Articles | Volume 16, issue 12
https://doi.org/10.5194/essd-16-5531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-5531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Simona Simoncelli
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Viale Berti Pichat 6/2, 40127 Bologna, Italy
Franco Reseghetti
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), S. Teresa Marine Environment Research Centre, 19032 Pozzuolo di Lerici, Italy
now at: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Viale Berti Pichat 6/2, 40127 Bologna, Italy
Claudia Fratianni
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Viale Berti Pichat 6/2, 40127 Bologna, Italy
Lijing Cheng
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Giancarlo Raiteri
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), S. Teresa Marine Environment Research Centre, 19032 Pozzuolo di Lerici, Italy
Related authors
Maher Bouzaiene, Antonio Guarnieri, Damiano Delrosso, Ahmad F. Dilmahamod, Simona Simoncelli, and Claudia Fratianni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3730, https://doi.org/10.5194/egusphere-2024-3730, 2024
Short summary
Short summary
We analyze the geostrophic circulation and tidal effects in the Gulf of Gabès from 30 years of altimetry data (1993–2022) and the outputs of a high resolution ocean model for the year 2022.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Christophe Cassou, Mathias Hauser, Zeke Hausfather, June-Yi Lee, Matthew D. Palmer, Karina von Schuckmann, Aimée B. A. Slangen, Sophie Szopa, Blair Trewin, Jeongeun Yun, Nathan P. Gillett, Stuart Jenkins, H. Damon Matthews, Krishnan Raghavan, Aurélien Ribes, Joeri Rogelj, Debbie Rosen, Xuebin Zhang, Myles Allen, Lara Aleluia Reis, Robbie M. Andrew, Richard A. Betts, Alex Borger, Jiddu A. Broersma, Samantha N. Burgess, Lijing Cheng, Pierre Friedlingstein, Catia M. Domingues, Marco Gambarini, Thomas Gasser, Johannes Gütschow, Masayoshi Ishii, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Aurélien Liné, Didier P. Monselesan, Colin Morice, Jens Mühle, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Jan C. Minx, Matthew Rigby, Robert Rohde, Abhishek Savita, Sonia I. Seneviratne, Peter Thorne, Christopher Wells, Luke M. Western, Guido R. van der Werf, Susan E. Wijffels, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 17, 2641–2680, https://doi.org/10.5194/essd-17-2641-2025, https://doi.org/10.5194/essd-17-2641-2025, 2025
Short summary
Short summary
In a rapidly changing climate, evidence-based decision-making benefits from up-to-date and timely information. Here we compile monitoring datasets to track real-world changes over time. To make our work relevant to policymakers, we follow methods from the Intergovernmental Panel on Climate Change (IPCC). Human activities are increasing the Earth's energy imbalance and driving faster sea-level rise compared to the IPCC assessment.
Guorong Zhong, Xuegang Li, Jinming Song, Baoxiao Qu, Fan Wang, Yanjun Wang, Bin Zhang, Lijing Cheng, Jun Ma, Huamao Yuan, Liqin Duan, Ning Li, Qidong Wang, Jianwei Xing, and Jiajia Dai
Earth Syst. Sci. Data, 17, 719–740, https://doi.org/10.5194/essd-17-719-2025, https://doi.org/10.5194/essd-17-719-2025, 2025
Short summary
Short summary
The continuous uptake of atmospheric CO2 by the ocean leads to decreasing seawater pH, which is an ongoing threat to the marine ecosystem. This pH change has been globally documented in the surface ocean, but information is limited below the surface. Here, we present a monthly 1° gridded product of global seawater pH based on a machine learning method and real pH observations. The pH product covers the years from 1992 to 2020 and depths from 0 to 2000 m.
Maher Bouzaiene, Antonio Guarnieri, Damiano Delrosso, Ahmad F. Dilmahamod, Simona Simoncelli, and Claudia Fratianni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3730, https://doi.org/10.5194/egusphere-2024-3730, 2024
Short summary
Short summary
We analyze the geostrophic circulation and tidal effects in the Gulf of Gabès from 30 years of altimetry data (1993–2022) and the outputs of a high resolution ocean model for the year 2022.
