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Abstract. Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands
(> 45° N), accounting for 42 % of global wetland area, are increasingly vulnerable to carbon loss, especially
as CH4 emissions may accelerate under intensified high-latitude warming. However, the magnitude and spatial
patterns of high-latitude CH4 emissions remain relatively uncertain. Here, we present estimates of daily CH4
fluxes obtained using a new machine learning-based wetland CH4 upscaling framework (WetCH4) that com-
bines the most complete database of eddy-covariance (EC) observations available to date with satellite remote-
sensing-informed observations of environmental conditions at 10 km resolution. The most important predictor
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variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, and soil moisture.
Our results, modeled from 138 site years across 26 sites, had relatively strong predictive skill, with a mean R2

of 0.51 and 0.70 and a mean absolute error (MAE) of 30 and 27 nmol m−2 s−1 for daily and monthly fluxes,
respectively. Based on the model results, we estimated an annual average of 22.8± 2.4 Tg CH4 yr−1 for the
northern wetland region (2016–2022), and total budgets ranged from 15.7 to 51.6 Tg CH4 yr−1, depending on
wetland map extents. Although 88 % of the estimated CH4 budget occurred during the May–October period, a
considerable amount (2.6± 0.3 Tg CH4) occurred during winter. Regionally, the Western Siberian wetlands ac-
counted for a majority (51 %) of the interannual variation in domain CH4 emissions. Overall, our results provide
valuable new high-spatiotemporal-resolution information on the wetland emissions in the high-latitude carbon
cycle. However, many key uncertainties remain, including those driven by wetland extent maps and soil mois-
ture products and the incomplete spatial and temporal representativeness in the existing CH4 flux database;
e.g., only 23 % of the sites operate outside of summer months, and flux towers do not exist or are greatly
limited in many wetland regions. These uncertainties will need to be addressed by the science community to
remove the bottlenecks currently limiting progress in CH4 detection and monitoring. The dataset can be found
at https://doi.org/10.5281/zenodo.10802153 (Ying et al., 2024).

1 Introduction

Methane (CH4) is the second most important greenhouse gas
after carbon dioxide (CO2) and has contributed to around
one-third of anthropogenic warming (IPCC, 2024). Wetlands
are the largest natural source of CH4 emissions. Northern
freshwater wetlands (> 45° N) account for roughly 40 % of
global wetland area (ranging from 1.3×106 to 8.7×106 km2;
Zhang et al., 2021), yet the amount of CH4 emissions from
this region is highly uncertain – currently estimated to be
22–49.5 Tg CH4 yr−1 (Aydin et al., 2011; Baray et al., 2021;
Heimann, 2011; Kirschke et al., 2013; Peltola et al., 2019;
Saunois et al., 2020; Treat et al., 2018; Watts et al., 2023).
The uncertainties in the estimates of wetland CH4 emis-
sions are primarily attributed to challenges in mapping vege-
tated wetlands versus open water, leading to double-counting
(Thornton et al., 2016); seasonal wetland dynamics; and un-
certainties in estimates on flux rates.

Characterized by nutrient, moisture, and hydrodynamic
conditions, northern freshwater wetlands are classified as wet
tundra in treeless permafrost areas, peat-forming bogs and
fens in boreal and temperate biomes, and permafrost bogs
(Kuhn et al., 2021; Olefeldt et al., 2021). Bogs were esti-
mated to cover the largest area (1.38× 106–2.41× 106 km2)
in the northern high latitudes, followed by fens (0.76× 106–
1.14×106 km2) and wet tundra (0.31×106–0.53×106 km2)
(Olefeldt et al., 2021). Climate change poses significant
threats to these wetlands, affecting their extent and the du-
ration of conditions suitable for wetland formation in per-
mafrost zones (Avis et al., 2011). The rates of CH4 emissions
may increase quickly because of intensified warming at the
northern high latitudes (Masson-Delmotte et al., 2021; Rawl-
ins et al., 2010; Rößger et al., 2022; Walsh, 2014; Zhang et
al., 2023).

Reflecting the CH4 response to warming, northern wet-
lands may account for a high portion (∼ 78.5 %) of the global

surface emission anomaly of CH4 in 2020 relative to 2019
(6.0± 2.3 Tg CH4 yr−1) (Peng et al., 2022; Zhang et al.,
2023). This is concerning, as the responses of high-latitude
CH4 emissions to a warming and possibly wetting climate
could produce a positive carbon–climate feedback (McGuire
et al., 2009; Natali et al., 2019). However, the ability of mod-
els to account for and predict the spatiotemporal variability in
high-latitude wetland CH4 emission rates remains very lim-
ited (Treat et al., 2024).

Field observations of gas fluxes typically measure CH4
exchange between the land and atmosphere at sub-meter
to ecosystem (hundreds of meters to kilometers) scales
(Bansal et al., 2023; Chu et al., 2021). Tower eddy-
covariance (EC) methods provide near-continuous mea-
surements over ecosystem-scale footprints (5× 103–100×
103 m2), the size of which matches fine- to medium-
resolution satellite remote sensing. Typical EC measurement
system records include carbon, water, and energy fluxes
along with environmental conditions at half-hourly intervals.
Long-term EC datasets can support the analysis of daily,
monthly, seasonal, or interannual patterns and drivers of car-
bon fluxes (Baldocchi, 2003). Chambers can also measure
CH4 fluxes, although at sub-meter resolution and with low
spatial coverage (Bansal et al., 2023; Kuhn et al., 2021). Most
chamber studies have a limited temporal sampling period. To
avoid footprint disagreement between EC and chamber mea-
surement techniques, we focused on EC-based CH4 upscal-
ing in this study.

Data-driven upscaling uses empirical models (Bodesheim
et al., 2018; Jung et al., 2011), including machine learn-
ing (ML) approaches, to compute CH4 fluxes. It provides in-
dependent estimates to those from process-based models and
atmospheric inversions (Bergamaschi et al., 2013; Spahni et
al., 2011). These approaches have been used to estimate CH4
fluxes from various ecosystems, such as northern wetlands
(Peltola et al., 2019; Virkkala et al., 2024; Yuan et al., 2024),
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global reservoirs (Johnson et al., 2021), and global aquatic
ecosystems (Rosentreter et al., 2021).

Two types of methods are generally used for data-driven
upscaling. The first uses a look-up table approach and ap-
plies emission rates or emission factors via data synthesis to
the corresponding land surface areas, or activity data, over
the study region. Emission rates from field observations are
associated with environmental drivers that have been spa-
tially characterized and are then applied to the land covers
with the same environmental drivers. For example, Rosen-
treter et al. (2021) collected 2601 CH4 flux records measured
using various methods through a literature review and char-
acterized emission rates over 15 aquatic ecosystem types to
upscale global aquatic CH4 emissions. The study provided
estimates of total and per-ecosystem emissions but did not
produce spatial distributions and was unable to estimate tem-
poral changes. A similar method was applied for the north-
ern permafrost region, where statistical CH4 flux rates from
the Boreal–Arctic Wetland and Lake CH4 Dataset (BAWLD-
CH4) were analyzed for emission estimation by wetland type
(Kuhn et al., 2021; Ramage et al., 2024). This method favors
homogeneous ecosystems and static environments, and the
results may be biased for large-scale studies where spatial
heterogeneity is prevalent.

Another approach uses ML methods to upscale fluxes
(Bodesheim et al., 2018; Tramontana et al., 2016; Yuan
et al., 2024). ML models are developed with large train-
ing datasets. Generally, ML models can learn from high-
dimensional data by optimizing many statistical parameters
and identifying variables that are closely associated with spa-
tiotemporally varying CH4 emissions. The efficient compu-
tational cost makes it easier to apply the models over large
regions at higher spatial resolutions. Among ML methods,
decision-tree-based algorithms have been widely used in up-
scaling for computational efficiency and predictive perfor-
mance (Beaulieu et al., 2020; Jung et al., 2020; Virkkala
et al., 2021; Zhang et al., 2020). Specifically, random for-
est (RF) algorithms have been utilized in regional to global
wetland CH4 upscaling (Davidson et al., 2017; Feron et al.,
2024; McNicol et al., 2023; Peltola et al., 2019) due to their
robustness and the prevention of overfitting to noise in the
input data. For example, Peltola et al. (2019) used RF and
EC measurements to upscale monthly CH4 fluxes from the
northern wetlands at 0.25–0.5° spatial resolution over the
2013–2014 period.

ML-based upscaling studies usually incorporate infor-
mation from remote sensing to inform wetland extent,
changes in vegetation, and other surface biophysical prop-
erties (Davidson et al., 2017; Virkkala et al., 2024; Watts et
al., 2014, 2023). For example, recent ML-based large-scale
upscaling approaches used the Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature (LST)
at night, the enhanced vegetation index (EVI), the vegeta-
tion canopy height, and ancillary environmental variables
from remote-sensing products (McNicol et al., 2023; Ouyang

et al., 2023; Peltola et al., 2019). (See Sect. S1 and Ta-
ble S1 in the Supplement for the detailed predictive variables
used in existing ML-based wetland CH4 upscaling products.)
However, soil moisture and soil temperature, two control-
ling factors of wetland CH4 fluxes (Knox et al., 2021; Yuan
et al., 2022), were missing in previous ML-based regional
to global upscaling studies. Soil moisture has been identi-
fied as one of the important controlling factors for fresh-
water wetland CH4 fluxes (Euskirchen et al., 2024; Voigt
et al., 2023). This is the first ML-based study that incor-
porates remote-sensing constraints from Soil Moisture Ac-
tive Passive (SMAP) microwave-sensed soil moisture and
MODIS Nadir Bidirectional Reflectance Distribution Func-
tion (BRDF)-Adjusted Reflectance (MODIS NBAR) data.
Surface reflectance provides information on (1) vegetation
properties that affect the production and transport of CH4
to the atmosphere and (2) ecosystem wetness (Alonso et al.,
2020; Chen et al., 2013; Entekhabi et al., 2010; Houborg et
al., 2007; Murray-Hudson et al., 2015; Wang et al., 2018).

