Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1689-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-1689-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China
Hui Li
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Shaoqiang Wang
CORRESPONDING AUTHOR
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Jinyuan Liu
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Yuanyuan Liu
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Zhenhai Liu
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Shiliang Chen
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Qinyi Wang
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Tongtong Zhu
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Lunche Wang
Key Laboratory of Regional Ecology and Environmental Change, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
Lizhe Wang
Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430074, China
Related authors
No articles found.
Qinghai Qi, Yuting Tan, Christian A Gueymard, Martin Wild, Bo Hu, Wenmin Qin, Taowen Sun, Ming Zhang, and Lunche Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-368, https://doi.org/10.5194/essd-2025-368, 2025
Preprint under review for ESSD
Short summary
Short summary
This research presents China's first long-term (1981–2023) hyperspectral ultraviolet radiation dataset with exceptional 0.5 nm spectral resolution. The spectral detail enables precise identification of UV absorption characteristics and atmospheric interactions previously obscured in conventional broadband measurements. These results provide new capabilities for monitoring ozone depletion, and optimizing solar energy systems across China's diverse climatic regions.
Zengliang Luo, Hanjia Fu, Quanxi Shao, Wenwen Dong, Xi Chen, Xiangyi Ding, Lunche Wang, Xihui Gu, Ranjan Sarukkalige, Heqing Huang, and Huan Li
Hydrol. Earth Syst. Sci., 29, 4607–4635, https://doi.org/10.5194/hess-29-4607-2025, https://doi.org/10.5194/hess-29-4607-2025, 2025
Short summary
Short summary
Existing correction methods may introduce large errors, and more seriously cause unrealistic negative values in P, ET and Q in up to 10 % of cases. A novel IWE-Res method is proposed to improve the accuracy and consistency of corrected satellite-based water budget component data. In most river basins (except cold regions), the best correction is achieved by adjusting 40 % to 90 % of the total water imbalance error.
Zhuoying Deng, Tingyu Li, Jinghua Chen, Shaoqiang Wang, Kun Huang, Peng Gu, Haoyu Peng, and Zhihui Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-99, https://doi.org/10.5194/essd-2025-99, 2025
Manuscript not accepted for further review
Short summary
Short summary
We developed an efficient retrieval method and produced a long-term global SIF and ET dataset (0.1°, hourly, from 1982 to 2022), which has been validated using global EC flux towers and popular satellite products. Our dataset will provide new insights for monitoring the diurnal variations of carbon and water cycles and deepen our understanding of their changes over the past 40 years.
X. He, S. Jiang, S. He, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1635–1642, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, 2023
J. Liu, Y. Ma, S. Jiang, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1059–1065, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, 2023
X. Lei, W. Song, R. Fan, R. Feng, and L. Wang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 9–15, https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022, https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022, 2022
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021, https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary
Short summary
Ice clouds in the lowermost stratosphere (SICs) have important impacts on the radiation budget and climate change. We quantified the occurrence of SICs over North America and analysed its relations with convective systems and gravity waves to investigate potential formation mechanisms of SICs. Deep convection is proved to be the primary factor linked to the occurrence of SICs over North America.
Cited articles
Atzberger, C. and Eilers, P. H.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, Int. J. Remote Sens., 32, 3689–3709, 2011.
Aybar, C., Montero, D., Barja, A., Herrera, F., Gonzales, A., and Espinoza, W.: Combining R and Earth Engine, in: Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Cham, Springer International Publishing, 629–651, https://doi.org/10.1007/978-3-031-26588-4_31, 2023.
Bai, H. and Xiao, D.: Spatiotemporal changes of rice phenology in China during 1981–2010, Theor. Appl. Clim., 140, 1483–1494, 2020.
Boschetti, M., Stroppiana, D., Brivio, P., and Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643–4662, 2009.
Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., and Nelson, A.: PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series, Remote Sens. Environ., 194, 347–365, 2017.
Busetto, L., Zwart, S. J., and Boschetti, M.: Analysing spatial–temporal changes in rice cultivation practices in the Senegal River Valley using MODIS time-series and the PhenoRice algorithm, Int. J. Appl. Earth Obs., 75, 15–28, 2019.