Viktor Gouretski, Lijing Cheng, Juan Du, Xiaogang Xing, Fei Chai, and Zhetao Tan
Earth Syst. Sci. Data, 16, 5503–5530, https://doi.org/10.5194/essd-16-5503-2024, https://doi.org/10.5194/essd-16-5503-2024, 2024
Short summary
Short summary
High-quality observations are crucial to understanding ocean oxygen changes and their impact on marine biota. We developed a quality control procedure to ensure the high quality of the heterogeneous ocean oxygen data archive and to prove data consistency. Oxygen data obtained by means of oxygen sensors on autonomous Argo floats were compared with reference data based on the chemical analysis, and estimates of the residual offsets were obtained.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Tian Tian, Lijing Cheng, Gongjie Wang, John Abraham, Wangxu Wei, Shihe Ren, Jiang Zhu, Junqiang Song, and Hongze Leng
Earth Syst. Sci. Data, 14, 5037–5060, https://doi.org/10.5194/essd-14-5037-2022, https://doi.org/10.5194/essd-14-5037-2022, 2022
Short summary
Short summary
A high-resolution gridded dataset is crucial for understanding ocean processes at various spatiotemporal scales. Here we used a machine learning approach and successfully reconstructed a high-resolution (0.25° × 0.25°) ocean subsurface (1–2000 m) salinity dataset for the period 1993–2018 (monthly) by merging in situ salinity profile observations with high-resolution satellite remote-sensing data. This new product could be useful in various applications in ocean and climate fields.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Bailey, R., Gronell A., Phillips H., Tanner E., and Meyers, G.: Quality Control Cookbook for XBT Data, CSIRO Report 221, 84 pp., http://hdl.handle.net/102.100.100/237126?index=1 (last access: 28 November 2024), 1994.
Barker, P. M. and McDougall, T. J.: Two Interpolation Methods Using Multiply-Rotated Piecewise Cubic Hermite Interpolating Polynomials, J. Atmos. Ocean. Tech., 37, 605–619, https://doi.org/10.1175/JTECH-D-19-0211.1, 2020.
Bordone, A., Pennecchi, F., Raiteri, G., Repetti, L., and Reseghetti, F.: XBT, ARGO Float and Ship-Based CTD Profiles Intercompared under Strict Space-Time Conditions in the Mediterranean Sea: Assessment of Metrological Comparability, J. Marine Sci. Eng., 8, 313, https://doi.org/10.3390/jmse8050313, 2020.
Bringas, F. and Goni, G.: Early dynamics of Deep Blue XBT probes, J. Atmos. Ocean. Tech., 32, 2253–2263, https://doi.org/10.1175/JTECH-D-15-0048.1, 2015.
Chen, C.: Evaluation of resistance–temperature calibration equations for NTC thermistors, Measurement, 42, 1103–1111, https://doi.org/10.1016/j.measurement.2009.04.004, 2009.
Cheng, L., Zhu, J., Cowley, R., Boyer, T., and Wijffels, S.: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations, J. Atmos. Ocean. Tech., 31, 1793–1825, https://doi.org/10.1175/Jtech-D-13-00197.1, 2014.
Cheng, L., Abraham, J., Goni, G., Boyer, T., Wijffels, S., Cowley, R., Gouretski, V., Reseghetti, F., Kizu, S., Dong, S., Bringas, F., Goes, M., Houpert, L., Sprintall, J., and Zhu, J.: XBT science: assessment of instrumental biases and errors, B. Am. Meteorol. Soc., 97, 923–934, https://doi.org/10.1175/Bams-D-15-00031.1, 2016.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Cheng, L., Luo, H., Boyer, T., Cowley, R., Abraham, J., Gouretski, V., Reseghetti, F., and Zhu, J.: How well can we correct systematic errors in historical XBT data?, J. Atmos. Ocean. Tech., 35, 1103–1125, https://doi.org/10.1175/jtech-d-17-0122.1, 2018.
