Xi, ti}Ni=1 as training
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Table 1. Information regarding the data products employed in this research. Web links for accessing these data products are also provided in
Sect. 5.

Product Source Variables Spatial
resolution
(lat× long),
temporal
resolution

Version (data period)

GRACE JPL
mascon

Watkins et al. (2015), NASA/JPL (2023)
and https://doi.org/10.5067/TEMSC-3JC63

Terrestrial water storage
anomaly (TWSA)

0.50°× 0.50°,
1 month

RL06.1Mv03 (April
2002–December 2022)

GLDAS Li et al. (2019),
https://doi.org/10.5067/LYHA9088MFWQ
and
https://doi.org/10.5067/TXBMLX370XX8

Terrestrial water storage 0.25°× 0.25°,
1 d
(aggregated
to monthly)

GLDAS_CLSM025
CLSM (CTWSA) v2.0 (Jan 1960–

Jan 2003)

GLDAS_CLSM025
v2.2 (Feb 2003–Dec
2022)

GLDAS Rodell et al. (2004),
https://doi.org/10.5067/9SQ1B3ZXP2C5
and
https://doi.org/10.5067/SXAVCZFAQLNO

(Snow depth water
equivalent+Soil
moisture
content+Canopy water
storage) (NTWSA),
precipitation (P ),
temperature (T )

0.25°× 0.25°, GLDAS_NOAH025
NOAH 1 month v2.0 (Jan 1960–

Mar 2002)

GLDAS_NOAH025
v2.1 (Apr 2002–Dec
2022)

Dipole Mode
Index

Saji and Yamagata (2003), Saji et al.
(1999), and https://psl.noaa.gov/gcos_
wgsp/Timeseries/Data/dmi.had.long.data

DMI 1 month –

North
Atlantic
Oscillation

Wallace and Gutzler (1981), Barnston and
Livezey (1987), and https://www.cpc.ncep.
noaa.gov/products/precip/CWlink/pna/
norm.nao.monthly.b5001.current.ascii

NAO 1 month –

Oceanic Niño
Index

Bamston et al. (1997) and https://www.cpc.
ncep.noaa.gov/data/indices/oni.ascii.txt

ONI 1 month –

data; in the latter expression, i = 1. . .N is the index of train-
ing sample, and X includes CTWSA, NTWSA, P and T for
the current month as well as for 1 and 2 months prior. Ad-
ditionally, it includes three climate indices (DMI, NAO and
ONI) for the current month. In this context, P , P1 and P2 rep-
resent precipitation for the current month, 1 month prior and
2 months prior, respectively. Four ML algorithms, namely,
convolutional neural network (CNN), support vector regres-
sion (SVR), extra trees regressor (ETR) and stacking ensem-
ble regression (SER), are trained to solve the regression prob-
lem described in Eq. (2). ML models built after training and
validation can be used to simulate GRACE-like TWSAs us-
ing the inputs only. Figure 1 illustrates the overall workflow
adopted in this study. An overview of the predictor selection
technique and a brief description of the ML models used in
this study are presented in the subsections below.

3.1 Predictor selection using Bayesian networks (BNs)

Among the multiple predictors mentioned in the previous
section, the most relevant predictors for simulating TWSAs
are selected utilizing the potential of Bayesian networks
(BNs). The optimal predictors are a subset of all potential
predictors of 15 variables. At each grid cell, out of the 15
variables, a subset is selected using BNs, which serves as
the “optimum set of predictors” for that grid cell. The op-
timum set of predictors are selected based on probabilistic
independence–dependence structure. BNs serve as compact
representations of probabilistic relationships among a de-
fined collection of random variables (Das and Chanda, 2022).
These networks are characterized by a graph G= (V,E),
where each vertex (node) vεV corresponds to one of the
aforementioned random variables inX. Through edges (arcs)
eεE, the network articulates the conditional independencies
or dependencies that exist among the variables within X,
collectively termed the graph’s dependence structure. This
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Figure 1. An overview of the methodology employed in this study.

framework employs directed acyclic graphs (DAGs) to con-
cisely encapsulate probabilistic relations and effectively por-
tray the joint distribution of the variables (Scutari and Na-
garajan, 2011). In the context of a DAG, the inclusion of arcs
may or may not indicate a causal relationship between vari-
ables where one variable can be understood as the cause and
the other as the effect (Sevinc et al., 2020). When an edge
connects two nodes in the graph, the node from which the
edge originates is referred to as the parent node, while the
node where the edge terminates is known as the child node.
The process of determining the topology of the graph G is
termed structure learning. This involves identifying the graph
structure that effectively represents the conditional indepen-
dencies observed within the data. Several algorithms have
been presented in the literature to tackle this problem, and
they are broadly classified into three categories: constraint-
based algorithms (which are based on conditional indepen-
dence tests), score-based algorithms (which are based on
goodness-of-fit scores) and hybrid algorithms (which com-
bine the previous two approaches). In the realm of contin-

uous variables, score-based algorithms have outperformed
their constraint-based counterparts in terms of performance.
The challenge with constraint-based algorithms lies in their
tendency to yield partially directed acyclic graphs (PDAG),
which can subsequently disrupt precise predictions for the
target variable (Das and Chanda, 2020).

Score-based learning offers both precise and approximate
solutions. Precise solutions ensure the identification of the
graph that optimizes an objective function while adhering to
a maximum in-degree constraint (Constantinou et al., 2021).
These algorithms, also referred to as search-and-score algo-
rithms, involve the utilization of heuristic optimization meth-
ods to tackle the task of acquiring the structure of a BN.
In this process, each potential network configuration is as-
signed a score that indicates its goodness of fit, and the ob-
jective of the algorithm is to maximize this score. The hill-
climbing (HC) algorithm, a classical heuristic search algo-
rithm, has been the major choice for this purpose in most of
the hydrology-related studies (Vitolo et al., 2018; Das and
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Chanda, 2022, 2020; Dutta and Maity, 2021; Chanda and
Das, 2022).

The HC algorithm commences its process with an initial
empty graph and systematically explores potential DAGs to
maximize the network’s score, achieved through operations
like adding, removing or reversing arcs, determined by the
strength of edges (Scutari and Denis, 2021). The network’s
score is calculated using the Bayesian information criteria
(BIC) to prevent overfitting, wherein the BIC score is deter-
mined by a formula incorporating the number of parameters
in the global distribution (“d”) and the dataset length (“N”).
A critical concept within the HC algorithm is edge strength,
reflecting the disparity in the BIC score when a specific arc
is included or excluded, indicating the degree of interdepen-
dency between connected nodes. A higher edge strength sig-
nifies a stronger correlation. In essence, the HC algorithm
employs an iterative approach, optimizing the network score
by manipulating the DAG’s structure based on edge strengths
determined through the BIC score, thereby striking a balance
between model complexity and data fidelity while also em-
phasizing significant node interconnections. The BIC score
formula is given by the following expression:

BIC=
N∑
i=1

log(Pr(Xi |MB(Xi)))−
d

2
log(N ), (3)

where MB represents the Markov blanket, which is the min-
imal set of nodes that can predict a target node. The bnlearn
package in the R environment (Scutari, 2010) is used to de-
velop the DAG networks.

3.2 Machine learning algorithms for TWSA modeling

This section presents a concise overview of ML algorithms
used to model TWSAs. In this study, four types of ML al-
gorithms have been used: neural network-based algorithms
(CNN), kernel-based algorithms (SVR), tree-based algo-
rithms (ETR) and an ensemble of these three (CNN, SVR
and ETR) as stacking ensemble regression (SER).

