Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1689-2024
https://doi.org/10.5194/essd-16-1689-2024
Data description paper
 | 
04 Apr 2024
Data description paper |  | 04 Apr 2024

ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China

Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang

Related authors

First High-Resolution Surface Spectral Clear-Sky Ultraviolet Radiation Dataset across China (1981–2023): Development, Validation, and Variability
Qinghai Qi, Yuting Tan, Christian A Gueymard, Martin Wild, Bo Hu, Wenmin Qin, Taowen Sun, Ming Zhang, and Lunche Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-368,https://doi.org/10.5194/essd-2025-368, 2025
Preprint under review for ESSD
Short summary
A novel method for correcting water budget components and reducing their uncertainties by optimally distributing the imbalance residual without full closure
Zengliang Luo, Hanjia Fu, Quanxi Shao, Wenwen Dong, Xi Chen, Xiangyi Ding, Lunche Wang, Xihui Gu, Ranjan Sarukkalige, Heqing Huang, and Huan Li
Hydrol. Earth Syst. Sci., 29, 4607–4635, https://doi.org/10.5194/hess-29-4607-2025,https://doi.org/10.5194/hess-29-4607-2025, 2025
Short summary
Global Retrieval of 24-hourly Solar-Induced Chlorophyll Fluorescence and Evapotranspiration from OCO-2, OCO-3 and ECOSTRESS over 1982–2022
Zhuoying Deng, Tingyu Li, Jinghua Chen, Shaoqiang Wang, Kun Huang, Peng Gu, Haoyu Peng, and Zhihui Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-99,https://doi.org/10.5194/essd-2025-99, 2025
Manuscript not accepted for further review
Short summary
DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION
X. He, S. Jiang, S. He, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1635–1642, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, 2023
VIEW GRAPH CONSTRUCTION FOR LARGE-SCALE UAV IMAGES: AN EVALUATION OF STATE-OF-THE-ART METHODS
J. Liu, Y. Ma, S. Jiang, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1059–1065, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, 2023

Cited articles

Atzberger, C. and Eilers, P. H.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, Int. J. Remote Sens., 32, 3689–3709, 2011. 
Aybar, C., Montero, D., Barja, A., Herrera, F., Gonzales, A., and Espinoza, W.: Combining R and Earth Engine, in: Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Cham, Springer International Publishing, 629–651, https://doi.org/10.1007/978-3-031-26588-4_31, 2023. 
Bai, H. and Xiao, D.: Spatiotemporal changes of rice phenology in China during 1981–2010, Theor. Appl. Clim., 140, 1483–1494, 2020. 
Boschetti, M., Stroppiana, D., Brivio, P., and Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643–4662, 2009. 
Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., and Nelson, A.: PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series, Remote Sens. Environ., 194, 347–365, 2017. 
Download
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Share
Altmetrics
Final-revised paper
Preprint