The goal of this study is to develop a scalable framework to
upscale daily CH4 fluxes from EC observations to northern-
latitude wetlands (> 45° N) using the ensemble RF ML ap-
proach with a suite of reanalysis and remote-sensing prod-
ucts representing spatiotemporal environmental conditions.
Our specific objectives are as follows:

1. compile an updated EC-based CH4 flux dataset that
extends the temporal and spatial coverage of the
FLUXNET-CH4 database (Delwiche et al., 2021) for
the northern high latitudes;

2. build RF models of CH4 fluxes at the site level based
on physical variables that are measured in situ, thereby
allowing us to prioritize the selection of gridded vari-
ables for upscaling, and then build ensemble RF models
at the grid level using gridded reanalysis inputs and con-
straints from satellite remote sensing; and

3. apply grid-level models to produce a 10 km gridded
daily distribution of the CH4 flux product for the north-
ern high-latitude wetlands using bootstrapped models
and their derived uncertainties (Table S1).

2 Materials and methods

2.1 Overview

The scalable framework of upscaling CH4 fluxes from
EC observations for wetlands (hereafter referred to as
WetCH4), which selects physical predictors at the site level
and constructs upscaling models at a grid level, is illustrated
in Fig. 1. In situ, reanalysis, and remote-sensing products
were compiled as candidate predictors for modeling (Fig. 1,
purple boxes; see Sect. 2.2 for details). We first ran a fea-
ture selection, which uses ensemble RF models to choose
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Figure 1. Workflow and experimental design: abstract methodological steps are integrated in the dashed box on the left, while a detailed
experimental design is described on the right. Colors on the right match the associated step on the left.

important predictors from an extensive list of in situ vari-
ables available from the flux tower sites. Gridded versions
of selected site variables were taken from version 2 of the
Modern-Era Retrospective analysis for Research and Appli-
cations (MERRA-2) reanalysis (Gelaro et al., 2017) to model
with RF at the grid level. We then added remote-sensing-
based products from MODIS NBAR and SMAP soil wet-
ness, as well as topographic data, to strengthen the model
and provide a finer delineation of environmental gradients
based on the literature and expert knowledge (Poulter et al.,
2023; Sturtevant et al., 2012). The predictive performance of
grid-level models with input variables at their native spatial
resolution (except for MERRA-2 variables, which were in-
terpolated to 10 km resolution) was then evaluated. We also
compared model performance with those from two additional
ML algorithms: support vector machine (SVM) and an arti-
ficial neural network (ANN) (Fig. 1, pink boxes). The RF al-
gorithm modeled on all gridded input variables gained the
highest mean R2 and lowest daily median errors with respect
to model predictive performance and was selected for boot-
strap modeling and upscaling the 0.098° (∼ 10 km along the
latitudinal length) gridded time series of daily CH4 fluxes
and ensemble uncertainty estimation (Fig. 1, gray boxes).

2.2 Data

2.2.1 Eddy-covariance measurements

The base of our EC data collection stems from a publicly
available global synthesis coordination of FLUXNET-CH4
(Delwiche et al., 2021; Knox et al., 2019), which includes
79 EC tower sites (42 of which are freshwater wetland sites)

and 293 site years of data. FLUXNET-CH4 represents a first
compilation of global CH4 fluxes measured by EC towers
(Delwiche et al., 2021; Knox et al., 2019), although more
EC data exist outside of the network. We collected both daily
and half-hourly data from 44 sites in the northern high lat-
itudes (> 45° N), accounting for 167 site years as our base
dataset, to which we added data from 6 new sites (31 site
years) and additional data to 9 existing sites (21 site years)
contributed by principal investigators (PIs; Table S2). In to-
tal, we assembled data from 50 EC tower sites in northern
latitudes (219 site years), of which 33 are from wetlands
(155 site years), with 13 wet tundra sites, 11 fens, and 9 bogs.
Data entries with missing data in gridded predictors were
excluded, including five wetland sites (FI-LOM, DE-SFN,
RU-SAM, RU-VRK, and SE-ST1) where data were collected
before SMAP data were available. Another two sites (CA-
BOU and RU-COK) were excluded after quality control re-
vealed an instrument anomaly that affected the measure-
ments. As a result, daily and half-hourly EC data from the
26 wetland sites were compiled for analysis from 22 sites
in FLUXNET-CH4 (of which 8 were sites with updated data
to recent years, including US-ATQ, US-BEO, US-BES, US-
BRW, US-IVO, US-NGB, US-NGC, and US-UAF) and 4 ad-
ditional sites using information provided directly by PIs (in-
cluding CA-ARB, CA-ARF, CA-PB1, and CA-PB2), con-
sisting of 138 site years of data in total and representing the
largest high-latitude EC data compilation for CH4 to date
(Table S2; see Sect. S2). The sites were distributed among
wetland types, including 9 fens, 7 bogs, and 10 wet tundra
sites (Fig. 2). RU-CHE and RU-CH2 were two Chersky sites
in Eastern Siberian Russia that were located about 600 m
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Figure 2. Eddy-covariance tower sites: distribution (> 45° N),
class, and data size (site years) used in WetCH4. Colored circles
represent EC tower locations and land cover classes, with wetland
sites in cyan (wet tundra), yellow (bog), and orange (fen). The circle
sizes represent observation years (n) of available CH4 fluxes at the
site (e.g., 1–3 stands for 1≤ n < 3). The background image shows
the estimated maximum annual fractions of wetland cover in 2011–
2020 from WAD2M (Zhang et al., 2021).

from each other to form a paired disturbance experiment.
RU-CH2 was a control tower over an undisturbed wetland,
whereas RU-CHE was a tower affected by artificial drainage.
The aboveground conditions at the two sites were virtually
identical, but soil temperature and moisture were different.
Drainage caused lower CH4 fluxes at RU-CHE compared to
those at RU-CH2. However, the SMAP data could not discern
the drainage impact on soil moisture at the RU-CHE site due
to a coarser spatial resolution; thus, the RU-CHE site was
excluded from grid-level modeling.

Half-hourly fluxes acquired from FLUXNET-CH4 were
already gap-filled (see Sect. S2; Irvin et al., 2021). Addi-
tional half-hourly fluxes acquired from site PIs were not gap-
filled; therefore, we performed per-site gap filling follow-
ing the FLUXNET-CH4 approach (Irvin et al., 2021; Knox
et al., 2019). Gap-filled fluxes were temporally consistent
and agreed with validation data (mean R2

= 0.68 and mean
RMSE= 6 nmol m−2 s−1; see Sect. S2).

The mean difference in daily mean fluxes between
the gap-filled data and the original data converged to
−0.2 nmol m−2 s−1 when there were more than 11 half-
hourly EC tower observations in a day but showed substan-
tial bias and larger differences when including days with
less than 11 half-hourly observations (Fig. S1 in the Supple-
ment). Therefore, daily data entries were only kept when the
number of half-hourly EC tower observations per day was
greater than 11. All data were retained for four sites where
only daily, quality-filtered data were provided by site PIs (Ta-
ble S2). As a result, we identified 12 784 daily data entries for
upscaling models (Table S2), spanning from 2015 to 2021
with seasonal observation distributions of 44.0 % in June–
July–August (JJA), 29.0 % in March–April–May (MAM),
24.5 % in September–October–November (SON), and 2.5 %
in December–January–February (DJF) (Fig. S2).

Site-level candidate predictors were identified by their
known influences on CH4 fluxes at multiday to seasonal
scales from field control experiments, in situ flux synthe-
sis, and process-based modeling (Bloom et al., 2010, 2017;
Knox et al., 2021; Olefeldt et al., 2013, 2017). Only phys-
ical variables measured in situ were considered candidate
predictors for site-level modeling. In situ candidate predic-
tors that were gap-filled and available in FLUXNET-CH4 in-
cluded daily averages of air temperature, soil temperature, air
pressure, vapor pressure deficit, relative humidity, latent heat
flux, sensible heat flux, longwave incoming radiation, short-
wave incoming radiation, net radiation, wind speed, and daily
total precipitation (Fig. 1, site-level model solid blue box).
We were unable to include water table depth (WTD) or soil
water content (SWC) in our site-level model, as they were
not available at many sites. However, we explored ML re-
sults that included WTD or SWC for a subset of individual
sites (36 % of total) where these variables were available (see
Sect. S2 for more details).

2.2.2 Reanalysis data and satellite data products

Reanalysis data were used as the gridded input to replace
selected predictors at the site level for training the grid-
level models and upscaling. These data provided long-term,
continuous estimates of nearly all of the candidate predic-
tors of the variables measured in situ (Fig. 1). MERRA-2 is
an atmospheric reanalysis of the modern satellite era pro-
duced by NASA’s Global Modeling and Assimilation Of-
fice (Gelaro et al., 2017). We calculated daily means for air
pressure, surface air temperature, latent heat flux, sensible
heat flux, downward incoming shortwave radiation, down-
ward incoming longwave radiation, and soil temperature at
three depths (9.88, 19.52, and 38.59 cm) (Jiao et al., 2023)
as well as the relative humidity using the hourly average of
surface flux diagnostics, land surface diagnostics, and land
surface forcings. The original 0.5°× 0.625° resolution data
were resampled to 0.5° grids using a bilinear interpolation
method in the NASA MERRA-2 web service tool available
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from the Goddard Earth Sciences Data and Information Ser-
vices Center (GES DISC). The MERRA-2 data were fur-
ther bilinearly interpolated from 0.5 to 0.098° grids weighted
by the multiple-error-removed improved-terrain digital ele-
vation model (MERIT-DEM) at 90 m resolution that signifi-
cantly improves elevation estimates in flat terrain over previ-
ous DEM products (Yamazaki et al., 2017). Daily time series
of the nearest 0.098° grid to each EC location were extracted
for grid-level modeling, whereas daily grids were input for
the 10 km upscaling products.