3.2.1 Convolutional neural networks (CNNs)

CNNs belong to a category of neural networks particularly
well suited to handling data with grid-like structures, such as
images or time-series data. The primary advantage that they
offer over conventional feed-forward neural networks is their
utilization of mathematical linear operations, known as con-
volutions (Uz et al., 2022). These layers possess the capabil-
ity to autonomously extract features, identifying crucial as-
pects within the input data that are essential for establishing
the correlation between input and output variables. Hence,
CNNs have the capacity to manage raw data and are devoid
of the necessity to preprocess or manually extract features
(Ferreira and da Cunha, 2020). CNNs find widespread ap-
plication in image recognition tasks. For images, which pos-
sess two dimensions, convolutional filters of corresponding

dimensions are employed. Conversely, for tasks involving se-
quential data or time series, like the context of this study,
CNNs with one-dimensional (1D) convolutional filters (1D-
CNNs) are employed. In this study, a 1D-CNN comprises
a single convolutional layer and two fully connected layers.
The activation function “ReLU” is applied within the convo-
lutional layer (Ferreira and da Cunha, 2020; Alibabaei et al.,
2021; Ahmed et al., 2022). To mitigate overfitting, a dropout
layer is introduced following each convolutional layer. The
training algorithm employed for this model is Adam. The
learning rate is established at 0.1, and the number of training
epochs is determined using early stopping, with a maximum
limit of 200 epochs. Additionally, the batch size is configured
to 32.

3.2.2 Support vector regression (SVR)

Support vector regression (SVR) is a pivotal component of
support vector machines (SVMs), an algorithm introduced
by Cortes and Vapnik (1995), designed to handle nonlinear
regression problems. SVR extends the fundamental concept
of SVMs by effectively addressing regression tasks through
a nonlinear mapping of input data into a higher-dimensional
feature space. The underlying principle of SVR is based on
the concept of the “kernel trick”. This technique employs a
kernel function, such as the radial basis function (RBF) ker-
nel, to transform the input data into a feature space where lin-
ear regression can be applied effectively. The kernel function
aids in defining a hyperplane – a decision boundary – within
this feature space. This hyperplane facilitates the prediction
of target values by distinguishing between different types of
data patterns. Moreover, SVR aims to establish a boundary
layer at a certain distance from the hyperplane, enclosing the
data points that lie proximate to the hyperplane, known as
support vectors. Selecting an appropriate kernel function is
a crucial step in SVR. Raghavendra and Deka (2014) high-
light that polynomial and RBF kernels are commonly em-
ployed for nonlinear problems. However, Das and Chanda
(2020) advocate for the superiority of the RBF kernel in non-
linear regression tasks, leading to its preference. For a more
comprehensive understanding of the algorithms employed in
this context, detailed insights and further elucidation can be
gleaned from the work of Raghavendra and Deka (2014), Das
and Chanda (2020), and Das et al. (2022).

3.2.3 Extra trees regressor (ETR)

In the realm of ensemble-based predictive modeling, the ETR
shares a fundamental principle that is built on the founda-
tion of decision trees and random forests, combining their
strengths to create an ensemble of diverse decision trees,
and is less likely to overfit a dataset (Ahmad et al., 2018).
In the ETR framework, a random subset of features is em-
ployed to train each individual base estimator, akin to the ap-
proach used in random forest, where all of the predictors are
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employed. This attribute ensures diversity among the con-
stituent trees, contributing to the model’s generalization ca-
pabilities and mitigating the risk of overfitting. While ran-
dom forest selects the optimal feature from the random sub-
set to split a node, ETR takes this a step further by introduc-
ing an additional layer of randomness (Kumar et al., 2022).
ETR not only randomly selects a feature from the subset but
also stochastically chooses the corresponding split value for
the chosen feature. This distinctive feature selection strategy
imparts an extra level of variance to the model, rendering it
more robust and capable of capturing intricate relationships
in the data (Ahmad et al., 2018). The predictions of the indi-
vidual trees are combined to generate the ultimate prediction
through a process of arithmetic averaging. The algorithm is
influenced by two pivotal parameters: the count of predictors
chosen randomly at each node and the minimum sample size
required to initiate a node split (Sun et al., 2021).

3.2.4 Stacking ensemble regression (SER)

Stacking, a form of meta-learning, aims to enhance pre-
dictive performance by combining predictions from mul-
tiple base models through a higher-level integrated model
(Zounemat-Kermani et al., 2021). The stacking generaliza-
tion framework presents a couple of avenues for maximizing
predictive gains. One approach involves employing diverse
base learners, thereby fostering variability among the base
models. Alternatively, enhancing the ensemble size while
keeping the number of base learners constant can also pro-
vide the meta-learner with a broader range of insights. In
this context, the term “meta-learner” refers to an aggregat-
ing model that learns the optimal way to combine outputs
from the base learners. These “base learners” constitute the
models whose individual predictions are assembled in the fi-
nal step (Lee and Ahn, 2021). To mitigate overfitting, out-
of-sample data are employed for training the meta-model.
This entails utilizing predictions from the base learners on
this external data. The overarching objective is for the meta-
model to establish an optimal correlation between observed
values and its own predictions. The process is aptly termed
“stacking”, as it involves merging predictions from valida-
tion sets, thereby creating a fresh dataset for the meta-model
to glean insights from. Additional valuable insights can be
obtained from the comprehensive analysis of ensemble ML
presented in the review of Martinez-Gil (2022), Zounemat-
Kermani et al. (2021), and Lee and Ahn (2021). In the present
study, CNN, SVR and ETR are used as the base models. Dur-
ing the training process, initial predictions are first generated
by the base learners. Subsequently, these predictions from the
base learners serve as inputs to the meta-learner, which pro-
duces the ultimate output. While all base models are utilized
as potential meta-models to assess overall accuracy, prefer-
ence is given to the generalized linear model (GLM) due to
its superior effectiveness as a meta-learner compared to the
alternative models.

3.3 Training and performance evaluation

The period of observed GRACE data used in this study
is from April 2002 to December 2022 (216 months in to-
tal excluding the GRACE data gaps). Within this period,
the available months from 2010 to 2016 (68 months) are
used as the testing period, whereas the remaining portion
of the dataset (148 months) is used to train the ML mod-
els. The 5-fold cross-validation technique is employed dur-
ing the training phase to address the issue of insufficient data
length. Additionally, all input parameters for the ML mod-
els have been normalized within the range of 0 to 1. The
simulated TWSAs employing BNs as the optimal predictor
selector in conjunction with various ML models are hence-
forth referred to as BNML_TWSA. The performance of the
BNML_TWSA from each of the models is evaluated against
GRACE/GRACE-FO TWSAs using several agreement met-
rics, including the Pearson correlation coefficient (CC), the
Nash–Sutcliffe efficiency (NSE) coefficient, the root-mean-
square error (RMSE) and the Kling–Gupta efficiency (KGE).
The CC is calculated as follows:

CC=
∑n
i=1(Oi −O)(Si − S)√∑n

i=1(Oi −O)2
√∑n

i=1(Si − S)2
, CC ∈ [−1,1], (4)

where Oi and Si represent the TWSAs from
GRACE/GRACE-FO and the simulated/reconstructed
TWSAs, respectively, with O and S denoting their respec-
tive means.

The other three metrics are expressed as follows:

NSE= 1−

n∑
i=1

(Oi − Si)2

n∑
i=1

(Oi −O)2
, NSE ∈ (−∞,1], (5)

RMSE=

√√√√1
n

n∑
i=1

(Oi − Si)2, RMSE ∈ [0,+∞), (6)

KGE= 1−

√√√√(CC− 1)2+

(
S

O
− 1

)2

+

(
σS

σO
− 1

)2

,

KGE ∈ (−∞,1]. (7)

Here, σO is the standard deviation in observations and σS the
standard deviation in simulations. The size of the test sam-
ple is denoted by n. A higher value for CC, NSE and KGE,
closer to 1, and a lower value for RMSE, closer to 0, indicate
superior performance (Nash and Sutcliffe, 1970; Gupta et al.,
2009).