Bush, E. R., Abernethy, K. A., Jeffery, K., Tutin, C., White, L., Dimoto, E., Dikangadissi, J. T., Jump, A. S., and Bunnefeld, N.: Fourier analysis to detect phenological cycles using long-term tropical field data and simulations, Meth. Ecol. Evol., 8, 530–540, 2017.
Cao, J., Cai, X., Tan, J., Cui, Y., Xie, H., Liu, F., Yang, L., and Luo, Y.: Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system, Southern China, from 1988–2017, Int. J. Remote Sens., 42, 1556–1576, 2021.
Carleton, T. A.: Crop-damaging temperatures increase suicide rates in India, P. Natl. Acad. Sci. USA, 114, 8746–8751, 2017.
Clauss, K., Yan, H., and Kuenzer, C.: Mapping paddy rice in China in 2002, 2005, 2010 and 2014 with MODIS time series, Remote Sens., 8, 434, https://doi.org/10.3390/rs8050434, 2016.
Didan, K.: MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD13Q1.061, 2021.
Dong, J. and Xiao, X.: Evolution of regional to global paddy rice mapping methods: A review, ISPRS J. Photogramm. Remote, 119, 214–227, 2016.
Fahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I.A., Ullah, H., Wahid, F., Mian, I. A., and Jamal, Y.: Major constraints for global rice production, Advances in rice research for abiotic stress tolerance, Elsevier, 1–22, https://doi.org/10.1016/B978-0-12-814332-2.00001-0, 2019.
Franke, J. A., Müller, C., Elliott, J., Ruane, A. C., Jägermeyr, J., Snyder, A., Dury, M., Falloon, P. D., Folberth, C., François, L., Hank, T., Izaurralde, R. C., Jacquemin, I., Jones, C., Li, M., Liu, W., Olin, S., Phillips, M., Pugh, T. A. M., Reddy, A., Williams, K., Wang, Z., Zabel, F., and Moyer, E. J.: The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0), Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, 2020.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Fritz, S., See, L., Bayas, J. C. L., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., and Crutchfield, J.: A comparison of global agricultural monitoring systems and current gaps, Agr. Syst., 168, 258–272, 2019.
Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., and Qin, X.: Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China, Global Biogeochem. Cy., 16, 38-1–38-10, 2002.
Gao, F. and Zhang, X.: Mapping crop phenology in near real-time using satellite remote sensing: Challenges and opportunities, J. Remote Sens., 2021, 8379391, https://doi.org/10.34133/2021/8379391, 2021.
Gocic, M. and Trajkovic, S.: Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia, Global Planet. Change, 100, 172–182, 2013.
Gumma, M. K., Nelson, A., Thenkabail, P. S., and Singh, A. N.: Mapping rice areas of South Asia using MODIS multitemporal data, J. Appl. Remote Sens., 5, 053547, https://doi.org/10.1117/1.3619838, 2011.
Guo, L., An, N., and Wang, K.: Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008, J. Geophys. Res.-Atmos., 121, 1027–1042, 2016.
Han, J., Zhang, Z., Luo, Y., Cao, J., Zhang, L., Zhuang, H., Cheng, F., Zhang, J., and Tao, F.: Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020, Agr. Syst., 200, 103437, https://doi.org/10.1016/j.agsy.2022.103437, 2022.
He, Y., Dong, J., Liao, X., Sun, L., Wang, Z., You, N., Li, Z., and Fu, P.: Examining rice distribution and cropping intensity in a mixed single-and double-cropping region in South China using all available Sentinel 1/2 images, Int. J. Appl. Earth Obs., 101, 102351, https://doi.org/10.1016/j.jag.2021.102351, 2021.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022.
Jönsson, P. and Eklundh, L.: TIMESAT—a program for analyzing time-series of satellite sensor data, Comput. Geosci., 30, 833–845, https://doi.org/10.1016/j.cageo.2004.05.006, 2004.
Kong, D., McVicar, T. R., Xiao, M., Zhang, Y., Peña-Arancibia, J. L., Filippa, G., Xie, Y., and Gu, X.: phenofit: An R package for extracting vegetation phenology from time series remote sensing, Meth. Ecol. Evol., 13, 1508–1527, https://doi.org/10.1111/2041-210X.13870, 2022.