To improve the predictive performance of grid-level mod-
els, we added remotely sensed biophysical variables, includ-
ing SMAP soil wetness, MODIS NBAR bands, and topo-
graphic data (Fig. 1, Table 1). All remote-sensing products
were extracted at daily time steps and their native spatial res-
olutions at EC tower sites for modeling and were aggregated
to 0.098° grids over the study domain for upscaling using
Google Earth Engine. We filtered out data gaps in SMAP
and MODIS NBAR time series extracted at the native spa-
tial resolution during model training and validation. Gaps in
MODIS NBAR were negligible when aggregated from 500 m
to 0.098° grids. Gaps in winter SMAP data were filled with
zero values to represent frozen soils for upscaling.

The SMAP soil moisture product is generated using
passive-microwave-radiometer-measured brightness temper-
ature merged with estimates from the GEOS Catchment Land
Surface and Microwave Radiative Transfer Model in a soil
moisture data assimilation system, providing global products
of surface and root zone soil moisture (Reichle et al., 2017).
For soil moisture, we employed Level-4 daily soil wetness
products (SPL4SMGP.007) from the SMAP mission as prox-
ies for water table depth in the grid-level model (Reichle et
al., 2017). Surface, root zone, and soil profile wetness are di-
mensionless variables that indicate relative saturation for top-
layer soil (0–5 cm), root zone soil (0–100 cm), and total pro-
file soil (0 cm to model bedrock depth), respectively. These
three variables are originally 3-hourly data at 9 km resolution
and were converted to daily means.

Static topographic variables were added as additional
attributes in the grid-level model. We used the topo-
graphic slope and indices that represent the water flow
from the MERIT-DEM based on Geomorpho90m (Amat-
ulli et al., 2020). Two topographic indices were applied: the
compound topographic index (cti), which is considered a
proxy for the long-term soil moisture availability, and the
stream power index (spi, https://gee-community-catalog.org/
projects/geomorpho90/, last access: 20 March 2023), which
reflects the erosive power of the flow and the tendency of
gravitational forces to move water downstream. We tested
the impact of elevation on model performance in explaining
the inter-site variability in CH4 upon the current locations
of wetland EC sites (see Sect. S6). However, elevation was
not considered an ecologically controlling factor for wetland
CH4 fluxes; hence, it was excluded from the input variable

importance analysis that ranked the importance of predictors
to the prediction accuracy in RF models.

We included MODIS NBAR (MCD43A4v061) products
as predictor variables to represent the vegetation productivity
in the grid-level model in order to enhance our model predic-
tive performance in vegetated wetlands. The seven NBAR
bands (including red, green, and blue bands; two near-
infrared bands; and two shortwave-infrared bands) are de-
veloped daily at 500 m spatial resolution, using 16 d of Terra
and Aqua data to remove view angle effects, and are tempo-
rally weighted to the ninth day as the best local solar-noon
reflectance (Schaaf et al., 2002; Wang et al., 2018). We did
not explicitly include a vegetation productivity variable, as
such information is retained in MODIS NBAR, which is used
to produce vegetation indices (e.g., EVI) and gross primary
production (GPP). Emergent aerenchymous vegetation is an-
other important component in the plant-mediated pathway of
CH4 transport, although it is less represented in existing up-
scaling models (Table S1).

2.3 Machine learning model

2.3.1 General model design

We used an RF regression algorithm to train site-level and
grid-level ML models (Kim et al., 2020). RF regression
builds an assembly of independent trees, each of which is
trained from a random subset of input data and tested against
the rest of the data (Breiman, 2001). A tree grows two
leaves when a random selection of subset features reduces
the mean-squared error (MSE) of predictions after splitting
at a leaf node. Each tree is trained on a bootstrap sample of
input data. Trees constructed in this way are less correlated in
the ensemble. The generalization error converges as the for-
est grows to a limit to avoid overfitting. Compared to other
ML algorithms, RF has been shown to have better accuracy
and lower uncertainty (Irvin et al., 2021; Kim et al., 2020).
This approach has been previously applied to upscaling CH4
fluxes in wetlands and rice paddies across multiple ecosys-
tems (Davidson et al., 2017; Feron et al., 2024; McNicol et
al., 2023; Ouyang et al., 2023; Peltola et al., 2019).

A grid search hyperparameter tuning for daily models
was performed before predictor selection. We carried out
analyses in Python (version 3.6) with the ensemble RF re-
gressor in the “scikit-learn” package (Pedregosa et al.,
2011). With all of the predictors and data, hyperparame-
ters were set after tuning for optimized model performance,
including the number of trees (n_estimators= 100), num-
ber of variables to consider when looking for the best split
(max_features= “sqrt”, meaning the square root of the total
number of feature variables), the maximum depth of the tree
(max_depth= 10), the minimum number of samples required
to split a node (min_sample_split= 10), and the minimum
number of samples at a leaf node (min_samples_leaf= 4).
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Table 1. Description of input variables for grid-level upscaling model.

Variable type Name Description Unit Data source Native/model spatial Native
resolution temporal

resolution

Reanalysis tas surface air temperature °C MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis pa surface air pressure kPa MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis le latent heat W m−2 MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis h sensible heat W m−2 MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis rsdl downward incoming longwave radiation W m−2 MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis rsds downward incoming shortwave radiation W m−2 MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis spfh surface specific humidity unitless MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis ts1 soil temperature °C MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis ts2 soil temperature °C MERRA-2 0.625°× 0.5°/10 km 1-hourly
Reanalysis ts3 soil temperature °C MERRA-2 0.625°× 0.5°/10 km 1-hourly
Remote sensing sm_s_wetness surface soil wetness unitless SPL4SMGP.007 9 km 3-hourly
Remote sensing sm_r_wetness root zone soil wetness unitless SPL4SMGP.007 9 km 3-hourly
Remote sensing sm_p_wetness profile soil wetness unitless SPL4SMGP.007 9 km 3-hourly
Remote sensing nbar1 red band unitless MCD43A4v061 500 m daily
Remote sensing nbar2 near-infrared 1 band unitless MCD43A4v061 500 m daily
Remote sensing nbar3 blue unitless MCD43A4v061 500 m daily
Remote sensing nbar4 green unitless MCD43A4v061 500 m daily
Remote sensing nbar5 near-infrared 2 band unitless MCD43A4v061 500 m daily
Remote sensing nbar6 shortwave-infrared 1 band unitless MCD43A4v061 500 m daily
Remote sensing nbar7 shortwave-infrared 2 band unitless MCD43A4v061 500 m daily
Remote sensing slope terrain slope radians Geomorpho90m 90 m static
Remote sensing spi stream power index unitless Geomorpho90m 90 m static
Remote sensing cti compound topographic index unitless Geomorpho90m 90 m static

For predictor selection and comparisons between the site-
level model using in situ variables and the grid-level model
using gridded versions of in situ variables, we built the model
across all sites and adopted 5-fold cross-validation and “out-
of-bag” scores from ensemble trees to evaluate model per-
formance, because, at this stage, we aimed to find physi-
cally reasonable variables from in situ measurements and to
compare how the differences in scales and measuring meth-
ods between in situ predictors and gridded proxies affect the
model-learned temporal variability in CH4 fluxes. A subset
of the data were bagged to train each tree in the RF model,
with the remaining out-of-bag data used as independent val-
idation data to evaluate the prediction accuracy of each tree,
resulting in the average out-of-bag scores of all of the trees
in the model. Cross-validation was applied to daily predic-
tions to select variables that can best predict the daily vari-
ability in CH4 fluxes within sites. The changes in model per-
formance after predictor selection and after switching from
site-level variables (in situ measurements) to grid-level prox-
ies (reanalysis data) were assessed, which helped quantify
differences in model performance when modeling on in situ
predictor variables versus modeling on substitute variables at
the grid level. Because the data sources of model input from
in situ versus from gridded variables were different, we sepa-
rated site-level and grid-level modeling to ensure that the im-
portance of input features was comparable within a model.
The feature importance reflects the relative importance of
each input variable in an RF model. It also pertains to the

input data distribution and model structure. Therefore, the
feature importance by site models can help us identify con-
trolling physical variables but would not necessarily translate
to the same rank in the feature importance of grid models,
especially when additional gridded variables from remote-
sensing products were added to complement the missing con-
trollers from site models.

A summary of input variables for grid-level modeling is
provided in Table 1. Although RF can enhance model ro-
bustness when collinearity presents in input variables, the
collinearity could affect the interpretation of feature impor-
tance measured by the impurity decrease in RF models.
Therefore, we first built a baseline grid-level model with in-
dependent variables after a pairwise Pearson correlation test
(Table S3) to exclude covariates. We grouped significantly
correlated variables (p < 0.001, r > 0.8; white grids except
for those on the diagonal line in Table S3), thereby form-
ing three groups: SMAP soil moisture variables in group 1
(we also included surface soil moisture that was significantly
correlated with the other two soil moisture variables and
r > 0.7); air temperature (tas), downward longwave radia-
tion (rsdl), spfh, and soil temperatures (ts1, ts2, and ts3)
in group 2; downward shortwave radiation (rsds) and latent
heat (le) in group 3. We then selected the one most impor-
tant variable in each group for the baseline models according
to the feature importance of modeling on all predictor vari-
ables (Fig. S14). The rest of the variables out of the groups
were included in the baseline features. The resulting base-
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line features included air pressure (pa), latent heat flux (le),
sensible heat flux (h), soil temperature (ts2), root zone soil
wetness (sm_r_wetness), slope, spi, and cti. Then, we de-
signed four additional different model settings by changing
predictor variables, including (1) baseline variables plus co-
variates, (2) only variables from MODIS NBAR, (3) baseline
variables plus NBAR bands, and (4) all predictor variables.
In this forward feature selection process, we evaluated the
impacts of adding constraint variables from remote-sensing
products on model performance.