4 Results and discussion

4.1 Selected predictors using BNs

The optimal predictors for each grid cell across the globe
(58 027 grid cells in total) are selected using BNs. For each
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predictor, the spatial map showing the grid cells where they
are selected by the BNs as optimal predictors is depicted
in Fig. 2. Figure 2 also shows a bar plot with the number
of grid cells where each predictor is retained by the BN.
CTWSA is selected by the BN as an optimal predictor for the
maximum number of grid cells (71.06 %), followed by ONI
(56.03 %) and NTWSA (48.71 %). The selection of CTWSA
as the best predictor of GRACE TWSAs is also suggested by
other studies conducted in different regions around the globe
(Sun et al., 2021). Among the 11 global river basins specifi-
cally investigated in this study, the number of grid cells with
CTWSA as an optimal predictor is lower in the Amazon and
Nile basins compared to the other basins. Only 3.55 % of the
total grid cells hold the NAO as an optimal predictor as se-
lected by the BNs. This is reflected at the river basin scale
as well; for each of the river basins, a very limited percent-
age of grid cells retain the NAO as an optimal predictor. It
is noteworthy that, in addition to TWSAs from LSMs, the
ONI and DMI have been selected as optimal predictors for
a substantial number of grid cells. Meteorological variables
such as P and T , along with their observations from previous
months, have been selected for fewer grid cells globally by
the BN compared to ONI and DMI. This can be attributed to
the fact that LSMs already incorporate these meteorological
variables as forcing inputs. The inclusion of climate indices
as potential predictors for a large number of grid cells can
be seen as an effort to represent the climate change scenar-
ios of that specific time period. In a limited number of grid
cells (66), the BN did not select any predictors. For an ad-
ditional 492 grid cells, the BN selected only one predictor,
thereby limiting the application of certain ML algorithms to
these grid cells. Consequently, for a total of 558 grid cells,
which constitute less than 1 % of the grid cells considered in
this study, the complete set of 15 predictors has been used as
potential predictors.

4.2 Grid-cell-specific leader models

The predictors selected by the BNs at each grid cell are em-
ployed as input to predict the TWSAs using the four ML al-
gorithms mentioned earlier: CNN, SVR, ETR and SER. The
grid-cell-wise leader ML algorithm is identified based on
the Pearson correlation coefficient (CC) between predicted
TWSAs and GRACE TWSAs for the test period. The per-
formance difference between the leading ML algorithm and
the worst-performing ML model is depicted in Fig. 3. Grid
cells that have negative CC values (∼ 2.65 % of the total grid
cells considered in this study) for the leading ML model have
been excluded when calculating the difference. Although the
improvement in terms of the CC value difference is not large
for all grid cells globally, more than 14.4 % of grid cells show
improvements greater than 0.2, while an additional 15.7 %
of grid cells exhibit improvements of between 0.1 and 0.2.
A grid cell exhibiting the maximum improvement within the
basins considered in this study has been selected to demon-

strate this improvement. The time series and scatterplot are
illustrated in Fig. 4. The estimated TWSAs by the best-
performing model are in good agreement with the observed
TWSAs during the testing period. This justifies the use of the
best-performing (leading) model to predict the TWSAs. Fig-
ure 5 depicts the spatial distribution of the leader algorithms
over the globe along with the frequency as a bar plot. ETR
performs the best for the maximum number of grid cells, with
a total of 25 703, followed by SVR, SER and CNN, which
perform best for 11 609, 11 069 and 9646 grid cells, respec-
tively. Thus, for most of the river basins (including the Kr-
ishna and Godavari in India; the Danube in Europe; the Nile,
Zambezi and Limpopo on the African continent; the Missis-
sippi in the USA; and the transboundary GBM and Indus),
ETR emerges as the leader model in the maximum number of
grid cells. The contribution of the leader algorithm as a per-
centage of the total grid cells for each river basin is shown
in Fig. 5c. In the Limpopo Basin, it is observed that ETR
performs best in 89.0 % of the grid cells, whereas CNN does
not perform best in any of the grid cells in this basin. In the
Murray–Darling Basin in Australia, the four ML algorithms
show the best performance in an approximately equal num-
ber of grid cells (CNN: 25.9 %; SVR: 21.4 %; ETR: 26.1 %;
SER: 26.6 %).

4.3 Performance evaluation of simulated global
BNML_TWSA

For the leader ML models at each grid cell, the
BNML_TWSA is evaluated against the GRACE TWSAs
during the testing period (68 months). Performance mea-
sures, such as the CC, NSE, RMSE and KGE, are com-
puted for the BNML_TWSA at both the basin-wide and grid
cell levels. Similar performance measures are also computed
for CTWSA and NTWSA. The spatial distribution of CC,
NSE and KGE obtained from NTWSA, CTWSA and the
BNML_TWSA using the identified leader ML models dur-
ing the test period is shown in Fig. 6. According to Fig. 6a
and d, it is evident that the agreement between CTWSA and
GRACE TWSAs is better than that of NTWSA. However,
the BNML_TWSA (as shown in Fig. 6g) performs better in
most grid cells worldwide compared to the TWSAs obtained
from the LSMs (CTWSA and NTWSA). The BNML_TWSA
showed clear improvement in performance over NTWSA and
even CTWSA in all of the basins, except for the western part
of the Nile Basin and the southwestern part of the Missis-
sippi Basin where CTWSA shows a closer match with the
GRACE TWSAs in some grid cells. The cumulative dis-
tribution functions (CDFs) of the CC, NSE and KGE met-
rics are presented in Fig. 7. These CDFs demonstrate that
BNML_TWSA exhibits significantly superior performance,
characterized by substantially higher CC, NSE and KGE val-
ues. As shown by the BNML_TWSA results, the arid, semi-
arid and certain wet regions (e.g., the arid desert part of the
Nile Basin, the semiarid regions of the Mississippi Basin
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Figure 2. Spatial distribution and bar plot of selected predictors using a Bayesian network. P , P1 and P2 represent precipitation for the
current month, 1 month prior and 2 months prior, respectively. Similarly, T , NTWSA and CTWSA, along with their observations 1 month
prior and 2 months prior, are used as potential predictors. T denotes temperature, while TWSAs from NOAH and the Catchment Land
Surface Model (CLSM) are denoted using NTWSA and CTWSA, respectively.

Figure 3. Difference between the correlation coefficient (CC) val-
ues obtained from the leader ML model (excluding negative CC
values) and the worst-performing ML algorithm at each grid cell
during the test period.

and parts of the Congo Basin) have poorer model perfor-
mance, which is consistent with other global studies (Mo
et al., 2022). A substantial improvement in the performance
by the proposed model can be observed in most parts of In-
dia, eastern Europe and South America. Figure 6b, e and h
depict the NSE values obtained from NTWSA, CTWSA and
the BNML_TWSA, respectively. Similarly, Fig. 6c, f, and i
present the spatial distribution of KGE values for NTWSA,
CTWSA and BNML_TWSA across the globe. The results in-
dicate the superior performance of BNML_TWSA compared
to the other methods, which is evident from these plots at a
global scale.

The grid-cell-wise CC, NSE, RMSE and KGE val-
ues are further compared for the three TWSA datasets
(NTWSA, CTWSA and BNML_TWSA) in all river basins
as box plots depicted in Fig. 8. The median values of
each matrix are listed in Table 2. For most of the basins,
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Figure 4. Time series (left columns) for grid cells showing the maximum improvement within the basins considered in this study, including
observed TWSAs and TWSAs predicted by the best and worst models. Scatterplots (right columns) compare the TWSAs predicted by the
best and worst models with the observed TWSAs.
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Figure 5. (a) Frequency, (b) spatial distribution of leader ML algorithms and (c) leader ML algorithms in terms of percentage for different
river basins.