Cheng, L., Abraham, J., Zhu, J., Trenberth, K. E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Wan, L., Chen, X., Song, X., Liu, Y., and Mann, M. E.: Record-Setting Ocean Warmth Continued in 2019, Adv. Atmos. Sci., 37, 137–142, https://doi.org/10.1007/s00376-020-9283-7, 2020.
Cheng, L., Abraham, J., Trenberth, K. E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu,F., Wan, L., Chen, X., Song, X., Liu, Y., Mann, M. E., Reseghetti, F., Simoncelli, S., Gouretski, V., Chen, G., Mishonov, A., Reagan, J., and Zhu, J.: Upper Ocean Temperatures Hit Record High in 2020, Adv. Atmos. Sci., 38, 523–530, https://doi.org/10.1007/s00376-021-0447-x, 2021.
Cheng, L., Abraham, J., Trenberth, K. E., Fasullo, J., Boyer, T., Mann, M. E., Zhu, J., Wang, F., Locarnini, R., Li, Y., Zhang, B., Tan, Z., Yu, F., Wan, L., Chen, X., Song, X., Liu, Y., Reseghetti, F., Simoncelli, S., Gouretski, V., Chen, G., Mishonov, A., and Reagan, J.: Another Record: Ocean Warming Continues through 2021 despite La Niña Conditions, Adv. Atmos. Sci., 39, 373–385, https://doi.org/10.1007/s00376-022-1461-3, 2022.
Cook, S. and Sy, A.: Best guide and principles manual for the Ships Of Opportunity Program (SOOP) and eXpendable BathyThermograph (XBT) operations, Geneva, Switzerland, WMO & IOC, 26 pp., https://doi.org/10.25607/OBP-1483, 2001.
Cowley, R. and Krummel, L.: Australian XBT Quality Control Cookbook Version 2.0, Report EP2022-1825 CSIRO, Australia, 1–89 pp., https://doi.org/10.25919/3tm5-zn80, 2022.
Cowley, R., Killick, R. E., Boyer, T., Gouretski, V., Reseghetti, F., Kizu, S., Palmer, M. D., Cheng, L., Storto, A., Le Menn, M., Simoncelli, S., Macdonald, A. M., and Domingues, C. M.: International Quality-Controlled Ocean Database (IQuOD) v0.1: The Temperature Uncertainty Specification, Front. Mar. Sci., 8, 689695, https://doi.org/10.3389/fmars.2021.689695, 2021.
Durante, S., Oliveri, P., Nair, R., and Sparnocchia, S.: Mixing in the Tyrrhenian Interior Due to Thermohaline Staircases, Front. Mar. Sci., 8, 672437, https://doi.org/10.3389/fmars.2021.672437, 2021.
Flierl, G. R. and Robinson, A. R.: XBT Measurements of Thermal Gradients in the MODE Eddy, J. Phys. Oceanogr., 7, 300–302, https://doi.org/10.1175/1520-0485(1977)007<0300:XMOTGI>2.0.CO;2, 1977.
Fratianni, C. and Frizzera, P.: REPROCESSED XBT 1999–2019: how to access data and metadata throught ERDDAP (v1.0.0), Zenodo [software], https://doi.org/10.5281/zenodo.13862792, 2024.
Fusco, G., Manzella, G. M. R., Cruzado, A., Gačić, M., Gasparini, G. P., Kovačević, V., Millot, C., Tziavos, C., Velasquez, Z. R., Walne, A., Zervakis, V., and Zodiatis, G.: Variability of mesoscale features in the Mediterranean Sea from XBT data analysis, Ann. Geophys., 21, 21–32, https://doi.org/10.5194/angeo-21-21-2003, 2003.
GEBCO Compilation Group: GEBCO 2021 Grid, GEBCO Compilation Group, https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Goni, G., Domingues, R., Goes, M., Lopez, H., Morrow, R., Rivero, U., Rossby, T., Todd, R. E., Trinanes, J., Zilberman, N., Baringer, M., Boyer, T., Cowley, R., Domingues, C. M., Hutchinson, K., Kramp, M., Mata, M. M., Reseghetti, F., Sun, C., Bhaskar, T. V. S. U., and Volkov, D.: More than 50 years of successful continuous temperature section measurements by the global expendable bathythermograph network, its integrability, societal benefits, and future, Front. Mar. Sci., 6, 452, https://doi.org/10.3389/fmars.2019.00452, 2019.