Model predictive performance evaluates the accuracy of a
model to predict at a new site without any prior knowledge.
For the spatial predictive performance evaluation of grid-
level ML models, we used a nested leave-one-site-out cross-
validation scheme (hereafter referred to as LOOCV). Such a
scheme selects one site to use as independent validation data
to evaluate models trained and tested with data from the re-
maining sites, repeating the process for all sites. Without any
prior knowledge of the validation site added to a model, the
LOOCV scheme can (1) assess the predictive ability of the
model in a new place and (2) evaluate the uniqueness of a site
in the dataset. Similar forms of spatial LOOCV have been
used to evaluate upscaling models for global or regional CO2
and CH4 (McNicol et al., 2023; Peltola et al., 2019; Virkkala
et al., 2021). The validation of the upscaling model was not
only performed with respect to daily predictions but also on
monthly means. The predictive performance of the upscaling
model on the monthly variability in CH4 fluxes and spatial
variability across sites is important for studies that vary with
respect to their temporal and spatial scales.

Model predictive performance was assessed using three
evaluation metrics: mean absolute error (MAE), root-mean-
square error (RMSE), and R2 score. Daily modeled CH4
fluxes were compared to EC observations at each valida-
tion site. The evaluation metrics were calculated at daily and
monthly scales for each site separately to examine the model
performance by general wetland types and for all sites pooled
together to evaluate the overall performance and undertake
a comparison with existing studies. Squared error metrics
are more sensitive to outliers and highly skewed data, which
is often the case with CH4 fluxes. Therefore, we selected
both the MAE and RMSE to quantify the errors. The mean
error (ME) between model predictions and validation data
was calculated, representing the systematic bias in predicted
fluxes. The standard deviation of model residuals was also in-
cluded to measure the spread of the residuals. This matches
the RMSE when the ME equals zero.

Two additional ML algorithms were compared with RF:
SVM and ANN. SVM is efficient with sparse data where the
dimension of the input space is greater than the number of
training samples (Kuter, 2021). While the training process of
ANN is expensive and time-consuming, it can develop deep
networks with growing training data which may increase pre-
dictive performance (Saikia et al., 2020). We used support
vector regression to model CH4 fluxes with the same predic-

tor variables and dataset as used in the ensemble RF regres-
sions. Multilayer perceptron regressor is an implementation
of an ANN model that adjusts the weights of neurons using
backpropagation to improve prediction accuracy. It uses the
square error as the loss function and a stochastic gradient-
based optimizer “Adam” for weight optimization. We used
two hidden layers in the ANN model, each with 50 neurons.
Data from all variables were normalized to achieve the best
model performance for SVM and ANN.

2.3.2 CH4 flux upscaling

We trained 500 ensemble RF models with all gridded predic-
tors of the grid-level models from the general model design
and with data from all sites for upscaling daily CH4 fluxes.
Each RF model was trained with the same optimized hyper-
parameters and different bootstrap samples. Ensemble mod-
els were then applied to 0.098° gridded predictors to pro-
duce the upscaling CH4 flux intensities from the means of
the 500 predictions and the prediction uncertainty from the
standard deviations. Given that the CH4 fluxes were mod-
eled with data from the wetland EC sites, a wetland extent
map was also needed to constrain the areas when scaling
grid emissions (see Sect. 2.4). Final CH4 emission and uncer-
tainty maps associated with wetland extents were the result
of multiplying the predicted means and standard deviations
of flux intensities by wetland areas. All wetland maps were
resampled to 0.098°× 0.098° resolution with a conservative
remapping method for producing the emission products.

2.4 Wetland extent maps and benchmark estimates of
wetland CH4 emissions

Wetland extent maps were applied to scale the modeled CH4
flux intensities to the region. The Wetland Area and Dynam-
ics for CH4 Modeling (WAD2Mv2) product, representing
spatiotemporal patterns of inundated vegetated wetlands at
0.25° resolution, was selected as the reference for dynamic
wetland areas in this study (Zhang et al., 2021). Active- and
passive-microwave-detected inundation data combined with
static wetlands were used to delineate the monthly dynamics
of wetland inundation between 2000 and 2020. Open water-
bodies such as lakes, rivers, reservoirs, coastal wetlands, and
rice paddies were excluded. We used monthly mean WAD2M
fractions between 2010 and 2020 to represent seasonal wet-
land dynamics. Emission estimations are subject to differ-
ences in the wetland extent between maps (Saunois et al.,
2020). We used monthly means of the Global Inundation Ex-
tent from Multi-Satellites (GIEMS2) product (Prigent et al.,
2020) to represent temporal patterns in the restricted wet-
land extents at 0.25° resolution. The coarse-resolution maps
were resampled to 0.098°× 0.098° grids using the nearest-
neighbor method. The static Global Lakes and Wetlands
Database version 1 (GLWDv1) Level-3 1 km resolution map
excluding the lakes, rivers, and reservoirs classes (Lehner
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and Döll, 2004) was included to quantify the upper limit of
wetland cover. For all explicit GLWDv1 wetland classes, we
assumed a 100 % wetland coverage in the original pixels, ex-
cept for “intermittent wetland/lake” for which we assumed
a 50 % coverage; for GLWDv1 classes represented as extent
ranges, we used the average value of the range (i.e., 75 %
for 50 %–100 % wetland, 37 % for 25 %–50 % wetland, and
12 % for 0 %–25 % wetland). To support domain emission
comparisons, wetland cover was also extracted from the up-
dated GLWD version 2 dataset (GLWD v2; Lehner et al.,
2025) which provides the spatial extent of 33 waterbody and
wetland classes at 500 m spatial resolution. All freshwater
wetland classes that occur in our study area (classes 8–25)
from GLWD v2 were included (i.e., excluding rivers, lakes,
reservoirs, and other permanent open-water bodies as well as
coastal saline/brackish wetlands). The original wetland areas
per GLWD v2 pixel were summed across all included classes
to derive a total wetland area per pixel. Furthermore, a re-
gional freshwater wetland distribution dataset was calculated
from a permafrost-region-specific land cover map (CALU –
circum-Arctic land cover units) which classified 23 land cov-
ers including 3 wetland classes and 10 moist to wet tundra
classes at 10 m resolution and aggregated to 1 km with the
majority class (Bartsch et al., 2024). This regional wetland
map was applied for CH4 emission estimation in the North
Slope region of Alaska to assess the impacts of different wet-
land maps on emission estimates in this area when compared
against airborne measurements. Wetland areas from the finer-
resolution maps were aggregated to 0.098°×0.098° grids for
emission calculations.

We compared WetCH4 emissions with benchmark do-
main or regional estimates from bottom-up process mod-
els, top-down atmospheric-observation-based inversions, and
existing upscaling studies. We acquired data for the study
domain from the ensemble mean of bottom-up process-
based models from the Global Carbon Project (GCP) (Zhang
et al., 2025) and the extended ensemble of wetland CH4
estimates that were priors for the top-down GEOS-Chem
atmospheric chemical and transport model (WetCHARTs)
(Bloom et al., 2017; Friedlingstein et al., 2022). We also
included the atmospheric inversions of northern high lat-
itudes from an assimilation CarbonTracker-CH4 system
(Bruhwiler et al., 2014; update at https://gml.noaa.gov/
ccgg/carbontracker-ch4/carbontracker-ch4-2023/, last ac-
cess: 16 May 2023). We compared WetCH4 with existing up-
scaled products of monthly CH4 wetland fluxes based on Pel-
tola et al. (2019) for the study domain. For regional wetland
hotspots, CH4 flux estimates were obtained from Carbon
in Arctic Reservoirs Vulnerability Experiment (CARVE),
which measured total atmospheric columns of CO2, CH4,
and carbon monoxide over northern Alaska in spring, sum-
mer, and early fall between 2012 and 2014 (Chang et al.,
2014; Miller et al., 2016). These were used to verify our sea-
sonal emission estimates over the North Slope region (Zona
et al., 2016).

3 Results

3.1 Model validation

3.1.1 Site-level modeling

Site-level modeling used all wetland sites to build an
RF model and identified the 10 most important variables
measured in situ that, if left out, decreased the valuation score
of the model by more than 90 % based on the mean decrease
in impurity (Fig. S3). With bootstrap sampling and using all
candidate predictors (Fig. 1) in the model, the out-of-bag
RMSE of the site-level model was 30.22 nmol m−2 s−1,
and the out-of-bag R2 between observed daily means of
CH4 fluxes and prediction was 0.73. Modeling with the
10 most important variables at the site level resulted in
similar model performance, with an out-of-bag RMSE of
30.43 nmol m−2 s−1 and an out-of-bag R2 of 0.73. Site-level
model performance converged as the increment of predictor
variables ordered by the importance rank (Fig. S4). We
then tested building separate models according to wetland
types because distinct CH4 fluxes have been observed
from wet tundra (Fig. S5; mean± standard deviation:
13± 14 nmol m−2 s−1), bogs (22± 26 nmol m−2 s−1), and
fens (56±88 nmol m−2 s−1). The out-of-bagR2 (RMSE) was
0.85 (7.2 nmol m−2 s−1) for bogs, 0.84 (27.7 nmol m−2 s−1)
for fens, and 0.57 (34.3 nmol m−2 s−1) for wet tundra.
Modeling with the selected 10 predictors resulted in
an out-of-bag R2 (RMSE) of 0.84 (7.6 nmol m−2 s−1)
for bogs, 0.84 (27.9 nmol m−2 s−1) for fens, and
0.53 (36.3 nmol m−2 s−1) for wet tundra. Next, we tested
whether the inclusion of non-wetland sites (upland and
rice sites) would affect model performance. This resulted
in an out-of-bag R2 decrease to 0.56 and an RMSE in-
crease to 38.86 nmol m−2 s−1, suggesting that a generalized
ML model over all land cover classes is not practical to
reliably predict CH4 fluxes with the current set of predictors
and available data. This is most likely due to the distinctive
features of CH4 emissions between wetland and non-wetland
classes (Fig. S5).