BNML_TWSA shows a higher median value of CC and a
smaller range in the box plot compared to NTWSA and
CTWSA, indicating a better performance for the proposed
BNML_TWSA. However, for the Indus, Limpopo, Nile and
Zambezi basins, CTWSA has a slightly better performance
than BNML_TWSA. All of the grid cells in the Amazon,
Danube, Godavari, Krishna, Mississippi and Zambezi basins
have a CC value of ≥ 0.75 for BNML_TWSA. Similarly, for
the GBM and Murray–Darling basins, the lowest CC value
among all grid cells is above 0.5. The NSE, which com-
pares the residual variance (the “noise”) with the variance in
the measured data, shows poor results (< 0) for most of the
basins for both NTWSA and CTWSA. On the other hand,
the NSE values for BNML_TWSA are fairly high (> 0.68)
in most basins, except for the Indus, Limpopo, Murray–
Darling and Nile, and only the Indus Basin has a median
NSE value of less than 0. Hence, based on the NSE value,
BNML_TWSA has better performance than NTWSA and
CTWSA for all of the river basins. The improved perfor-
mance of BNML_TWSA can also be illustrated by the dis-
tribution of the RMSE values over each river basin, depicted
in Fig. 8. When comparing the overall spread of the RMSE
values for BNML_TWSA, CTWSA and NTWSA, it is ob-

served that the range of the RMSE values for BNML_TWSA
is lower than that of CTWSA and NTWSA. This indicates
that the interquartile range (IQR), the difference between the
third quartile and the first quartile, of the RMSE values for
BNML_TWSA is smaller than that of CTWSA and NTWSA.
Similarly, the KGE values indicate that CTWSA exhibits the
best performance in the Godavari Basin. For all other basins,
BNML_TWSA shows superior performance.

4.4 Basin-scale quality assessment of gap-filled TWSAs

The results presented in the preceding sections demon-
strate the superior ability of the proposed model to simulate
GRACE TWSAs during the testing period. The leader model,
constructed for each global grid cell, is utilized to generate
a GRACE-like TWSA series from April 2002 to Decem-
ber 2022 using the input parameter set selected by the BNs
for each grid cell. Figure 9 shows the time series of average
reconstructed TWSAs for all grid cells within a river basin.
TWSAs from GLDAS NOAH (NTWSA), GLDAS CLSM
(CTWSA) and GRACE are also included in Fig. 9 for com-
parison. The seasonal variation in TWSAs is greatly captured
by the proposed models and the other two LSM outputs. Sim-
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Figure 6. Correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE) coefficient and Kling–Gupta efficiency (KGE) values between
observed GRACE TWSAs and NTWSA, CTWSA and BNML_TWSA.

Figure 7. Cumulative distribution functions (CDFs) of the correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE) coefficient and
Kling–Gupta efficiency (KGE) values, as depicted in Fig. 6.

ilar to observations from previous sections, the CTWSA has
better performance than the NTWSA. However, even bet-
ter performance is achieved by the proposed BNML_TWSA.
Compared to the observed GRACE TWSAs, both NTWSA
and CTWSA underestimate the peak values of TWSAs for
the Amazon Basin, whereas the BNML_TWSA time se-
ries matches the GRACE TWSAs most closely. For the In-
dus and Nile river basins, the mismatch between GRACE
TWSAs and TWSAs from LSM outputs has been widen-
ing since 2010; however, the proposed model simulates
BNML_TWSA, which is very close to the GRACE TWSAs.

The basin-wise performance of the mean BNML_TWSA
and CTWSA is assessed against the GRACE TWSAs and
depicted as a scatterplot in Fig. 10. NTWSA is not included
in this plot, as it has already been found to be a poorer
match with GRACE TWSAs than the CTWSA. The CC of
BNML_TWSA in the Zambezi Basin is the highest among
all of the basins (0.989); however, the RMSE (46.1 mm) and

NSE (0.833) values do not suggest that its performance is
the best. The basin-wide mean BNML_TWSA has a higher
CC (≥ 0.904) than CTWSA for the GBM, Godavari, Indus,
Krishna, Limpopo, Mississippi, Murray–Darling and Zam-
bezi basins (see Fig. 10). In the Nile Basin, a high CC
value of 0.82 is obtained for BNML_TWSA; however, this
is the minimum among all river basins. The Nile Basin is
one of the few basins where CTWSA has a slightly higher
CC (0.889) than BNML_TWSA (see Fig. 10), but the time-
series plot (see Fig. 9) shows that the BNML_TWSA is
in better agreement with GRACE TWSAs. This indicates
that, in general, the proposed BNML_TWSA is more reli-
able than CTWSA. Considering the NSE and RMSE val-
ues, the Amazon, GBM, Godavari, Krishna and Nile basins
perform better with BNML_TWSA than with CTWSA. The
only exception is Danube Basin which has a marginally
lower performance for BNML_TWSA than CTWSA accord-
ing to the basin-wide mean. However, when considering
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Table 2. Median of the CC, NSE, RMSE and KGE values at grid cells of each basin. A bold value signifies the best performance.
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C
C

NTWSA 0.822 0.806 0.766 0.779 0.566 0.740 0.800 0.786 0.788 0.538 0.770
CTWSA 0.876 0.917 0.861 0.898 0.654 0.895 0.839 0.903 0.853 0.739 0.925
BNML_TWSA 0.910 0.918 0.879 0.927 0.651 0.924 0.837 0.907 0.865 0.675 0.923

N
SE

NTWSA 0.537 0.433 0.266 0.475 −1.140 0.424 −0.897 0.105 −0.897 −1.373 0.159
CTWSA 0.608 0.700 0.452 0.671 −0.392 0.636 0.351 0.539 −0.060 −1.570 0.651
BNML_TWSA 0.796 0.766 0.699 0.839 −0.003 0.810 0.581 0.704 0.455 0.200 0.688

R
M

SE NTWSA 119.5 56.0 123.0 114.4 51.7 102.3 54.4 61.4 57.3 61.6 123.3
CTWSA 107.8 42.0 100.7 86.0 46.4 81.3 34.0 50.1 43.6 55.1 75.1
BNML_TWSA 83.3 35.9 74.5 63.7 37.1 63.0 30.5 39.9 35.0 31.7 70.0

K
G

E NTWSA −0.509 −0.119 −0.056 −0.168 −0.716 0.100 −1.351 −0.213 0.175 −0.648 −0.174
CTWSA −0.686 0.062 0.146 0.108 −0.355 −0.164 −0.277 0.223 0.402 −0.579 0.385
BNML_TWSA −0.194 0.224 0.182 0 −0.143 0.383 −0.238 0.346 0.592 −0.186 0.255

Figure 8. Box plot of CC, NSE, RMSE and KGE values for the grid cells of each basin, excluding the outliers.
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the KGE values, BNML_TWSA outperforms CTWSA in
most basins. With the exception of the Danube, Indus, Kr-
ishna, Murray–Darling and Zambezi basins, all other basins
demonstrate superior performance for BNML_TWSA com-
pared to CTWSA when evaluated using the KGE values.