Good, S., Mills, B., Boyer, T., Bringas, F., Castelão, G., Cowley, R., Goni, G., Gouretski, V., and Domingues, C. M.: Benchmarking of automatic quality control checks for ocean temperature profiles and recommendations for optimal sets, Front. Mar. Sci., 9, 1075510, https://doi.org/10.3389/fmars.2022.1075510, 2023.
Gronell, A. and Wijffels, S. E.: A Semiautomated Approach for Quality Controlling Large Historical Ocean Temperature Archives, J. Atmos. Ocean. Tech., 25, 990–1003, https://doi.org/10.1175/JTECHO539.1, 2008.
Haddad, S., Killick, R. E., Palmer, M. D., Webb, M. J., Prudden, R., Capponi, F., and Adams, S. V.: Improved Infilling of Missing Metadata from Expendable Bathythermographs (XBTs) Using Multiple Machine Learning Methods, J. Atmos. Ocean. Tech., 39, 1367–1385, https://doi.org/10.1175/JTECH-D-21-0117.1, 2022.
Hanawa, K., Rual, P., Bailey, R., Sy, A., and Szabados, M.: A new depth-time equation for Sippican or TSK T-7, T-6 and T-4 expendable bathythermographs (XBT), Deep-Sea Res. Pt. I, 42, 1423–1451, https://doi.org/10.1016/0967-0637(95)97154-Z, 1995.
Hoge, H.: Useful procedure in least squares, and tests of some equations for thermistors, Rev. Sci. Instrum., 59, 975–979, https://doi.org/10.1063/1.1139762, 1988.
Intergovernmental Oceanographic Commission: Manuals and guides, 4. Guide to oceanographic and marine meteorological instruments and observing practices, 1–78 pp., ISBN 92-3-101325-4, 1975.
Intergovernmental Oceanographic Commission: Ad hoc meeting of the IGOSS Task Team on quality control for automated systems, Marion, Massachusetts, USA, 3–6 June 1991, Intergovernmental Oceanographic Commission IOC/INF-888, 1–144 pp., 1992.
Intergovernmental Oceanographic Commission: First Session of the Joint IOC-WMO IGOSS Ship-of-Opportunity Programme Implementation Panel: Annex VI, Cape Town, South Africa, 16–18 April 1997, 1–46 pp., 1997.
Intergovernmental Oceanographic Commission: Ocean Data Standards Volume 3. Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. Paris, France, UNESCO-IOC, 5 pp. & Annexes, Intergovernmental Oceanographic Commission Manuals and Guides, 54, IOC/2013/MG/54-3, https://doi.org/10.25607/OBP-6, 2013.
Intergovernmental Oceanographic Commission: Ocean Data Standards Volume 4: Technology for SeaDataNet Controlled Vocabularies for describing Marine and Oceanographic Datasets – A joint Proposal by SeaDataNet and ODIP projects. Oostend, Belgium, IODE/UNESCO, 31 pp., IOC Manuals and Guides, 54, vol. 4, version 1, IOC/2019/MG/54 Vol.4, https://doi.org/10.25607/OBP-566, 2019.
Kizu, S. and Hanawa, K.: Start-up transient of XBT measurement, Deep-Sea Res. Pt. I, 49, 935–940, https://doi.org/10.1016/S0967-0637(02)00003-1, 2002a.
Lange, N., Tanhua, T., Pfeil, B., Bange, H. W., Lauvset, S. K., Grégoire, M., Bakker, D. C. E., Jones, S. D., Fiedler, B., O'Brien, K. M., and Körtzinger, A.: A status assessment of selected data synthesis products for ocean biogeochemistry, Front. Mar. Sci., 10, 1078908, https://doi.org/10.3389/fmars.2023.1078908, 2023.