Kotsuki, S. and Tanaka, K.: SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI, Hydrol. Earth Syst. Sci., 19, 4441–4461, https://doi.org/10.5194/hess-19-4441-2015, 2015.
Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart, S. J., Boschetti, M., Murty, M., Villano, L., Aunario, J. K., and Reinke, R.: RiceAtlas, a spatial database of global rice calendars and production, Sci. Data, 4, 1–10, 2017.
Liu, J., Li, H., Wang, X., Wang, S., Liu, Y., Liu, Z., Chen, S., Wang Q., Zhu, T., Wang, L., and Wang, L.: ChinaRiceCalendar, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/EUP8EY, 2023.
Liu, L., Huang, J., Xiong, Q., Zhang, H., Song, P., Huang, Y., Dou, Y., and Wang, X.: Optimal MODIS data processing for accurate multi-year paddy rice area mapping in China, GISci. Remote Sens., 57, 687–703, 2020.
Liu, Y., Zhou, W., and Ge, Q.: Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010, Climatic Change, 157, 261–277, 2019.
Luo, W., Chen, M., Kang, Y., Li, W., Li, D., Cui, Y., Khan, S., and Luo, Y.: Analysis of crop water requirements and irrigation demands for rice: Implications for increasing effective rainfall, Agr. Water Manage., 260, 107285, https://doi.org/10.1016/j.agwat.2021.107285, 2022.
Luo, Y., Zhang, Z., Chen, Y., Li, Z., and Tao, F.: ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products, Earth Syst. Sci. Data, 12, 197–214, https://doi.org/10.5194/essd-12-197-2020, 2020.
Mishra, B., Busetto, L., Boschetti, M., Laborte, A., and Nelson, A.: RICA: A rice crop calendar for Asia based on MODIS multi year data, Int. J. Appl. Earth Obs., 103, 102471, https://doi.org/10.1016/j.jag.2021.102471, 2021.
More, R. S., Manjunath, K., Jain, N. K., Panigrahy, S., and Parihar, J. S.: Derivation of rice crop calendar and evaluation of crop phenometrics and latitudinal relationship for major south and south-east Asian countries: A remote sensing approach, Comput. Electron. Agr., 127, 336–350, 2016.
Pan, Z., Huang, J., Zhou, Q., Wang, L., Cheng, Y., Zhang, H., Blackburn, G. A., Yan, J., and Liu, J.: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data, Int. J. Appl. Earth Obs., 34, 188–197, 2015.
Qiu, J., Tang, H., Frolking, S., Boles, S., Li, C., Xiao, X., Liu, J., Zhuang, Y. and Qin, X.: Mapping single-, double-, and triple-crop agriculture in China at 0.5°× 0.5° by combining county-scale census data with a remote sensing-derived land cover map, Geocarto Int., 18, 3–13, 2003.
Reed, B. C., Brown, J. F., VanderZee, D., Loveland, T. R., Merchant, J. W., and Ohlen, D. O.: Measuring phenological variability from satellite imagery, J. Veg. Sci., 5, 703–714, 1994.
Sakamoto, T.: Refined shape model fitting methods for detecting various types of phenological information on major US crops, ISPRS J. Photogramm., 138, 176–192, 2018.
Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., and Ohno, H.: A crop phenology detection method using time-series MODIS data, Remote Sens. Environ., 96, 366–374, 2005.
Sakamoto, T., Wardlow, B. D., Gitelson, A. A., Verma, S. B., Suyker, A. E., and Arkebauer, T. J.: A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data, Remote Sens. Environ., 114, 2146–2159, 2010.
Shen, R., Pan, B., Peng, Q., Dong, J., Chen, X., Zhang, X., Ye, T., Huang, J., and Yuan, W.: High-resolution distribution maps of single-season rice in China from 2017 to 2022, Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, 2023.
Shen, Y., Zhang, X., Yang, Z., Ye, Y., Wang, J., Gao, S., Liu, Y., Wang, W., Tran, K. H., and Ju, J.: Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations, Remote Sens. Environ., 296, 113729, https://doi.org/10.1016/j.rse.2023.113729, 2023.