4.5 Reflection of hydroclimatic extreme events in
BNML_TWSA during the pre-GRACE (1960–2002)
and intermediate gap periods

The leader ML model of each grid cell is used to hind-
cast BNML_TWSA during the pre-GRACE period (Jan-
uary 1960–March 2002) using the predictors selected by
BNs. The basin-averaged BNML_TWSA series is shown
in Fig. 11. Similar to the LSM outputs (CTWSA and
NTWSA), increasing and decreasing trends are noted for
BNML_TWSA series for some of the river basins. The
variability in the TWSA hindcast is lowest for the Indus
(−95.1 to 75.4 mm) and Limpopo (−61.6 to 83.7 mm) river
basins, while the Amazon (−227.5 to 199.6 mm) and Kr-
ishna (−200.7 to 239.5 mm) basins have the highest variabil-
ity. The minimum TWSA hindcast values for the Murray–
Darling and Nile basins are around −20 mm – the lowest
among all of the regions. During this hindcast period, a num-
ber of significant extreme climate events occurred; for exam-
ple, two severe flood events in India are depicted in Fig. 12a–
b. First, the Gomti River, a tributary of the Ganges River,
overflowed and caused a severe flood that inundated half
of the city of Lucknow in mid-October 1960. As shown in
Fig. 12a, water storage increased around Lucknow in Oc-
tober 1960, which is marked by a green rectangle. Second,
on 11 August 1979, a flood disaster occurred in Gujarat, In-
dia, when the Machchhu dam failed and submerged the town
of Morbi, killing about 1500 people (Saharia et al., 2021).
The deviation of BNML_TWSA from the long-term monthly
mean for the Morbi region in Gujarat, which is marked by a
green rectangle, is shown in Fig. 12b. Results clearly indicate
the enhancement of TWS during this period. The proposed
model simulated the TWSA series during the pre-GRACE
period and identified recorded extreme climate events that
occurred in the hindcast period.

During the GRACE gap period, several extreme climate
events occurred around the world. In the continental USA,
one of these extreme events was Hurricane Harvey, which
made landfall on 25 August 2017 along Texas and Louisiana
coast. This catastrophic flood event caused damage totaling
USD 125 billion (Sun et al., 2021; United States National
Hurricane Center, 2018). The flood event is expected to re-
veal an increase in the TWSA compared to the long-term
mean TWSA of that region. This is well reflected in Fig. 12c,
which depicts the difference between BNML_TWSA for
September 2017 (as the event occurred towards end Au-
gust 2017) and the long-term mean TWSA for September.
Similarly, heavy rain on 15–16 July 2017 led to flooding in
several districts of Gujarat, India, and the event reportedly

caused more than 200 deaths. This is depicted with a similar
plot in Fig. 12d. The proposed model effectively reflects the
impact of extreme climate events on TWS in the Texas and
Louisiana coastal area and in Gujarat.

4.6 Comparison with previous studies

In this section, the reconstructed BNML_TWSA is com-
pared with the global TWSA products developed recently by
Humphrey and Gudmundsson (2019) and Sun et al. (2020).
The reconstructed TWSA datasets developed using statistical
models by Humphrey and Gudmundsson (2019) are named
GRACE-REC. Two GRACE-REC datasets, which include
monthly ensemble mean data from the JPL_MSWEP and
JPL_ERA5 datasets, respectively, and the BNML_TWSA
are each evaluated against the GRACE JPL mascon dataset.
The grid intersection points and resolution (0.50°× 0.50°)
of BNML_TWSA, GRACE-REC and GRACE JPL mas-
con are uniform, which eliminates the requirement for re-
gridding. The period of comparison is selected as the com-
mon available dataset duration of the above three products.
Specifically, the period spans from April 2002 to July 2019
for JPL_ERA5 and from April 2002 to December 2016 for
JPL_MSWEP. Figure 13 depicts the spatial distribution of
the CC values obtained from the two GRACE-REC datasets
of Humphrey and Gudmundsson (2019) along with corre-
sponding CC values of the BNML_TWSA, each compared
with the GRACE JPL mascon datasets. Figures 14 and 15 de-
pict the NSE and KGE values, respectively, similar to Fig. 13.
Based on Figs. 14 and 13, it is evident that the performance
of BNML_TWSA surpasses that of GRACE-REC TWSAs.
This superior performance of BNML_TWSA is even more
apparent in Fig. 15. Notably, both of the GRACE-REC prod-
ucts exhibited suboptimal performance in the region near the
Sahara Desert and Saudi Arabia.

Next, we compare the agreement of BNML_TWSA with
the observed GRACE JPL mascon vs. the agreement of
TWSAs derived from deep neural network (DNN) mod-
els (namely, DNN_JPL-M and DNN_CSR-M for the period
from April 2002 to July 2018) by Sun et al. (2020) with
the same GRACE JPL mascon. During the development of
the DNN_JPL-M and DNN_CSR-M TWSA products in Sun
et al. (2020), the JPL mascon and CSR mascon GRACE
products are respectively used as targets. These two partic-
ular products of Sun et al. (2020) are selected for compari-
son as the study mentions that TWSAs derived using DNN
models demonstrated superior performance compared to the
other two learning-based models attempted in their study.
The spatial resolution of DNN_JPL-M and DNN_CSR-M is
1.0°× 1.0°, whereas the spatial resolution of BNML_TWSA
and JPL mascon is 0.50°× 0.50°. To ensure a uniform spatial
resolution for all TWSA products, both BNML_TWSA and
JPL mascon are regridded (upscaled) to 1.0°× 1.0°, similar
to DNN_JPL-M and DNN_CSR-M. Figure 16a, b and c de-
pict the respective CC, NSE and KGE values for DNN_JPL-
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Figure 9. Comparison of TWSA time series from April 2002 to December 2022 (GRACE period). Vertical gray bars indicate missing
GRACE observations.

M, and corresponding indices for DNN_CSR-M are shown
in Fig. 16d, e and f, respectively. The CC, NSE and KGE
values for BNML_TWSA are depicted in Fig. 16g, h and i,
respectively. The prediction accuracy of BNML_TWSA is
the best when compared to DNN_JPL-M and DNN_CSR-M
TWSA.

The basin-wise median CC, NSE and KGE values of
BNML_TWSA, the reconstructed TWSAs from Humphrey
and Gudmundsson (2019), and TWSAs from Sun et al.
(2020) are compared in Fig. 17 using a radar chart. Specif-
ically, for Humphrey JPL_ERA5, the CC values are shown
in Fig. 17a, the NSE values in Fig. 17d and the KGE val-
ues in Fig. 17g. Similarly, for Humphrey JPL_MSWEP, the
CC values appear in Fig. 17b, the NSE values in Fig. 17e
and the KGE values in Fig. 17h. The CC, NSE and KGE val-
ues of Sun DNN_JPL-M and Sun DNN_CSR-M, which have

a similar analysis period, are presented in Fig. 17c, f and
i, respectively. Thus, Fig.17a–c depict the basin-wise me-
dian CC values for the mentioned models, while Fig. 17d–
f illustrate the basin-wise median NSE values after ex-
cluding those below 0. Similarly, Fig. 17g–i display the
basin-wise median KGE values, excluding those below −1.
With the exception of the Danube, GBM, Indus, and Nile
river basins, the median CC values for BNML_TWSA and
Humphrey JPL_ERA5 (as shown in Fig. 17a) exhibit sim-
ilarity. BNML_TWSA demonstrates higher median CC val-
ues compared to Humphrey JPL_ERA5 across the aforemen-
tioned basins. Specifically, the improvements in the CC val-
ues obtained with BNML_TWSA are as follows: from 0.86
to 0.90 for the Danube, from 0.80 to 0.90 for GBM, from
0.59 to 0.77 for the Indus and from 0.70 to 0.77 for the Nile.
Similarly, compared to Humphrey JPL_MSWEP (Fig. 17b),
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Figure 10. Scatterplot of the basin-wise mean of observed GRACE TWSA vs. BNML_TWSA and CTWSA for each river basin.

