Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1689-2024
https://doi.org/10.5194/essd-16-1689-2024
Data description paper
 | 
04 Apr 2024
Data description paper |  | 04 Apr 2024

ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China

Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang

Related authors

A novel method for correcting water budget components and reducing their uncertainties by optimally distributing the imbalance residual without full closure
Zengliang Luo, Hanjia Fu, Quanxi Shao, Wenwen Dong, Xi Chen, Xiangyi Ding, Lunche Wang, Xihui Gu, Ranjan Sarukkalige, Heqing Huang, and Huan Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-990,https://doi.org/10.5194/egusphere-2025-990, 2025
Short summary
Global Retrieval of 24-hourly Solar-Induced Chlorophyll Fluorescence and Evapotranspiration from OCO-2, OCO-3 and ECOSTRESS over 1982–2022
Zhuoying Deng, Tingyu Li, Jinghua Chen, Shaoqiang Wang, Kun Huang, Peng Gu, Haoyu Peng, and Zhihui Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-99,https://doi.org/10.5194/essd-2025-99, 2025
Manuscript not accepted for further review
Short summary
DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION
X. He, S. Jiang, S. He, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1635–1642, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, 2023
VIEW GRAPH CONSTRUCTION FOR LARGE-SCALE UAV IMAGES: AN EVALUATION OF STATE-OF-THE-ART METHODS
J. Liu, Y. Ma, S. Jiang, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1059–1065, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, 2023
LAND SUBSIDENCE PREDICTION THROUGH MODELING OF TEMPORAL ATTRIBUTE PREDICTION OF KNOWLEDGE GRAPH
X. Lei, W. Song, R. Fan, R. Feng, and L. Wang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 9–15, https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022,https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022, 2022

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
An annual 30 m cultivated-pasture dataset of the Tibetan Plateau from 1988 to 2021
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data, 17, 2933–2952, https://doi.org/10.5194/essd-17-2933-2025,https://doi.org/10.5194/essd-17-2933-2025, 2025
Short summary
GloUCP: a global 1 km spatially continuous urban canopy parameters for the WRF model
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data, 17, 2535–2551, https://doi.org/10.5194/essd-17-2535-2025,https://doi.org/10.5194/essd-17-2535-2025, 2025
Short summary
CCD-Rice: a long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025,https://doi.org/10.5194/essd-17-2193-2025, 2025
Short summary
U-Surf: a global 1 km spatially continuous urban surface property dataset for kilometer-scale urban-resolving Earth system modeling
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025,https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
The Earth Topography 2022 (ETOPO 2022) global DEM dataset
Michael MacFerrin, Christopher Amante, Kelly Carignan, Matthew Love, and Elliot Lim
Earth Syst. Sci. Data, 17, 1835–1849, https://doi.org/10.5194/essd-17-1835-2025,https://doi.org/10.5194/essd-17-1835-2025, 2025
Short summary

Cited articles

Atzberger, C. and Eilers, P. H.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, Int. J. Remote Sens., 32, 3689–3709, 2011. 
Aybar, C., Montero, D., Barja, A., Herrera, F., Gonzales, A., and Espinoza, W.: Combining R and Earth Engine, in: Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Cham, Springer International Publishing, 629–651, https://doi.org/10.1007/978-3-031-26588-4_31, 2023. 
Bai, H. and Xiao, D.: Spatiotemporal changes of rice phenology in China during 1981–2010, Theor. Appl. Clim., 140, 1483–1494, 2020. 
Boschetti, M., Stroppiana, D., Brivio, P., and Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643–4662, 2009. 
Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., and Nelson, A.: PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series, Remote Sens. Environ., 194, 347–365, 2017. 
Download
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Share
Altmetrics
Final-revised paper
Preprint