Leahy, T. P., Llopis, F. P., Palmer, M. D., and Robinson, N. H.: Using Neural Networks to Correct Historical Climate Observations, J. Atmos. Ocean. Tech., 35, 2053–2059, https://doi.org/10.1175/JTECH-D-18-0012.1, 2018.
Little, A. D., Inc.: Experimental evaluation of expendable bathythermographs, Dept. of the Navy Bureau of Ships Rep. ASW Sonar Technology Report No. 4071165, Dept. of the Navy – Bureau of Ships Project SN SF-101-03-21, Task 11353, November 1965, 51 pp., 1965.
Little, A. D., Inc.: Expendable bathythermograph (XBT) system evaluation for tactical sonar application. ASW Sonar Technology Report No. 4150866, Dept. of the Navy – Naval Ship Systems Command, Project SN SF-101-03-21, Task 11353, June 1966, 85 pp., 1966.
Liu, G., Guo, L., Liu, C., and Wu, Q.: Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement, Measurement, 120, 21–27, https://doi.org/10.1016/j.measurement.2018.02.007, 2018.
Lockheed Martin Sippican (Sippican) Inc.: MK21 USB DAQ, surface ship, bathythermograph data acquisition system, installation operation and maintenance manual, P/N 308437, Rev. E, 172 pp., 2006.
Lockheed Martin Sippican (Sippican) Inc.: WinMK21 Data Acquisition and Post Processing Software User's Manual P/N 352210, Rev. B, 134 pp., 2010.
Lockheed Martin Sippican (Sippican) Inc.: MK21 Ethernet Surface 1U DAQ – Bathythermograph data acquisition system, installation and operation manual, P/N 352186, Rev. D, 47 pp., 2014.
Lowry, R., Fichaut, M., and Bregent, S.: SeaDataNet NetCDF format definition, Version 1.21, SeaDataNet, 73 pp., https://doi.org/10.25607/OBP-408, 2019.
Magruder Jr., P. M.: Some characteristics of temperature microstructure in the ocean, M.S. thesis, Dept. of Oceanography, US Naval Postgraduate School, 1–155 pp., 1970.
Manzella, G. M. R., Scoccimarro, E., Pinardi, N., and Tonani, M.: Improved near real-time data management procedures for the Mediterranean ocean Forecasting System-Voluntary Observing Ship program, Ann. Geophys., 21, 49–62, https://doi.org/10.5194/angeo-21-49-2003, 2003.
Manzella, G. M. R., Reseghetti, F., Coppini, G., Borghini, M., Cruzado, A., Galli, C., Gertman, I., Gervais, T., Hayes, D., Millot, C., Murashkovsky, A., Özsoy, E., Tziavos, C., Velasquez, Z., and Zodiatis, G.: The improvements of the ships of opportunity program in MFS-TEP, Ocean Sci., 3, 245–258, https://doi.org/10.5194/os-3-245-2007, 2007.
Meccia, V. L., Simoncelli, S., and Sparnocchia, S.: Decadal variability of the Turner Angle in the Mediterranean Sea and its implications for double diffusion, Deep-Sea Res. Pt. I, 114, 64–77, https://doi.org/10.1016/J.DSR.2016.04.001, 2016.
Meyssignac, B., Boyer, T., Zhao, Z., Hakuba, M. Z., Landerer, F. W., Stammer, D., Köhl, A., Kato, S., L'Ecuyer, T., Ablain, M., Abraham, J. P., Blazquez, A., Cazenave, A., Church, J. A., Cowley, R., Cheng, L., Domingues, C. M., Giglio, D., Gouretski, V., Ishii, M., Johnson, G. C., Killick, R. E., Legler, D., Llovel, W., Lyman, J., Palmer, M. D., Piotrowicz, S., Purkey, S. G., Roemmich, D., Roca, R., Savita, A., von Schuckmann, K., Speich, S., Stephens, G., Wang, G., Wijffels, S. E., and Zilberman, N.: Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Front. Mar. Sci., 6, 432, https://doi.org/10.3389/fmars.2019.00432, 2019.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea. Handbook of Environmental Chemistry, edited by: Saliot, A., vol. 5K, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 2005a.