BNML_TWSA provides CC improvements, such as from
0.75 to 0.9 for the GBM region and from 0.47 to 0.74 for the
Indus region. When compared with the reconstructed TWSA
products by Sun et al. (2020), BNML_TWSA surpasses their
accuracy, as the median CC values are high across all of
the river basins (Fig. 17c). In terms of the median NSE
values, BNML_TWSA outperforms Humphrey JPL_ERA5
in all of the river basins. Specifically, for BNML_TWSA,
the median NSE value improves from −1.07 to 0.89 for
the Murray–Darling Basin and from −0.17 to 0.77 for the
Nile Basin. Similarly, BNML_TWSA exhibits improved per-
formance compared to Humphrey JPL_MSWEP across all
of the basins, particularly for the Murray–Darling Basin,
where the median NSE improves from −0.24 to 0.72. While

Sun DNN_JPL-M performs better than Sun DNN_CSR-
M, BNML_TWSA consistently outperforms both of the
aforementioned products of Sun et al. (2020) across all of
the river basins. Notably, for the Nile Basin, the median
NSE value improves from 0 to 0.53 with BNML_TWSA
compared to Sun DNN_JPL-M. In terms of the median
KGE values, BNML_TWSA also outperforms Humphrey
JPL_ERA5 in all of the river basins. Similarly, except for
the Limpopo and Indus basins, BNML_TWSA exhibits su-
perior performance compared to Humphrey JPL_MSWEP in
all other basins. Although Sun DNN_JPL-M performs bet-
ter than Sun DNN_CSR-M, BNML_TWSA consistently out-
performs both products, except in the Danube Basin, where
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Figure 11. BNML_TWSA during the pre-GRACE period (January 1960–March 2002).

Sun DNN_JPL-M has a marginally higher KGE value than
BNML_TWSA.

4.7 Comparison with streamflow measurements based
on the basin-scale water balance

TWS change can be used to estimate streamflow measure-
ment based on the water balance equation for moderately
large (> 100 000 km2) river basins (Humphrey and Gud-
mundsson, 2019). The streamflow (Q) based on the water
balance model over a watershed may be expressed as fol-
lows:

Q= P −ET−1S, (8)

where the water balance components P and ET are precip-
itation and evapotranspiration, respectively, and 1S denotes

the TWS change over a time step. Comparison of evaluated
streamflow using BNML_TWSA, GRACE TWSA, TWSA
from Humphrey and Gudmundsson (2019) (JPL_MSWEP
and JPL_ERA5), and Sun et al. (2020) (DNN_JPL-M and
DNN_CSR-M) is discussed in this section. Out of the 11
river basins considered in this study, 6 basins – 1 from
each continent – were selected based on the availability of
streamflow data. More details on the six selected basins and
their streamflow observation stations are given in Table 3.
Streamflow observations are predominantly acquired from
the Global Runoff Data Centre (GRDC), except for the Go-
davari River in India, for which the streamflow data are
sourced from the Central Water Commission (CWC).

Observations of terrestrial water balance components for
large river basins worldwide are limited, with sparsely dis-
tributed gauges for precipitation and even fewer observations
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Figure 12. Difference between monthly and long-term mean monthly BNML_TWSA reflecting extreme hydroclimatic events. The zone of
interest is marked by a green rectangle.

Table 3. Details of basin and streamflow observation locations for six global river basins. Data were sourced from the Global Runoff Data
Centre (GRDC; https://portal.grdc.bafg.de, last access: 12 November 2024) and Central Water Commission (CWC; https://indiawris.gov.in,
last access: 7 November 2023), India.

River basin Source Station for streamflow observation Period of streamflow observation Drainage area (km2)

Amazon GRDC Óbidos April 2002–December 2019 4 671 462
Danube GRDC Ceatal Izmail April 2002–December 2010 779 812
Godavari CWC Polavaram January 2003–December 2020 312 812
Mississippi GRDC Vicksburg April 2002–October 2022 2 918 820
Murray–Darling GRDC Lock 1 downstream April 2002–June 2023 770 171
Zambezi GRDC Katima Mulilo April 2002–July 2021 334 883

for evapotranspiration. However, due to the availability of
data from satellite sensors and outputs from global land sur-
face models, it is possible to analyze the water balance of
river basins with sparse observations. Details of the collected
dataset and sources are presented in Table 4. Precipitation
(P ) data from five different sources were collected for each

grid cell within these river basins. The basin-scale average
of all five precipitation products (GLDAS, GPCC, GPCP,
IMERG and PERSIANN) is considered to be the “observed”
precipitation for that particular basin. Similarly, for evapo-
transpiration (ET), the average of three products (GLDAS,
FLDAS and GLEAM) is considered the observed ET for that
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Figure 13. Comparison of correlation coefficient (CC) values obtained by two GRACE-REC products from Humphrey and Gudmundsson
(2019) and BNML_TWSA, each evaluated against GRACE JPL mascon.

Figure 14. Comparison of Nash–Sutcliffe efficiency (NSE) values obtained by two GRACE-REC products from Humphrey and Gudmunds-
son (2019) and BNML_TWSA, each evaluated against GRACE JPL mascon.

basin. In this study, 1S for the t th month is calculated as the
central difference in the TWSAs, as shown below.

1S =
(TWSAt+1−TWSAt−1)

2
(9)

Using the water balance components described in the
previous section, the streamflow for each basin is calcu-
lated using various TWSA products, including GRACE,
BNML_TWSA, JPL_MSWEP, JPL_ERA5, DNN_JPL-M

and DNN_CSR-M. This computation is performed based
on the terrestrial water balance equation (Eq. 8). The com-
puted Q values are compared with the observed Q values
from the station, and the corresponding correlation coeffi-
cients (CC) are determined. Figure 18 presents the correla-
tion coefficient (CC) values as a heatmap for all six river
basins, highlighting the performance of BNML_TWSA. For
the Amazon Basin, BNML_TWSA demonstrates strong per-
formance, with a CC of 0.89, comparable to GRACE and
JPL_MSWEP (CC: 0.9) and JPL_ERA5 (CC: 0.89). In the
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Figure 15. Comparison of Kling–Gupta efficiency (KGE) values obtained by two GRACE-REC products from Humphrey and Gudmundsson
(2019) and BNML_TWSA, each evaluated against GRACE JPL mascon.

Figure 16. Comparison of correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE) and Kling–Gupta efficiency (KGE) values obtained
by two reconstructed TWSA products from Sun et al. (2020) and BNML_TWSA, each evaluated against GRACE JPL mascon.
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Figure 17. Comparison of the median values of the correlation coefficient (CC), Nash–Sutcliffe efficiency (NSE) and Kling–Gupta efficiency
(KGE) across different basins. Note that median NSE values below 0 and KGE values below −1 are omitted during plotting.

Danube and Godavari basins, BNML_TWSA outperforms
all other TWSA products, achieving the highest CC val-
ues, although other products also perform well. For the
Mississippi Basin, BNML_TWSA, along with DNN_JPL-
M and DNN_CSR-M, achieves the highest CC value of
0.7. For the Murray–Darling Basin, all TWSA products
show minimal CC values due to the negligible magnitude
of observed streamflow at the basin outlet. For the Zam-
bezi Basin, JPL_MSWEP performs best, with a CC of 0.46,
whereas BNML_TWSA achieves a CC value of 0.35. This
evaluation highlights the superior and/or comparable per-
formance of BNML_TWSA across most basins. The time
series of the streamflow computed using BNML_TWSA
(QBNML_TWSA) is presented alongside the observed stream-
flow (QObserved) and the streamflow computed using GRACE
TWSA (QGRACE) in the left columns of Fig. 19. The time-

series plot (Fig. 19) clearly demonstrates that QBNML_TWSA
aligns more closely with QObserved compared to QGRACE.
Additionally, the RMSE has been computed forQGRACE and
QBNML_TWSA againstQObserved. These RMSE values clearly
indicate the superior performance of QBNML_TWSA for all
six basins compared to QGRACE. For the Murray–Darling
Basin, the magnitude of QObserved is negligible due to the
large amount of water withdrawal for irrigation and con-
sumption, in addition to heavy regulation (Candogan Yossef
et al., 2012). All TWSA products struggle to capture the pat-
tern of low streamflow in the Murray–Darling Basin.