3.1.2 Grid-level modeling and remote-sensing
constraints

Substituting in situ measurements of selected predictor
variables with gridded MERRA-2 variables slightly re-
duced model accuracy. The out-of-bag R2 decreased by
9.6 % to 0.65 and the RMSE increased by 15 % to
34.9 nmol m−2 s−1 compared to the site-level model. The
coarse-resolution MERRA-2 reanalysis data capture less
spatial variability in the selected physical variables and are
less accurate at the grid level compared to in situ EC mea-
surements.

Adding remote-sensing constraints to the gridded vari-
ables can improve the model predictive performance and
reduce errors. Modeling on baseline features explained, on
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Figure 3. Grid-level modeling. Panel (a) presents the distribution of the R2, MAE, RMSE, and ME for all sites (size= 25) in a LOOCV
scheme based on gridded data using five model settings: RF modeled using only MODIS NBAR bands, baseline features (MERRA-2 air
pressure, latent heat flux, sensible heat flux, soil temperature, SMAP root zone soil wetness, topographic slope, spi, and cit), baseline features
plus MODIS NBAR bands, baseline features plus correlated variables within the MERRA-2 and SMAP dataset, and all gridded input
variables together. The model settings are ranked by the mean R2, from lowest (left) to highest (right). Panel (b) shows the mean variable
importance of baseline models (last column) in the LOOCV scheme and at each site (columns labeled with validation site ID). The values
in each column are the means of the accumulation of the impurity decrease when a variable was taken out in the trees of an RF model,
representing the importance of such variable to the model. The variable names and descriptions refer to Table 1.

average, 46 % of daily CH4 fluxes’ variability at validation
sites with the largest range of errors (Fig. 3a). The medi-
ans in the baseline model of the R2, MAE, RMSE, and
ME under the LOOCV scheme were 0.5, 16.4, 21.0, and
6.4 nmol m−2 s−1, respectively. Adding NBAR or covariates
from MERRA-2 and SMAP input variables returned a higher
mean R2 or slightly lower mean errors than the baseline
model, whereas modeling with all gridded input variables
(the “all” model setting) achieved the highest mean R2

of 0.51 with a comparable mean MAE (23.6 nmol m−2 s−1),
RMSE (32.1 nmol m−2 s−1), and ME (0.9 nmol m−2 s−1)
(Table S4). Although modeling with baseline features
and covariates (the “base+CoVar” setting) received a
comparable mean R2 to modeling all variables, the latter
had a higher median R2 (0.53) and lower median errors
(MA= 14.1 nmol m−2 s−1, RMSE= 19.8 nmol m−2 s−1,
and ME= 4.0 nmol m−2 s−1). Our results suggest that

including remote-sensing constraints or covariates improved
the models’ ability to predict spatial variability in wetland
CH4 fluxes and reduced prediction errors. These results
confirm our selection of predictor variables for the upscaling
model (Table 1).

The average importance of the baseline features shows
their influence on the grid-level model predictive perfor-
mance (Fig. 3b). The importance of independent predictors
under the LOOCV scheme, although slightly varied between
models, agreed with respect to selecting the MERRA-2 soil
temperature (ts2) as the primary driver in predicting daily
CH4 fluxes in northern wetlands, followed by the SMAP root
zone wetness (sm_r_wetness). The eight baseline features ac-
counted for a 99 % reduction in the mean validation score of
the baseline models. The average importance of all gridded
variables used for upscaling (Fig. S14) was consistent with
baseline models, emphasizing the importance of soil temper-
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Figure 4. Model predictive performance evaluation on RF-modeled CH4 fluxes at the grid level under the LOOCV scheme: box plots of R2,
MAE, RMSE, and ME across validation sites by wetland types with mean values denoted using black squares at daily, weekly, and monthly
(top, middle, and bottom panel, respectively) time steps.

atures and root zone wetness. Additionally, air pressure and
topography also contributed to explaining the daily variabil-
ity in CH4 fluxes. Nevertheless, all variables contributed to
predicting variability in CH4 fluxes, showing the complexity
of environmental factors that would affect the rates of CH4
production and the process of gas exchange.

Daily mean CH4 fluxes exhibited great variability in
wetlands across space and time (mean= 35 nmol m−2 s−1,
σ = 65 nmol m−2 s−1; Fig. S3). The model predictive perfor-
mance (Fig. 4) was calculated for each site, and the average
performance with respect to the daily variability in CH4
fluxes was best at wet tundra sites with a mean R2 of 0.56,
followed by bog sites (0.51) and fen sites (0.45). Due to the
large variability in fen daily fluxes, errors in daily predictions
were highest for fen sites (mean RMSE= 54.2 nmol m−2 s−1

and mean MAE= 37.8 nmol m−2 s−1), followed by
bog sites (mean RMSE= 27.6 nmol m−2 s−1 and mean
MAE= 22.5 nmol m−2 s−1), whereas they were lowest for
wet tundra sites (mean RMSE= 13.5 nmol m−2 s−1 and

mean MAE= 10.3 nmol m−2 s−1). Our slight model over-
estimation of daily fluxes (mean ME= 0.9 nmol m−2 s−1)
was driven by an underestimation of fen sites (mean
ME=−12 nmol m−2 s−1) versus an overestimation of
bog (mean ME= 14 nmol m−2 s−1) and wet tundra (mean
ME= 3 nmol m−2 s−1) sites.

Model predictive performance on aggregated monthly
means of CH4 fluxes increased by 37 % compared with daily
means (mean R2

= 0.70; Fig. 4, Table S4). This improve-
ment may be attributed to a better representation of the
environmental conditions’ average state over a month by
the input variables compared to the daily variability. Per-
formance was higher for wet tundra (mean R2

= 0.73) and
bogs (mean R2

= 0.73), whereas it was lower for fen sites
(mean R2

= 0.64, Fig. 4). Mean errors in monthly mean
predictions were as follows: RMSE= 28.1 nmol m−2 s−1,
MAE= 21.4 nmol m−2 s−1, and ME= 0.37 nmol m−2 s−1

(Table S4). Prediction residuals of daily and monthly CH4
fluxes (Fig. S6) showed normal distributions for wet tundra

https://doi.org/10.5194/essd-17-2507-2025 Earth Syst. Sci. Data, 17, 2507–2534, 2025



2518 Q. Ying et al.: WetCH4: an ML-based upscaling of CH4 fluxes of northern wetlands

Figure 5. Example model predictive performance for seasonal cycles of daily FCH4 at the validation sites of CA-SCB, CA-ARF, and
US-NGB, representing bog, fen, and wet tundra, respectively.

sites, indicating that the spread of residuals resulted from
random errors that increased with the flux magnitude. The
residuals had a skewed normal distribution for bog sites, in-
dicating likely overestimation. The long left-hand tails in
the prediction residuals indicated that the intense emission
fluxes from fens during summer peaks were underestimated
(Fig. S6).

Site-by-site validation of daily flux predictions varied
greatly between individual sites (Figs. 5 and S7). For
example, US-UAF, an EC site in Interior Alaska with
mature black spruce cover and full understory vegeta-
tion and mosses over permafrost (Ueyama et al., 2023a),
which is the only one of the five forest bog sites in our

dataset that had low CH4 fluxes and weak seasonal cy-
cles (less than 10 nmol m−2 s−1), was significantly over-
estimated by our model (RMSE= 58 nmol m−2 s−1 and
MAE= 53 nmol m−2 s−1). Permafrost presence and ground-
water below the soil surface may explain the low fluxes at
this site (Iwata et al., 2015; Ueyama et al., 2023b).

3.2 Upscaled wetland CH4 emissions

3.2.1 Wetland-area-weighted CH4 emissions

Upscaled daily CH4 fluxes were weighted by wetland frac-
tion to estimate gridded daily CH4 fluxes from northern
wetlands based on WAD2Mv2, GIEMS2, and GLWDv1
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Figure 6. Mean annual wetland CH4 fluxes: panels (a)–(c) contain WetCH4 upscaled fluxes between 2016 and 2022 weighted by wet-
land fractions for three wetland maps – WAD2Mv2, GIEMS2, and GLWDv1; panels (d)–(f) contain the bottom-up GCP ensemble mean,
WetCHARTs, and top-down estimates of CarbonTracker-CH4 natural microbial emissions.

between 2016 and 2022 (Fig. 6) and on GLWD v2 for
comparison. The mean annual emissions and the RF-
model-associated uncertainties are summarized with dif-
ferent wetland maps in Table S5. The estimate from
WetCH4 with WAD2Mv2 was 22.8± 2.4 Tg CH4 yr−1,
comparable to UpCH4 (23.5± 5.8 Tg CH4 yr−1). With
GIEMS2, WetCH4 estimated a minimum annual emission
of 15.7± 1.8 Tg CH4 yr−1. With GLWDv1 and GLWD v2,
WetCH4 estimated potential annual emissions of 46.0±
5.1 Tg CH4 yr−1 and 51.6±2.2 Tg CH4 yr−1 for 2016–2022,
respectively. The spatial patterns were similar to the post-
2016 mean annual fluxes from the GCP process-based
model ensemble means (28.6± 21.6 Tg CH4 yr−1 for 2016–
2020), WetCHARTs (29.5± 30.0 Tg CH4 yr−1 for 2016–
2019), and atmospheric inversions of CarbonTracker-CH4
(40.9 Tg CH4 yr−1 for 2016–2022), highlighting the high-
emission areas in the Hudson Bay Lowlands and Western
Siberian Lowlands. The emissions from WetCH4-GIEMS2
were lower in these two hotspots than other estimates. Differ-
ences in the distribution of CH4 emissions between wetland
products reflect the influence of wetland dynamics. Mean
monthly wetland inundations are provided by WAD2Mv2
and GIEMS2, which set the dynamic limits for the wetland
boundaries of the CH4-emitting surface. While emissions re-
sulting from inundation were captured, it appeared that satu-
rated or wet subsoil conditions were not well represented by
WAD2M and GIEMS2, resulting in low emissions in wet but

non-inundated tundra (i.e., the Alaskan North Slope). To ad-
dress this, we incorporated wetland fractions from the CALU
high-resolution wetland map (Bartsch et al., 2024) that was
specifically produced for the permafrost region in order to
estimate Alaskan North Slope emissions. Wetland fractions
from GLWD (both v1 and v2) represent a static maximum
wetland distribution throughout time. Thus, estimates from
GLWD may represent the upper bounds for all northern wet-
lands under contemporary conditions.

