Articles | Volume 17, issue 6
https://doi.org/10.5194/essd-17-2507-2025
https://doi.org/10.5194/essd-17-2507-2025
Data description paper
 | 
12 Jun 2025
Data description paper |  | 12 Jun 2025

WetCH4: a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022

Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Amanda Armstrong, Eric J. Ward, Luke D. Schiferl, Clayton D. Elder, Olli Peltola, Annett Bartsch, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang

Related authors

Spatiotemporal Variability and Environmental Controls on Aquatic Methane Emissions in an Arctic Permafrost Catchment
Michael W. Thayne, Karl Kemper, Christian Wille, Aram Kalhori, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2025-4754,https://doi.org/10.5194/egusphere-2025-4754, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Evaluating urban methane emissions and their attributes in a megacity, Osaka, Japan, via mobile and eddy covariance measurements
Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France
Atmos. Chem. Phys., 25, 12513–12534, https://doi.org/10.5194/acp-25-12513-2025,https://doi.org/10.5194/acp-25-12513-2025, 2025
Short summary
A top-down evaluation of bottom-up estimates to reduce uncertainty in methane emissions from Arctic wetlands
Luana S. Basso, Goran Georgievski, Victor Brovkin, Christian Beer, Christian Rödenbeck, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-4467,https://doi.org/10.5194/egusphere-2025-4467, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Does increased spatial replication above heterogeneous agroforestry improve the representativeness of eddy covariance measurements?
José Ángel Callejas-Rodelas, Alexander Knohl, Ivan Mammarella, Timo Vesala, Olli Peltola, and Christian Markwitz
Biogeosciences, 22, 4507–4529, https://doi.org/10.5194/bg-22-4507-2025,https://doi.org/10.5194/bg-22-4507-2025, 2025
Short summary
High-resolution remote sensing and machine-learning-based upscaling of methane fluxes: a case study in the Western Canadian tundra
Kseniia Ivanova, Anna-Maria Virkkala, Victor Brovkin, Tobias Stacke, Barbara Widhalm, Annett Bartsch, Carolina Voigt, Oliver Sonnentag, and Mathias Göckede
EGUsphere, https://doi.org/10.5194/egusphere-2025-3968,https://doi.org/10.5194/egusphere-2025-3968, 2025
Short summary

Cited articles

Alonso, A., Muñoz-Carpena, R., and Kaplan, D.: Coupling high-resolution field monitoring and MODIS for reconstructing wetland historical hydroperiod at a high temporal frequency, Remote Sens. Environ., 247, 111807, https://doi.org/10.1016/j.rse.2020.111807, 2020. 
Amatulli, G., McInerney, D., Sethi, T., Strobl, P., and Domisch, S.: Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers, Sci. Data, 7, 162, https://doi.org/10.1038/s41597-020-0479-6, 2020. 
Arndt, K. A., Oechel, W. C., Goodrich, J. P., Bailey, B. A., Kalhori, A., Hashemi, J., Sweeney, C., and Zona, D.: Sensitivity of Methane Emissions to Later Soil Freezing in Arctic Tundra Ecosystems, J. Geophys. Res.-Biogeo., 124, 2595–2609, https://doi.org/10.1029/2019JG005242, 2019. 
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4, 444–448, https://doi.org/10.1038/ngeo1160, 2011. 
Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476, 198–201, https://doi.org/10.1038/nature10352, 2011. 
Download
Short summary
We present daily methane (CH4) fluxes of northern wetlands at 10 km resolution during 2016–2022 (WetCH4) derived from a novel machine learning framework. We estimated an average annual CH4 emission of 22.8 ± 2.4 Tg CH4 yr−1 (15.7–51.6 Tg CH4 yr−1). Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variation coming from Western Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Share
Altmetrics
Final-revised paper
Preprint