4.8 Uncertainty, limitations and future scope

There are various sources that contribute to the uncertainties
in reconstructed TWSAs. The primary source of uncertain-
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Table 4. Overview of global precipitation, evapotranspiration and storage change data products utilized for streamflow calculations.

Dataset Spatial Temporal Reference and data source
resolution resolution

Precipitation (P )

GLDAS 0.25° 1 month Rodell et al. (2004), https://doi.org/10.5067/SXAVCZFAQLNO
GPCC 0.25° 1 month Schneider et al. (2008); Rustemeier et al. (2022), https://doi.org/10.5676/DWD_

GPCC/CLIM_M_V2022_025
GPCP 0.5° 1 month https://doi.org/10.5067/MEASURES/GPCP/DATA304 (Huffman et al., 2022)
IMERG 0.1° 1 month https://doi.org/10.5067/GPM/IMERG/3B-MONTH/07 (Huffman et al., 2023)
PERSIANN 0.25° 1 month Ashouri et al. (2015), https://www.ncei.noaa.gov/data/precipitation-persiann/

access/

Evapotranspiration (ET)

GLDAS 0.25° 1 month Rodell et al. (2004), https://doi.org/10.5067/SXAVCZFAQLNO
FLDAS 0.1° 1 month https://doi.org/10.5067/5NHC22T9375G (McNally, 2018)
GLEAM 0.25° 1 month Martens et al. (2017), Miralles et al. (2011), https://www.gleam.eu

Storage change (1S)

GRACE (JPL mascon) 0.5° 1 month Watkins et al. (2015), https://doi.org/10.5067/TEMSC-3JC63
BNML_TWSA 0.5° 1 month Mandal et al. (2024), https://doi.org/10.6084/m9.figshare.25376695
JPL_MSWEP 0.5° 1 month Humphrey and Gudmundsson (2019)
JPL_ERA5 0.5° 1 month Humphrey and Gudmundsson (2019)
DNN_JPL-M 1° 1 month Sun et al. (2020)
DNN_CSR-M 1° 1 month Sun et al. (2020)

Figure 18. Basin-wise CC values obtained against observed Q and
computed Q from water balance using TWSA data from GRACE,
BNML_TWSA and other studies.

ties arises from the measurement errors, inherent processing
errors, leakage errors and model assumptions associated with
the original GRACE data, as documented by Boergens et al.
(2022) and Gao et al. (2023). Nevertheless, this issue is ef-
fectively mitigated by utilizing the mascon solution, which
demonstrates clear superiority over the spherical harmonics
data (Kalu et al., 2024). The JPL mascon solution employs
a coastline resolution improvement (CRI) filter to minimize
leakage errors across land–ocean boundaries. Additionally,

gain factors are utilized to further mitigate these leakage
errors. Moreover, a Bayesian framework is implemented to
more effectively eliminate correlated errors compared to tra-
ditional empirical filters (Wiese et al., 2016). Another source
of uncertainty stems from the ML models, which may be cat-
egorized into contributions from inadequacies and/or lack of
knowledge regarding the model (epistemic) and data noise
(aleatoric). In the present study, epistemic uncertainty has
been reduced to some extent by training four different ML
models at each grid cell and selecting the best-performing
model to reconstruct the BNML_TWSA globally. On the
other hand, aleatoric uncertainty may arise from the input
dataset (i.e., the selected predictors). Analyzing the spatial
distribution of selected predictors using BNs (Fig. 2), it be-
comes apparent that commonly employed forcing variables,
such as precipitation (P ) and temperature (T ), do not rank
among the top predictors in most grid cells. This observation
suggests that these forcing variables are already accounted
for in the LSMs, as indicated by Sun et al. (2019). How-
ever, these variables are still selected as optimal predictors
in some of the grid cells, which implies that physics-based
LSMs may not entirely capture the total information encap-
sulated in the raw data. Consequently, incorporating a diverse
set of variables – including those already utilized in physics-
based LSMs – as potential predictors could mitigate model
structural errors and parameter uncertainties inherent in the
LSMs (Sun et al., 2020, 2019). Furthermore, uncertainties
may also depend on the actual source of the input variables.

https://doi.org/10.5194/essd-17-2575-2025 Earth Syst. Sci. Data, 17, 2575–2604, 2025

https://doi.org/10.5067/SXAVCZFAQLNO
https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025
https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025
https://doi.org/10.5067/MEASURES/GPCP/DATA304
https://doi.org/10.5067/GPM/IMERG/3B-MONTH/07
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://www.ncei.noaa.gov/data/precipitation-persiann/access/
https://doi.org/10.5067/SXAVCZFAQLNO
https://doi.org/10.5067/5NHC22T9375G
https://www.gleam.eu
https://doi.org/10.5067/TEMSC-3JC63
https://doi.org/10.6084/m9.figshare.25376695


2598 N. Mandal et al.: ML-based reconstruction of long-term global TWSAs

Figure 19. Comparison of observed streamflow (QObserved), Q obtained from water balance using GRACE TWS data (QGRACE) and Q
obtained from water balance using BNML_TWSA TWS data (QBNML_TWSA). RMSE values (right columns) obtained for QGRACE and
QBNML_TWSA against QObserved.

For example, precipitation from satellite sources will entail
different uncertainties compared to LSM-based precipitation.
In the present study, aleatoric uncertainty may arise from
the absence of variables that capture the impact of anthro-
pogenic activities. As we utilized variables from LSMs and
climate indices as inputs to the ML models for reconstruct-
ing BNML_TWSA, the influence of anthropogenic activities
is not adequately represented by these variables.

In this study, a model uncertainty assessment is performed
for the reconstructed dataset during the model training phase,
using the GRACE observations. The uncertainty in the model
predictions is quantified by calculating confidence intervals
(CIs) of the TWSA estimates. The CI is defined as the point
estimate± the margin of error, where the margin of error
is determined by the product of a confidence coefficient
(Cconfidence), derived from the standard normal curve, and the
standard error in the point estimate. The standard error in the
point estimate is computed using the residuals from the train-
ing set employed in the ML model. The residuals (ε) are cal-

culated as the difference between GRACE JPL mascon and
the reconstructed BNML_TWSA during the training period,
as outlined below:

GRACEt = BNML_TWSAt + ε. (10)

These residuals capture errors arising from data noise and
structural model inaccuracies, as discussed earlier. A clas-
sical approach to determining the standard error (σε) of the
residuals is given by the following:

σε =
√

variance(ε). (11)

For most grid cells, the residuals follow a normal distri-
bution (Fig. 20a). The normality of the residuals was ver-
ified using the Shapiro–Wilk test, with normality assumed
when the p value exceeds 0.05. Consequently, it is appropri-
ate to use the standard error to estimate the confidence in-
terval (Humphrey and Gudmundsson, 2019). The confidence
interval is calculated as follows:

95% CI= Point estimate ±Cconfidence× σε. (12)
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The spatial distribution of the standard error (σε) is shown in
Fig. 20b. The σε values for grid cells in arid regions are sig-
nificantly smaller compared to those in other regions, indicat-
ing improved accuracy in arid areas. This observation aligns
with the findings of Humphrey and Gudmundsson (2019).