We compared spatial distributions of our upscaled
fluxes (WetCH4) with two alternative upscaled datasets. Us-
ing the same wetland weights, our product showed similar
spatial patterns to UpCH4 (McNicol et al., 2023) and the up-
scaled fluxes from Peltola et al. (2019) (Fig. S9). Spatially,
the maximum mean flux for WetCH4 with WAD2Mv2 for
2016–2022 was 69 mg CH4 m−2 d−1, whereas UpCH4 pro-
duced a maximum mean flux of 88 mg CH4 m−2 d−1 be-
tween 2016 and 2018. While all three products predicted
concentrated CH4 exchange in the Hudson Bay Lowlands
and Western Siberian Lowlands and low fluxes in the West-
ern Canadian Arctic tundra, WetCH4 predicted lower fluxes
in the forested wetlands of Western Canada compared with
UpCH4 (Fig. S9a and b). With GLWDv1, WetCH4 predicted
similar fluxes to those of Peltola et al. (2019), with the ex-
ception of a number of potent emitting grids in the Western
Siberian Lowlands (Fig. S9c and d) and a maximum mean
flux of 132 mg CH4 m−2 d−1 from WetCH4.
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Figure 7. Multiyear average seasonal cycles of wetland CH4 emissions. Panel (a) presents a comparison of ML upscaled mean seasonal
cycles in reference wetland areas (WAD2Mv2) with the cycles from process-based models in the northern mid-high latitudes (45–90° N).
Panel (b) shows the same comparison for northern high latitudes (60–90° N) and the addition of atmospheric CarbonTracker-CH4-attributed
microbial emissions (2016–2022). Panel (c) presents a comparison of three ML upscaled mean seasonal cycles of CH4 emissions with
different wetland area maps (WAD2Mv2, WAD2Mv2 maximum extent, GIEMS2, and GLWDv1). Panel (d) shows a comparison of WetCH4
mean seasonal cycles over land (black line), WetCH4 weighted by wetland from the CALU map (light-green line), or WetCH4 weighted by
fractions from WAD2Mv2 (dark-green line), with estimates of CH4 fluxes in growing seasons from CARVE retrievals in the North Slope
area of Alaska (Zona et al., 2016).

3.2.2 Seasonal cycles of wetland CH4 emissions

Mean seasonal cycles of wetland CH4 emissions were con-
sistent with bottom-up estimates in the domain and top-
down inversions in high latitudes (Fig. 7). The amplitudes
of two ML-based estimates agreed in the domain (WetCH4
and UpCH4 both within WAD2Mv2 wetland areas) and were
lower than the ensemble means of GCP or WetCHARTs es-
timates during the growing season (Fig. 7a). In the north-
ern high latitudes (60–90° N), the amplitudes of this study
closely agree with WetCHARTs, and both amplitudes were
lower than the ensemble means of GCP in the growing
season (Fig. 7b). Our emissions in JJA were lower than
the emissions attributed by the atmospheric inversion of
CarbonTracker-CH4, which does not discriminate between
wetland and open-water sources. We did not use compar-
isons with CarbonTracker-CH4 for 45–90° due to likely
considerable contributions from aquatic systems and other
non-wetland factors in the inversion estimates. Notably, un-
certainties between ML-based approaches with the same
wetland extents showed less variation than those between
process-based models, especially during the growing season.
The phase of our estimates (WetCH4) agreed with bottom-up

and top-down models, peaking in July followed by August
(Fig. 7a and b), whereas UpCH4 showed a month lag, proba-
bly due to the 2- or 3-week lag of the predictor variables se-
lected in UpCH4 (McNicol et al., 2023). Peak fluxes in July
and August were commonly seen in tower measurements.

The seasonality in upscaled wetland CH4 emissions cor-
responded to the intensities of fluxes and dynamics of wet-
land areas. We compared mean seasonal cycles of upscaled
products with different dynamic or static wetland maps to
constrain the impacts of wetland areas (Fig. 7c). As ob-
served in spatial distributions (Fig. 7a and c), emissions
from the potential emitting surface (WetCH4_GLWDv1)
were 95 % higher than those from reference inundated wet-
lands (WetCH4_WAD2Mv2) during the growing season, and
they doubled in winter. Within the GLWDv1 emitting sur-
face, WetCH4 predicted higher emissions than Peltola et
al. (2019) in July (43 %), August (43 %), December (41 %),
and January (61 %), but it predicted 15 % lower emissions
in October. We decoupled the mean annual seasonal cycle
for WAD2M from the emission seasonality using a fixed
maximum WAD2M extent. The addition of maximum an-
nual wetland extent further constrains the limitations of sea-
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sonal WAD2M extents in underestimating the CH4-emitting
surface for northern high-latitude wetlands, especially in the
cold seasons. The resulting seasonal emissions, primarily
driven by soil temperatures and moisture, manifested ele-
vated emissions in all months and an intensified seasonal cy-
cle. Reported emissions (Zona et al., 2016) and large bursts
(Mastepanov et al., 2008) from the freezing active layer in
permafrost areas in October (zero-curtain period) may not
be well captured by our ML model. The differences in wet-
land areas between the two dynamic products (WAD2Mv2
and GIEMS2) mostly affected emissions in May and June
in WetCH4, but they significantly affected emission magni-
tudes in UpCH4. Despite the differences in wetland areas,
the phases of emissions cycles of WetCH4 were consistent
with those from Peltola et al. (2019), whereas UpCH4 again
lagged by a month.

We compared upscaled seasonal cycles with CH4 fluxes
estimated from regional airborne measurements taken during
CARVE campaigns over the Alaskan North Slope (Fig. 7d).
Given that the wetland area in this region is uncertain (Miller
et al., 2016), we computed mean seasonal cycles over land
assuming that all land in this area is water-saturated in the
soil, over freshwater wetlands of CALU, and over WAD2M
and HydroLAKES, representing three different scenarios. In
the lowland area of the North Slope (74 295 km2 spanning
between 69.8 and 71.4° N and between 164.4 and 152.7° W),
the wetland area was estimated at 10 611 km2 from CALU,
4800 km2 from GLWD v2, and 4049 km2 from the maximum
extent month in July of WAD2Mv2, respectively. The range
of our upscaled estimates aligned with regional emissions
derived from CARVE measurements. Chang et al. (2014)
estimated 7± 2 mg CH4 m−2 d−1 of mean CH4 fluxes dur-
ing the growing season in the North Slope region from the
column analysis of CARVE data. The mean fluxes (May–
September) of WetCH4 with CALU were estimated at 7.3±
0.8 mg CH4 m−2 d−1 (5.5±0.6 mgC CH4 m−2 d−1), which is
within the range of various CARVE estimations (Miller et al.,
2016). The landscape is in the biome of the Arctic coastal
tundra and is covered by sedges, grasses, mosses, and dwarf
shrubs. A large number of lakes and freshwater ponds are
scattered across the area. Studies carried out on the west-
ern Alaska lowland of the Yukon–Kuskokwim Delta found
aquatic fluxes that were about 10 times higher than in wet
tundra during September (Ludwig et al., 2023), suggesting
that a major source of the airborne fluxes missing in WetCH4
in the late growing season can be attributed to open-water
fluxes. Remarkable increases could occur in summer and
winter if we assume wetland over this region, as indicated by
the range between the green and black lines in Fig. 8d. How-
ever, future emissions due to permafrost thaw still depend on
the hydrological changes in the landscape.

Figure 8. Wetland CH4 (a) annual emissions and associated un-
certainties (colored shades) and (b) variations relative to multiyear
means in the research domain (45–90° N). Wetland area data ap-
plied in WetCH4 and UpCH4 were WAD2Mv2. The time periods of
the multiyear means are as follows: WetCH4 (2016–2022), UpCH4
(2016–2018), GCP bottom-up ensemble mean (2016–2020), and
WetCHARTs (2016–2019).

3.2.3 Interannual variations in wetland CH4 emissions

The mean annual emissions from ML-based estimates with
WAD2M were lower than the GCP bottom-up ensemble
mean and WetCHARTs over different years from 2016 for-
ward in time (Fig. 8a). All products demonstrated similar
emission patterns for the domain in the interannual trends
and variations, which were highest in 2016 and lower for the
3 years from 2017 to 2019 (Fig. 8). The interannual varia-
tions in WetCH4 were driven by the interannual variability in
the upscaled fluxes, as only multiyear mean seasonal dynam-
ics from WAD2Mv2 were used. All products identified inten-
sified emissions in 2016, as indicated by the variations rela-
tive to period means (Fig. 8b). Higher-than-period-average
emissions in 2020 were also modeled by WetCH4 and the
ensemble GCP.

