Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1689-2024
https://doi.org/10.5194/essd-16-1689-2024
Data description paper
 | 
04 Apr 2024
Data description paper |  | 04 Apr 2024

ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China

Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang

Related authors

Global Retrieval of 24-hourly Solar-Induced Chlorophyll Fluorescence and Evapotranspiration from OCO-2, OCO-3 and ECOSTRESS over 1982–2022
Zhuoying Deng, Tingyu Li, Jinghua Chen, Shaoqiang Wang, Kun Huang, Peng Gu, Haoyu Peng, and Zhihui Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-99,https://doi.org/10.5194/essd-2025-99, 2025
Preprint under review for ESSD
Short summary
DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION
X. He, S. Jiang, S. He, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1635–1642, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, 2023
VIEW GRAPH CONSTRUCTION FOR LARGE-SCALE UAV IMAGES: AN EVALUATION OF STATE-OF-THE-ART METHODS
J. Liu, Y. Ma, S. Jiang, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1059–1065, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, 2023
LAND SUBSIDENCE PREDICTION THROUGH MODELING OF TEMPORAL ATTRIBUTE PREDICTION OF KNOWLEDGE GRAPH
X. Lei, W. Song, R. Fan, R. Feng, and L. Wang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 9–15, https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022,https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022, 2022
Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021,https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
Revised and updated geospatial monitoring of 21st century forest carbon fluxes
David A. Gibbs, Melissa Rose, Giacomo Grassi, Joana Melo, Simone Rossi, Viola Heinrich, and Nancy L. Harris
Earth Syst. Sci. Data, 17, 1217–1243, https://doi.org/10.5194/essd-17-1217-2025,https://doi.org/10.5194/essd-17-1217-2025, 2025
Short summary
ChatEarthNet: a global-scale image–text dataset empowering vision–language geo-foundation models
Zhenghang Yuan, Zhitong Xiong, Lichao Mou, and Xiao Xiang Zhu
Earth Syst. Sci. Data, 17, 1245–1263, https://doi.org/10.5194/essd-17-1245-2025,https://doi.org/10.5194/essd-17-1245-2025, 2025
Short summary
Aboveground biomass dataset from SMOS L-band vegetation optical depth and reference maps
Simon Boitard, Arnaud Mialon, Stéphane Mermoz, Nemesio J. Rodríguez-Fernández, Philippe Richaume, Julio César Salazar-Neira, Stéphane Tarot, and Yann H. Kerr
Earth Syst. Sci. Data, 17, 1101–1119, https://doi.org/10.5194/essd-17-1101-2025,https://doi.org/10.5194/essd-17-1101-2025, 2025
Short summary
GMIE: a global maximum irrigation extent and central pivot irrigation system dataset derived via irrigation performance during drought stress and deep learning methods
Fuyou Tian, Bingfang Wu, Hongwei Zeng, Miao Zhang, Weiwei Zhu, Nana Yan, Yuming Lu, and Yifan Li
Earth Syst. Sci. Data, 17, 855–880, https://doi.org/10.5194/essd-17-855-2025,https://doi.org/10.5194/essd-17-855-2025, 2025
Short summary
Annual vegetation maps in the Qinghai–Tibet Plateau (QTP) from 2000 to 2022 based on MODIS series satellite imagery
Guangsheng Zhou, Hongrui Ren, Lei Zhang, Xiaomin Lv, and Mengzi Zhou
Earth Syst. Sci. Data, 17, 773–797, https://doi.org/10.5194/essd-17-773-2025,https://doi.org/10.5194/essd-17-773-2025, 2025
Short summary

Cited articles

Atzberger, C. and Eilers, P. H.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, Int. J. Remote Sens., 32, 3689–3709, 2011. 
Aybar, C., Montero, D., Barja, A., Herrera, F., Gonzales, A., and Espinoza, W.: Combining R and Earth Engine, in: Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Cham, Springer International Publishing, 629–651, https://doi.org/10.1007/978-3-031-26588-4_31, 2023. 
Bai, H. and Xiao, D.: Spatiotemporal changes of rice phenology in China during 1981–2010, Theor. Appl. Clim., 140, 1483–1494, 2020. 
Boschetti, M., Stroppiana, D., Brivio, P., and Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643–4662, 2009. 
Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., and Nelson, A.: PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series, Remote Sens. Environ., 194, 347–365, 2017. 
Download
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Share
Altmetrics
Final-revised paper
Preprint