Shihua, L., Jingtao, X., Ping, N., Jing, Z., Hongshu, W., and Jingxian, W.: Monitoring paddy rice phenology using time series MODIS data over Jiangxi Province, China, Int. J. Agr. Biol. Eng., 7, 28–36, 2014.
Son, N.-T., Chen, C.-F., Chen, C.-R., Duc, H.-N., and Chang, L.-Y.: A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam, Remote Sens., 6, 135–156, 2013.
Sun, C., Zhang, H., Xu, L., Ge, J., Jiang, J., Zuo, L., and Wang, C.: Twenty-meter annual paddy rice area map for mainland Southeast Asia using Sentinel-1 synthetic-aperture-radar data, Earth Syst. Sci. Data, 15, 1501–1520, https://doi.org/10.5194/essd-15-1501-2023, 2023.
Sun, H., Huang, J., and Peng, D.: Detecting major growth stages of paddy rice using MODIS data, J. Remote Sens., 13, 1122–1137, 2009.
Waha, K., Müller, C., and Rolinski, S.: Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid-to late-21st century, Global Planet. Change, 106, 1–12, 2013.
Wan, Z., Hook, S., and Hulley, G.: MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MOD11A2.061, 2021.
Wang, J., Yu, K., Tian, M., and Wang, Z.: Estimation of rice key phenology date using Chinese HJ-1 vegetation index time-series images, 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), IEEE, 1–4, https://doi.org/10.1109/Agro-Geoinformatics.2019.8820262, 2019.
Wang, X., Ciais, P., Li, L., Ruget, F., Vuichard, N., Viovy, N., Zhou, F., Chang, J., Wu, X., and Zhao, H.: Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012, Agr. Forest Meteorol., 233, 1–11, 2017.
Wang, X., Folberth, C., Skalsky, R., Wang, S., Chen, B., Liu, Y., Chen, J., and Balkovic, J.: Crop calendar optimization for climate change adaptation in rice-based multiple cropping systems of India and Bangladesh, Agr. Forest Meteorol., 315, 108830, https://doi.org/10.1016/j.agrformet.2022.108830, 2022.
Wang, X., Wang, S., Folberth, C., Skalsky, R., Li, H., Liu, Y., and Balkovic, J.: Limiting global warming to 2° C benefits building climate resilience in rice-wheat systems in India through crop calendar management, Agr. Syst., 213, 103806, https://doi.org/10.1016/j.agsy.2023.103806, 2024.
Wu, Q.: geemap: A Python package for interactive mapping with Google Earth Engine, J. Open Source Softw., 5, 2305, https://doi.org/10.21105/joss.02305, 2020.
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., and Moore III, B.: Mapping paddy rice agriculture in southern China using multi-temporal MODIS images, Remote Sens. Environ., 95, 480–492, 2005.
Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., and Moore III, B.: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sens. Environ., 100, 95–113, 2006.
Zeng, L., Wardlow, B. D., Wang, R., Shan, J., Tadesse, T., Hayes, M. J., and Li, D.: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data, Remote Sens. Environ., 181, 237–250, 2016.
Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation phenology using MODIS, Remote Sens. Environ., 84, 471–475, 2003.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., and Ciais, P.: Temperature increase reduces global yields of major crops in four independent estimates, P. Natl. Acad. Sci. USA, 114, 9326–9331, 2017.
Zhao, H., Yang, Z., Di, L., and Pei, Z.: Evaluation of temporal resolution effect in remote sensing based crop phenology detection studies, International Conference on Computer and Computing Technologies in Agriculture, Springer, 135–150, https://doi.org/10.1007/978-3-642-27278-3_16, 2011.
Zheng, J., Song, X., Yang, G., Du, X., Mei, X., and Yang, X.: Remote sensing monitoring of rice and wheat canopy nitrogen: A review, Remote Sens., 14, 5712, https://doi.org/10.3390/rs14225712, 2022.
Zong, W., Ren, D., Huang, M., Sun, K., Feng, J., Zhao, J., Xiao, D., Xie, W., Liu, S., and Zhang, H.: Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading, New Phytol., 229, 1635–1649, 2021.
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset...
Altmetrics
Final-revised paper
Preprint