Subregional annual emissions and interannual variability
(Fig. 9) for WetCH4 were calculated for eight subregions
in the northern high latitudes (Fig. S11): Siberian tundra,
Eastern Siberia, Western Siberia, Fennoscandia, Canadian
tundra, Eastern Canada, Western Canada, and Alaska. The
main differences in WetCH4-estimated emissions between
WAD2Mv2 and GLWDv1 occurred in the Eastern Siberia,
Eastern Canada, Western Canada, and Alaska subregions.

https://doi.org/10.5194/essd-17-2507-2025 Earth Syst. Sci. Data, 17, 2507–2534, 2025



2522 Q. Ying et al.: WetCH4: an ML-based upscaling of CH4 fluxes of northern wetlands

Figure 9. Interannual variations and variability in subregions predicted by WetCH4 with WAD2Mv2, GLWDv1, and GIEMS2, respectively:
(a) interannual variations with respect to period means (2016–2022); (b) relative variability as the percentage of its period mean. Delta on
the y axis denotes the annual emissions minus mean annual emissions in the 2016–2022 period. The box plots show the first quartile, the
median, and the third quartile of the data, with the whiskers denoting 1.5× the interquartile range below or above the first or third quartile,
respectively.

However, interannual variabilities were similar. Interannual
variation from Western Siberia accounted for 51 % of the
variation in domain emissions (Fig. 9a). The positive change
in Eastern Canada canceled the negative change in Western
Siberia in 2021, resulting in low variability in the domain
emissions for that year (Fig. 8). The relative interannual vari-
ability, which was calculated as the percentage of a subre-
gional variation to its period mean emission, was attributed
to variability from Western Siberia, Fennoscandia, Western
Canada, and Alaska (Fig. 9b).

4 Discussion

This study provides new estimates of daily-scale 10 km wet-
land CH4 fluxes for the northern terrestrial wetland region,
upscaled from EC data. The upscaling framework was driven
by MERRA-2 meteorological variables and soil temperatures

and constrained by satellite products from SMAP soil mois-
ture and MODIS NBAR, resulting in a good prediction accu-
racy (mean R2

= 0.70 and mean MAE= 27 nmol m−2 s−1)
for monthly mean fluxes. Model agreement worsened at daily
and weekly time steps due to higher variability in CH4 fluxes
at finer temporal resolutions. In our framework, we applied
a rigorous criterion on the counts of half-hourly observations
to control the selection quality of daily gap-filled data, which
may filter out errors introduced by the gap-filling process
or lack of observations for calculating daily means. The im-
provement in model performance can be partly attributed to
the inclusion of soil temperature, satellite assimilation of soil
moisture, and MODIS vegetation reflectance in the frame-
work that represents controlling factors or proxies for CH4
fluxes recognized in field experiments and synthesis studies
(Fig. 3).
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4.1 Important drivers to improve RF model predictive
performance

Soil temperature plays an important role in microbial growth
and dormancy (Chadburn et al., 2020) and exponentially af-
fects microbial CH4 emission rates, although the temperature
sensitivity varies across space and time (van Hulzen et al.,
1999; Knox et al., 2021). In northern wetlands, soil temper-
ature is often more spatially variable relative to air tempera-
ture due to snow insulation and the active-layer depth (Smith
et al., 2022; Wang et al., 2016; Yuan et al., 2022); thus, it
should be considered in upscaling models. Compared to air
temperature or land surface temperature, which have been
used in previous upscaling studies (McNicol et al., 2023; Pel-
tola et al., 2019), the inclusion of MERRA-2 soil tempera-
tures in WetCH4 likely contributed to a higher model pre-
dictive performance, although the impacts of the scale mis-
match between the native MERRA-2 spatial resolution and
the local footprints on the upscaled fluxes were not quan-
tified. Independent validation studies found significant cor-
relations in the temporal trend and seasonal cycles between
MERRA-2 soil temperatures and in situ observations (Li et
al., 2020; Ma et al., 2021) in the US and midlatitude Eura-
sia. However, lower correlations and overestimated monthly
variability were found in the cold season throughout the Arc-
tic (Herrington et al., 2024). This suggests that the impact
of the uncertainty in MERRA-2 soil temperatures was con-
centrated in the cold season, when CH4 fluxes were low. The
agreement between the ensemble means of soil temperatures
from eight reanalysis and land data assimilation system prod-
ucts and station measurements improved in the pan-Arctic
region (Herrington et al., 2024), suggesting the potential to
reduce upscaling uncertainty forced by the ensemble mean
of reanalysis datasets.

Emergent vegetation with aerenchyma affects the recent
substrate availability and the plant-mediated transport of
CH4 (Kyzivat et al., 2022; Melack and Hess, 2023). We used
the full land bands of the MODIS NBAR product, rather
than the derived vegetation indices employed in previous
upscaling studies, as signals indicating that wetland vege-
tation functional characteristics may be lost when merging
bands to derive simple vegetation indices (Chen et al., 2013).
In our study, the near-infrared and shortwave-infrared bands
(NBAR bands 2, 5, and 7) presented relatively high impor-
tance in the RF model due to their associations with vege-
tation characteristics and water table dynamics in northern
peatlands (Baskaran et al., 2022; Burdun et al., 2023). Satel-
lite inputs provide high-spatial-resolution constraints on the
environmental variability and help reduce spatial model pre-
dictive errors (Fig. 3), indicating the requirement for high-
spatial-resolution driving input to accurately model wetland
CH4 fluxes (Elder et al., 2021).

Surface and root zone soil moisture are important con-
trols on ecosystem anaerobic metabolism. Low soil mois-
ture implies aerobic conditions and allows methanotrophic

bacteria to consume CH4, whereas high soil moisture en-
ables CH4 production and suppresses consumption (Lieb-
ner et al., 2011; Olefeldt et al., 2013; Spahni et al., 2011).
Soil wetness estimated in the root zone and the profile
from SMAP measurements may be able to capture wa-
ter table dynamics; hence, it ranked as important with re-
spect to the WetCH4 model performance. Validation of the
SMAP Level-4 soil moisture data assimilation product has
shown that it meets the performance requirement of an un-
biased root-mean-square error< 0.04 m3 m−3 (Colliander et
al., 2022). However, the validation sites are mostly located in
North American grassland, cropland, and shrubland, requir-
ing more in situ soil moisture observations in high-latitude
tundra and peatland. Regional validation studies suggested
that uncertainties in satellite-derived soil moisture including
SMAP at high latitudes were high (Högström et al., 2018;
Wrona et al., 2017) and remained to be addressed.

Underground processes of CH4 production and oxidation
are difficult to model (Ueyama et al., 2023b), especially for
seasonal cycles in the northern high latitudes. A hysteresis
effect that manifests intra-seasonal variability in the depen-
dence of CH4 fluxes on temperature has been observed at
EC sites (Chang et al., 2021), but it was not reproduced in
WetCH4. Positive hysteresis and the difference in frozen sta-
tus from topsoil to deep soil during the fall freeze results in
zero-curtain periods that have been observed in high-latitude
tundra (Bao et al., 2021; Zona et al., 2016), the occurrence of
which was subsequently underestimated in our model.

The amount of additional substrate available for methano-
genesis due to soil freezing/thawing, missing in our frame-
work, could be a controlling factor on the occurrence
of this phenomenon. Higher substrate availability elevates
methanogen abundance and activities during the fall freeze
(Bao et al., 2021). However, spatially explicit substrate data
are not available. Using proxies such as net primary produc-
tion or the EVI for substrate availability might be oversim-
plified (Larmola et al., 2010; Li et al., 2016; Peltola et al.,
2019). In addition, the uncertainty in the deep-soil temper-
ature of training inputs in late fall may hinder the model’s
ability to capture patterns of high emissions during zero-
curtain periods observed in the Alaskan tundra (Fig. S10).
More temporally accurate soil temperature data are needed
to delineate the soil freezing progress and properly constrain
predictions of CH4 emission during the cold season (Arndt
et al., 2019). The UpCH4 results (McNicol et al., 2023) also
suggest that simply imposing lags on temporal predictors
in RF cannot capture complex intra-seasonal variability due
to the complicated lag effects interacting with the water table
depth (Turner et al., 2021). Without timestamps for predic-
tors, RF treats time series’ fluxes independently, which may
limit its predictive performance. Deep learning models de-
signed to account for temporal progress in data, such as long
short-term memory (LSTM) neural networks, may improve
the modeling accuracy of seasonal cycles (Reichstein et al.,
2019; Yuan et al., 2022).
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4.2 Data limitations in current EC CH4 observations

Data deficiency in EC CH4 flux observations in winter and
in underrepresented areas limited the RF model’s extrapo-
lation ability. Data abundance and representativeness across
space, time, and wetland types drives model performance and
the ability to extrapolate for the data-driven approach. The
26 wetland EC sites included in this study are largely lo-
cated in Fennoscandia, Eastern Canada, and Alaska (Fig. 2),
leaving some regional emission hotspots underrepresented.
For instance, the Western Siberian Lowlands, a large wet-
land complex and a major contributor of interannual varia-
tion in CH4 in the region, comprise a region with little data.
The nearest site (RU-VRK, not included in this study due to
the fact that observations occurred before our study period)
is situated on the western side of the Ural Mountains, within
the Usa River depression. Cold-season emissions could con-
tribute a substantial fraction of the annual Arctic tundra CH4
budget (Mastepanov et al., 2008; Mavrovic et al., 2024; Zona
et al., 2016). However, after filtering, 23 % of the EC data in
high latitudes (> 60° N) were recorded between November
and March, which could be insufficient for accurately mod-
eling and upscaling zero-curtain-period fluxes.