Millot, C. and Taupier-Letage, I.: Additional evidence of LIW entrainment across the Algerian Basin by mesoscale eddies and not by permanent westward-flowing vein, Prog. Oceanogr., 66, 231–250, https://doi.org/10.1016/j.pocean.2004.03.002, 2005b.
Novellino, A., Pizziol, V., Dapueto, G., Misurale, F., Scotto, B. M., Bordoni, R., Gorringe, P., Schaap, D., and Iona, A.: EMODnet Ingestion and the operational data exchange examples and hot topics, Miscellanea INGV, 80, 364–366, https://doi.org/10.13127/MISC/80/140, 2024.
O'Brien, K. and Delaney, C.: A review of ERDDAP the established best practice in sharing gridded and tabular data from the Earth Sciences community, Miscellanea INGV, 80, 231–232, https://doi.org/10.13127/MISC/80/87, 2024.
OceanSITES: OceanSITES Data Format Reference Manual NetCDF Conventions and Reference Tables, Version 1.4, 16 July 2020, Geneva, Switzerland, OceanSITES, JCOMMOPS, 36 pp., https://doi.org/10.25607/OBP-421.2, 2020.
Palmer, M. D., Boyer, T., Cowley, R., Kizu, S., Reseghetti, F., Suzuki, T., and Thresher, A.: An Algorithm for Classifying Unknown Expendable Bathythermograph (XBT) Instruments Based on Existing Metadata, J. Atmos. Ocean. Tech., 35, 429–440, https://doi.org/10.1175/JTECH-D-17-0129.1, 2018.
Parks, J., Bringas, F., Cowley, R., Hanstein, C., Krummel, L., Sprintall, J., Cheng, L., Cirano, M., Cruz, S., Goes, M., Kizu, S., and Reseghetti, F.: XBT operational best practices for quality assurance, Front. Mar. Sci., 9, 991760, https://doi.org/10.3389/fmars.2022.991760, 2022.
Pinardi, N. and Coppini, G.: Preface “Operational oceanography in the Mediterranean Sea: the second stage of development”, Ocean Sci., 6, 263–267, https://doi.org/10.5194/os-6-263-2010, 2010.
Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, G., Lascaratos, A., Le Traon, P.-Y., Maillard, C., Manzella, G., and Tziavos, C.: The Mediterranean ocean forecasting system: first phase of implementation (1998–2001), Ann. Geophys., 21, 3–20, https://doi.org/10.5194/angeo-21-3-2003, 2003.
Pinardi, N., Zavatarelli, M., Adani, M., Coppini, G., Fratianni, C., Oddo, P., Simoncelli, S., Tonani, M., Lyubartsev, V., Dobricic, S., and Bonaduce, A.: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis, in: Progress in Oceanography, vol. 132, 318–332, Elsevier BV, https://doi.org/10.1016/j.pocean.2013.11.003, 2015.
Pinardi, N., Stander, J., Legler, D. M., O'Brien, K., Boyer, T., Cuff, T., Bahurel, P., Belbeoch, M., Belov, S., Brunner, S., Burger, E., Carval, T., Chang-Seng, D., Charpentier, E., Ciliberti, S., Coppini, G., Fischer, A., Freeman, E., Gallage, C., Garcia, H., Gates, L., Gong, Z., Hermes, J., Heslop, E., Grimes, S., Hill, K., Horsburgh, K., Iona, A., Mancini, S., Moodie, N., Ouellet, M., Pissierssens, P., Poli, P., Proctor, R., Smith, N., Sun, C., Swail, V., Turton, J., and Xinyang, Y.: The Joint IOC (of UNESCO) and WMO Collaborative Effort for Met-Ocean Services, Front. Mar. Sci., 6, 410, https://doi.org/10.3389/fmars.2019.00410, 2019.
Plessey Company Limited: Plessey-Sippican expendable bathythermograph system, Tech. Rep. MP0400, issue 0401, 51 pp., 1975.