Climate change and anthropogenic activities are critical
factors that can introduce additional uncertainties into the
assessment of TWS. These uncertainties arise from factors
such as land-use changes, irrigation practices and urbaniza-
tion, which significantly influence regional water storage dy-
namics. In this study, variables derived from LSMs were uti-
lized as potential predictors. However, future research could
benefit from incorporating input variables from GHMs to
better account for anthropogenic influences. GHMs are par-
ticularly well suited for modeling human interventions in wa-
ter resources, offering a more realistic representation of these
activities (Bibi et al., 2024). It is important to acknowledge
that both LSMs and GHMs have inherent limitations when
utilized as physically based sources of TWSAs (Bibi et al.,
2024). The integration of ML models with physical models
can help address these limitations, reducing errors in hydro-
logical analyses (Xu et al., 2014). Numerous studies have
demonstrated that ML models frequently outperform tradi-
tional hydrological models in various applications (Kim and
Kim, 2021; Liang et al., 2023). This suggests that leveraging
ML models, alongside advancements in physical modeling,
holds great promise for improving the accuracy and reliabil-
ity of hydrological assessments.

5 Data availability

The presented dataset is published at https://doi.org/10.6084/
m9.figshare.25376695 (Mandal et al., 2024), and updates
will be published as and when needed. The BNML_TWSA
dataset is available for all grid cells globally, with a spatial
resolution of 0.50°× 0.50°, similar to the GRACE JPL
mascon, and is provided in NetCDF format. The inputs to
the ML models and the optimal predictors selected using
BNs at each grid cell globally are also published. Addi-
tionally, the uncertainty associated with the BNML_TWSA
is made available in terms of standard error, provided as a
NetCDF file. All datasets utilized in this study are readily
accessible; comprehensive dataset information, along with
the respective links, is provided in this section. JPL GRACE
mascon data are obtained from the Physical Oceanog-
raphy Distributed Active Archive Center (NASA/JPL,
2023, https://doi.org/10.5067/TEMSC-3JC63; Watkins
et al., 2015, https://podaac.jpl.nasa.gov/dataset/TELLUS_
GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3). TWS
data are retrieved from NASA GLDAS CLSM simulations
(Li et al., 2019) (https://doi.org/10.5067/LYHA9088MFWQ,
Li et al., 2018; https://doi.org/10.5067/TXBMLX370XX8,
Li et al., 2020). Canopy surface water, soil mois-
ture content, snow water, precipitation and tem-

perature data are taken from the GLDAS Noah
Land Surface Model (Rodell et al., 2004) (https:
//doi.org/10.5067/9SQ1B3ZXP2C5, Beaudoing and Rodell,
2019; https://doi.org/10.5067/SXAVCZFAQLNO, Beaudo-
ing and Rodell, 2020). The Dipole Mode Index is taken
from the National Oceanic and Atmospheric Administra-
tion (NOAA) Physical Sciences Laboratory (Saji et al.,
1999; Saji and Yamagata, 2003) (https://psl.noaa.gov/gcos_
wgsp/Timeseries/Data/dmi.had.long.data). North Atlantic
Oscillation data (Wallace and Gutzler, 1981; Barnston and
Livezey, 1987) (https://www.cpc.ncep.noaa.gov/products/
precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii)
and the Oceanic Niño Index (Bamston et al., 1997)
(https://www.cpc.ncep.noaa.gov/data/indices/oni.ascii.txt)
are retrieved from the NOAA Climate Prediction Center.

6 Code availability

We have used standard Python packages such as tensorflow,
keras, sklearn and mlxtend to build the ML models, while
matplotlib was employed to generate the plots. No specific
software tools for ML were used. For reproducibility, the
Python codes used to build the ML models are available from
the same DOI-based repository: https://doi.org/10.6084/m9.
figshare.25376695 (Mandal et al., 2024).

7 Conclusions

In this study, we utilized Bayesian networks (BNs), a novel
predictor selection technique, and machine learning (ML)
models to reconstruct the global terrestrial water storage
anomaly (BNML_TWSA) product, which is a GRACE-like
TWSA dataset, thereby filling data gaps in GRACE and gen-
erating hindcasts for the pre-GRACE period. The major con-
clusions from this study are outlined below.

For the target TWSAs, optimal inputs are selected among
meaningful predictor variables, such as land surface model
outputs (TWSA from the Catchment Land Surface Model,
CTWSA, and the Noah Land Surface Model, NTWSA), me-
teorological variables (precipitation and temperature) and
climate indices (the Dipole Mode Index, DMI; the North At-
lantic Oscillation, NAO; and the Oceanic Niño Index, ONI).
It is observed that the climate indices, ONI and DMI, are se-
lected by BNs as optimal predictors for a large number of
grid cells globally, along with TWSAs from LSM outputs.
This establishes that, in addition to the available LSM-based
TWSA products, large-scale climate indices are more impor-
tant predictors of TWSAs than the local meteorological in-
puts.

At the global scale, convolutional neural network (CNN),
support vector regression (SVR), extra trees regressor (ETR)
and stacking ensemble regression (SER) models are em-
ployed following the selection of optimal predictors through
BNs at each grid cell to finally obtain BNML_TWSA. It
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Figure 20. Characteristics of residuals of reconstructed BNML_TWSA computed against GRACE JPL mascon during the training period:
(a) the Shapiro–Wilk normality test result on residuals; (b) the standard error of the residuals.

is noted that a single ML model cannot perform optimally
across all grid cells worldwide, due to the significant spa-
tial variability in the important predictors. However, the
performance of ETR is found to be the best for most of
the grid cells within the Ganga–Brahmaputra–Meghna, Go-
davari, Krishna, Limpopo and Nile river basins. ETR per-
forms best in 44 % grid cells worldwide followed by SVR,
SER and CNN.

The proposed approach yields a more reliable estimate
of TWS compared to the outputs of global hydrological
models (GHMs) and land surface models (LSMs), which
have significant biases due to inherent uncertainty and a
lack of representation of some of the physical processes.
BNML_TWSA outperforms NTWSA and CTWSA for most
grid cells worldwide. For river basins such as the Indus and
Nile, BNML_TWSA matches GRACE TWSAs very closely,
even during the period when the TWSAs from LSM outputs
deviate substantially from GRACE TWSAs. With respect
to evaluating the basin-wise average BNML_TWSA against
GRACE TWSAs, the Zambezi Basin in Africa exhibited
the highest correlation coefficient (CC= 0.989), followed by
the Godavari (CC= 0.984) and Krishna (CC= 0.983) basins

in India. Further, the accurate reflection of historical ex-
treme climate events, such as major floods, via the hind-
casted BNML_TWSA supports the enhanced accuracy of the
proposed model and the developed TWSA dataset. A com-
parative analysis with TWSA products developed in recent
literature (Humphrey and Gudmundsson, 2019; Sun et al.,
2020) indicates that BNML_TWSA surpasses these datasets
when evaluated against the overlapping GRACE period. Ad-
ditionally, streamflow, computed as residuals of the water
balance derived using BNML_TWSA and the TWSAs devel-
oped in recent literature, has been evaluated against observed
streamflow across six global river basins. The evaluation
revealed a reasonably good correlation for BNML_TWSA.
Furthermore, the uncertainty associated with BNML_TWSA
is assessed for each grid cell in the form of standard er-
ror (σε). The results showed that the standard error of the
BNML_TWSA exhibits a smaller magnitude in grid cells
located in arid regions compared to those in other regions.
Hence, this study demonstrates that the proposed BN- and
ML-based approach can effectively learn complex relation-
ships between various inputs and GRACE TWSAs, enabling
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global reconstruction and hindcasting of TWSAs, which is
essential for several hydroclimatological studies.
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