A total of 10 bog and fen sites used for modeling contain
all-season daily flux records with more than 11 half-hourly
observations per day, all from Fennoscandia and Canada. Al-
though Alaska is represented by 11 wetland sites, sufficient
winter observations with good quality are still needed. The
Western Siberian Lowlands are underrepresented by EC CH4
sites. Missing data in MODIS NBAR due to snow cover or
gaps in SMAP reduced training data by 31 % and 48 % in the
study domain, respectively. Filling data of MODIS NBAR to
account for snow cover information and gap-filling SMAP
soil moisture products can make full use of available EC ob-
servations and help improve model performance in the cold
seasons. As gaps in winter SMAP data were filled with zero
values, our approach has limitations with respect to the esti-
mation of winter soil moisture gaps in areas where the zero-
curtain period and talik were not represented by our interpo-
lated soil temperatures (e.g., in coastal areas).

Many wetland sites in the study are located in areas with
peatland presence, with 35 % of sites in peatland-rich areas
with > 50 % peatland cover (Hugelius et al., 2020). Mineral
soil (soil containing less than 12 % organic carbon by weight)
marshes, although covering only 5 % of the total wetland area
in the northern high latitudes, need to be considered when
deploying new EC sites due to their high CH4 emissions
(Kuhn et al., 2021; Olefeldt et al., 2021). This study iden-
tified regional CH4 emission hotspots and areas undergoing
strong interannual variations that are yet not part of the cur-
rent FLUXNET network. However, the 10 km resolution of
the RF estimates prohibits the identification of local hotspots
that may occur at < 1–10 m scales (Elder et al., 2021). The
wall-to-wall flux maps also provide spatially continuous in-

formation to effectively further develop the CH4 flux tower
network.

4.3 Budget comparison

WetCH4 estimated annual and seasonal mean emissions that
were comparable to existing data-driven products in the study
domain (Table S5). With the dynamic WAD2Mv2 map, our
estimation was 0.7 Tg CH4 yr−1 smaller than UpCH4 due
to the mean seasonal cycles between 2010 and 2020 from
WAD2M applied in our estimation. With the same static
GLWDv1 map, our estimation was about 22 % larger than the
estimate from Peltola et al. (2019) (37.5±12 Tg CH4 yr−1 for
2013–2014), despite the different periods. This is attributed
to higher fluxes estimated by WetCH4 in the DJF and JJA
seasons. With two versions of the static GLWD maps, we
estimated potential annual emissions of between 46.0 and
51.6 Tg CH4 yr−1. Compared to GLWDv1, version 2 of
GLWD mapped smaller wetland fractions in the Hudson Bay
Lowlands with intense CH4 fluxes and more wetlands in the
northwest of the Ural Mountains, Eastern Siberia, and the
Sanjiang Plain, where CH4 intensities were weaker, result-
ing in a larger estimate of the annual emission (Fig. S13). The
wide range of data-driven estimates stemmed from the differ-
ences in wetland maps. While WAD2M provides crucial in-
formation on wetland inundation dynamics controlling inter-
annual and inter-seasonal changes in CH4-emitting areas, ar-
eas with saturated soil in the Arctic tundra are likely severely
underestimated (Fig. 7d), requiring more accurate maps de-
lineating wet tundra communities at higher spatial resolution
(e.g., < 1 km). Incorporating wetland fractions derived from
high-resolution thematic maps (e.g., CALU) can improve the
use of WAD2M in cold regions. Development or improve-
ment of higher-resolution microwave remote-sensing prod-
ucts capable of tracking dynamic changes in local soil mois-
ture conditions is also needed. Together, these two compo-
nents likely currently yield the largest sources of uncertainty
in high-latitude terrestrial CH4 budgets.

Bottom-up estimates of wetland CH4 emissions from data-
driven GCP ensemble means and WetCHARTs are smaller
than the top-down CarbonTracker-CH4 estimate of natural
microbial emissions, as the latter includes emissions from
aquatic systems. Aquatic CH4 emissions for this region have
been estimated at 5.5 Tg CH4 yr−1 from rivers and streams
(Rocher-Ros et al., 2023) and at 16.6 Tg CH4 yr−1 from lakes
(Johnson et al., 2022). The total emission budget for wet-
lands and open water, based on this study and the aquatic es-
timates, is about 44.9 Tg CH4 yr−1, which is 4 Tg CH4 yr−1

more than the CarbonTracker-CH4 estimate. The amplitudes
of the WetCH4 seasonal mean fluxes align with bottom-up
and top-down estimates. Differences in the seasonal dynam-
ics of wetland maps are the major source of upscaling un-
certainty and result in various uncertainties between regional
estimates. While atmospheric inversion models need bottom-
up estimates as priors, data-driven, upscaled CH4 products
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offer alternatives to process-based estimates to assist with in-
version models in regions where data-driven models perform
well (Bloom et al., 2017; Melton et al., 2013).

4.4 Future directions

Future development of EC networks in the northern high lat-
itudes is urgently required to provide the additional observa-
tions needed to improve the model-based upscaling of CH4
flux budgets and to address current gaps in the ecosystem-
and regional-scale representation. Deploying new sites in
underrepresented areas will not only benefit flux upscal-
ing efforts but also our understanding of how ecosystem
metabolism responds to the changing climate (Baldocchi,
2020; Pallandt et al., 2022; Villarreal and Vargas, 2021). With
the availability of long-term predictor variable data, it is pos-
sible to expand upscaling frameworks over longer periods
(e.g., 2000 to the present), when adequate flux observations
in 2000–2010 from chambers are compiled, as 96 % of the
data in FLUXNET-CH4 were recorded after 2010 (McNicol
et al., 2023).

Several data products exist for the meteorological predic-
tor variables. Quantification of the measurement uncertain-
ties between products of predictor variables and how the un-
certainties propagate to upscaling products need to be ad-
dressed in future work. The mismatch of spatial scales be-
tween tower footprints and predictor variables may cause the
underestimation of abruptly high fluxes measured in tower
landscapes when environmental conditions are averaged over
0.5° grids (Chu et al., 2021; McNicol et al., 2023). Therefore,
downscaling predictor variables to develop higher-resolution
products is needed, especially for the Arctic region, where
thermokarst development is shaping permafrost landscapes
with fragments of wetlands, thermokarst ponds, and forests
(Miner et al., 2022; Osterkamp et al., 2000; Wik et al., 2016).
For example, Fang et al. (2022) downscaled global SMAP
surface soil moisture to 1 km resolution, and optical/ther-
mal and microwave fusion methods have been developed to
downscale soil moisture (Peng et al., 2017). Nevertheless,
downscaled products for root zone or profile soil moisture
are needed for upscaling CH4 fluxes, as are soil temperature
products.

Beyond the ML-based upscaling framework, hybrid mod-
eling of the data-driven approach and process-based mod-
els is a promising but challenging direction of future study
(Reichstein et al., 2019). One practice constrained regional
data-driven fluxes with top-down estimates via auto-learned
weights on per-pixel fluxes in a region (Upton et al., 2024).
Another practice pretrained a time-dependent ML algorithm
with initialization from process-based synthetic data and then
fine-tuned the model with observations (Liu et al., 2022).
Finally, leveraging physical constraints to increase the in-
terpretability of data-driven models and computational effi-
ciency is still an important factor to consider in all hybrid
modeling.

5 Code and data availability

The daily CH4 flux intensities in the northern wetlands
at a spatial resolution of 0.098°× 0.098° and the asso-
ciated uncertainties, along with daily emissions weighted
by WAD2M, GIEMS2, and GLWDv1, can be accessed at
https://doi.org/10.5281/zenodo.10802153 (Ying et al., 2024).
The source code for the ML modeling and upscaling is pub-
licly available at https://doi.org/10.5281/zenodo.10882613
(Ying, 2024).

6 Conclusions

We developed an ML framework (WetCH4) to upscale daily
wetland CH4 fluxes of mid-high northern latitudes at 10 km
spatial resolution that combines EC tower measurements
with satellite observations and climate reanalysis. WetCH4
is novel in that it is the first upscaling framework to intro-
duce SMAP soil moisture and MODIS reflectance in mod-
eling wetland CH4 fluxes to improve accuracy (mean R2

=

0.70). The remote-sensing products provided high-spatial-
resolution constraints associated with the abiotic controllers
of CH4 fluxes, indicating the importance of using high-
spatial-resolution inputs in models for accurately simulating
the spatiotemporally variable CH4 emissions from hetero-
geneous northern wetland landscapes. The framework high-
lights the importance of soil temperature, vegetation, and soil
moisture for modeling CH4 fluxes with a data-driven ap-
proach. Using WetCH4, an average annual CH4 emissions of
22.8± 2.4 Tg CH4 yr−1 with WAD2Mv2 was estimated and
ranged between 15.7± 1.8 Tg CH4 yr−1 with GIEMS2 and
51.6± 2.2 Tg CH4 yr−1with GLWD v2 from vegetated wet-
lands (> 45° N) for 2016–2022, approximately 14 %–32 %
of the global wetland CH4 budget (Saunois et al., 2020).
Differences in estimates of wetland CH4 emissions due to
different wetland maps applied, highlighting the need for
high-resolution wetland maps and the accurate delineation
of wet soil dynamics. Emissions were relatively lower in
2017–2019 and intensified in 2016, 2020, and 2022, with the
largest interannual variations coming from Western Siberia.
Spatiotemporal distributions of CH4 fluxes find emission
hotspots and regions of intensified interannual variations that
are not currently measured with EC. Based on a comparison
with current EC sites, we suggest the need for tower observa-
tions in the wetlands of Western Siberia and Western Canada
and diversified observations across wetland types. More site
observations of soil-water-related variables are needed to im-
prove the understanding of flux controls in northern wetland
ecosystems. Future wetland CH4 upscaling work could ben-
efit from improved soil moisture products and hybrid model-
ing.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-2507-2025-supplement.
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