Reid Jr., W. L.: Expendable Bathythermograph Evaluation, Oceanographic Instrumentation Center, US Naval Oceanographic Office, DTIC AD A045064, 78 pp., 1964.
Reiniger, R. F. and Ross, C. K.: A method of interpolation with application to oceanographic data, Deep-Sea Res. Oceanogr. Abstr., 15, 185–193, https://doi.org/10.1016/0011-7471(68)90040-5, 1968.
Reseghetti, F., Cheng, L., Borghini, M., Yashayaev, I. M., Raiteri, G., and Zhu, J.: Assessment of Quality and Reliability of Measurements with XBT Sippican T5 and T5/20, J. Atmos. Ocean. Tech., 35, 1935–1960, https://doi.org/10.1175/JTECH-D-18-0043.1, 2018.
Reseghetti, F., Fratianni, C., and Simoncelli, S.: Reprocessed XBT dataset in the Ligurian and Tyrrhenian seas (1999–2019) (Version 2), Istituto Nazionale di Geofisica e Vulcanologia (INGV) [data set], https://doi.org/10.13127/REP_XBT_1999_2019.2, 2024.
Roemmich, D. and Cornuelle, B.: Digitization and calibration of the expendable bathythermograph, Deep-Sea Res. Pt. A, 34, 299–307, 1987.
Ryabinin, V., Barbière, J., Haugan, P., Kullenberg, G., Smith, N., McLean, C., Troisi, A., Fischer, A., Aricò, S., Aarup, T., Pissierssens, P., Visbeck, M., Enevoldsen, H. O., and Rigaud, J.: The UN Decade of Ocean Science for Sustainable Development, Front. Mar. Sci., 6, 470, https://doi.org/10.3389/fmars.2019.00470, 2019.
Schlitzer, R.: Ocean Data View, https://odv.awi.de/ (last access: 29 November 2024), 2023.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004, 2014.
Simoncelli, S., Oliveri, P., Mattia, G., and Myroshnychenko, V.: SeaDataCloud Temperature and Salinity Historical Data Collection for the Mediterranean Sea (Version 2), Product Information Document (PIDoc), https://doi.org/10.13155/77059, 2020a.
Simoncelli, S., Schaap, D., and Schlitzer, R.: Mediterranean Sea – Temperature and salinity Historical Data Collection SeaDataCloud V2, Sextant [data set], https://doi.org/10.12770/2a2aa0c5-4054-4a62-a18b-3835b304fe64, 2020b.
Simoncelli, S., Manzella, G. M. R., Storto, A., Pisano, A., Lipizer, M., Barth, A., Myroshnychenko, V., Boyer, T., Troupin, C., Coatanoan, C., Pititto, A., Schlitzer, R., Dick, M., Schaap, A., and Diggs, S.: Chapter Four – A collaborative framework among data producers, managers, and users, edited by: Manzella, G. and Novellino, A., Ocean Science Data, Elsevier, 197–280, ISBN 9780128234273, https://doi.org/10.1016/B978-0-12-823427-3.00001-3, 2022.
Sippican: Instruction manual for the expendable bathythermograph system, R-603G – 1971, The Sippican Corporation Ocean Systems Division, 208 pp., 1980.
Sippican Corp.: Instructions for installation, operation and maintenance of Sippican expendable bathythermograph system – M300, R-467B, 100 pp, 1968.
Sippican, Inc.: Sippican MK12 oceanographic data acquisition system user's manual, Sippican, Inc., User's Manual R-2626/B P/N 306130-1, 166 pp., 1991.
Sippican Ocean Systems, Inc.: XCTD Phase I Progress Report (13 July 1983), Contract N00014-82-C-0579, R-1259 – 1983, 66 pp., 1983.
Sy, A.: XBT Measurements. In: WOCE Operations Manual, Part 3.1.3 WHP Operations and Methods, WHP Office Report, WHPO 91-1, 19 pp., 1991.
Sy, A. and Wright, D.: XBT/XCTD standard test procedures for reliability and performance test of expendable probes at sea, Revised draft, Geneva, Switzerland, WMO, TC SOT JCOMM Ship Observations Team, 8 pp., https://doi.org/10.25607/OBP-1487, 2001.
Tan, Z., Reseghetti, F., Abraham, J., Cowley, R., Chen, K., Zhu, J., Zhang, B., and Cheng, L.: Examining the Influence of Recording System on the Pure Temperature Error in XBT Data, J. Atmos. Ocean. Tech., 38, 759–776, https://doi.org/10.1175/JTECH-D-20-0136.1, 2021.
Tan, Z., Cheng, L., Gouretski, V., Zhang, B., Wang, Y., Li, F., Liu, Z., and Zhu, J.: A new automatic quality control system for ocean profile observations and impact on ocean warming estimate, Deep-Sea Res. Pt. I, 194, 103961, https://doi.org/10.1016/j.dsr.2022.103961, 2023.
Tanhua, T., Pouliquen, S., Hausman, J., O'Brien, K., Bricher, P., de Bruin, T., Buck, J. J. H., Burger, E. F., Carval, T., Casey, K. S., Diggs, S., Giorgetti, A., Glaves, H., Harscoat, V., Kinkade, D., Muelbert, J. H., Novellino, A., Pfeil, B., Pulsifer, P. L., Van de Putte, A., Robinson, E., Schaap, D., Smirnov, A., Smith, N., Snowden, D., Spears, T., Stall, S., Tacoma, M., Thijsse, P., Tronstad, S., Vandenberghe, T., Wengren, M., Wyborn, L., and Zhao, Z.: Ocean FAIR Data Services, Front. Mar. Sci., 6, 440, https://doi.org/10.3389/fmars.2019.00440, 2019.
Vignudelli, S., Cipollini, P., Reseghetti, F., Fusco, G., Gasparini, G. P., and Manzella, G. M. R.: Comparison between XBT data and TOPEX/Poseidon satellite altimetry in the Ligurian-Tyrrhenian area, Ann. Geophys., 21, 123–135, https://doi.org/10.5194/angeo-21-123-2003, 2003.
von Schuckmann, K., Le Traon, P.-Y., Alvarez-Fanjul, E., Axell, L., Balmaseda, M., Breivik, L.-A., Brewin, R. J. W., Bricaud, C., Drevillon, M., Drillet, Y., Dubois, C., Embury, O., Etienne, H., García Sotillo, M., Garric, G., Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F., Juza, M., Karlson, B., Korres, G., Legeais, J.-F., Levier, B., Lien, V. S., Morrow, R., Notarstefano, G., Parent, L., Pascual, Á., Pérez-Gómez, B., Perruche, C., Pinardi, N., Pisano, A., Poulain, P.-M., Pujol, I. M., Raj, R. P., Raudsepp, U., Roquet, H., Samuelsen, A., Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Tinker, J., Tintoré, J., Viktorsson, L., Ablain, M., Almroth-Rosell, E., Bonaduce, A., Clementi, E., Cossarini, G., Dagneaux, Q., Desportes, C., Dye, S., Fratianni, C., Good, S., Greiner, E., Gourrion, J., Hamon, M., Holt, J., Hyder, P., Kennedy, J., Manzano-Muñoz, F., Melet, A., Meyssignac, B., Mulet, S., Buongiorno Nardelli, B., O'Dea, E., Olason, E., Paulmier, A., Pérez-González, I., Reid, R., Racault, M.-F., Raitsos, D. E., Ramos, A., Sykes, P., Szekely, T., and Verbrugge, N.: The Copernicus Marine Environment Monitoring Service Ocean State Report, J. Oper. Oceanogr., 9, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446, 2016.
Wannamaker, B.: XBT measurements near the sea surface: Considerations for satellite IR comparisons and data bases. Saclant ASW Research Centre Memo. SM-132, 13 pp., 1980.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Zodiatis, G., Drakopoulos, P., Brenner, S., and Groom, S.: Variability of the Cyprus warm core Eddy during the CYCLOPS project, Deep-Sea Res. Pt. II, 52, 2897–2910, https://doi.org/10.1016/j.dsr2.2005.08.020, 2005.
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT)...
Altmetrics
Final-revised paper
Preprint