Articles | Volume 16, issue 4
https://doi.org/10.5194/essd-16-1689-2024
https://doi.org/10.5194/essd-16-1689-2024
Data description paper
 | 
04 Apr 2024
Data description paper |  | 04 Apr 2024

ChinaRiceCalendar – seasonal crop calendars for early-, middle-, and late-season rice in China

Hui Li, Xiaobo Wang, Shaoqiang Wang, Jinyuan Liu, Yuanyuan Liu, Zhenhai Liu, Shiliang Chen, Qinyi Wang, Tongtong Zhu, Lunche Wang, and Lizhe Wang

Related authors

DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION
X. He, S. Jiang, S. He, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1635–1642, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023, 2023
VIEW GRAPH CONSTRUCTION FOR LARGE-SCALE UAV IMAGES: AN EVALUATION OF STATE-OF-THE-ART METHODS
J. Liu, Y. Ma, S. Jiang, Q. Li, W. Jiang, and L. Wang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 1059–1065, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1059-2023, 2023
LAND SUBSIDENCE PREDICTION THROUGH MODELING OF TEMPORAL ATTRIBUTE PREDICTION OF KNOWLEDGE GRAPH
X. Lei, W. Song, R. Fan, R. Feng, and L. Wang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 9–15, https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022,https://doi.org/10.5194/isprs-annals-V-4-2022-9-2022, 2022
Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021,https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary
Revisiting global satellite observations of stratospheric cirrus clouds
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020,https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
A 100 m gridded population dataset of China's seventh census using ensemble learning and big geospatial data
Yuehong Chen, Congcong Xu, Yong Ge, Xiaoxiang Zhang, and Ya'nan Zhou
Earth Syst. Sci. Data, 16, 3705–3718, https://doi.org/10.5194/essd-16-3705-2024,https://doi.org/10.5194/essd-16-3705-2024, 2024
Short summary
Annual time-series 1 km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850–2021
Shuchao Ye, Peiyu Cao, and Chaoqun Lu
Earth Syst. Sci. Data, 16, 3453–3470, https://doi.org/10.5194/essd-16-3453-2024,https://doi.org/10.5194/essd-16-3453-2024, 2024
Short summary
Retrieval of dominant methane (CH4) emission sources, the first high-resolution (1–2 m) dataset of storage tanks of China in 2000–2021
Fang Chen, Lei Wang, Yu Wang, Haiying Zhang, Ning Wang, Pengfei Ma, and Bo Yu
Earth Syst. Sci. Data, 16, 3369–3382, https://doi.org/10.5194/essd-16-3369-2024,https://doi.org/10.5194/essd-16-3369-2024, 2024
Short summary
A 10 m resolution land cover map of the Tibetan Plateau with detailed vegetation types
Xingyi Huang, Yuwei Yin, Luwei Feng, Xiaoye Tong, Xiaoxin Zhang, Jiangrong Li, and Feng Tian
Earth Syst. Sci. Data, 16, 3307–3332, https://doi.org/10.5194/essd-16-3307-2024,https://doi.org/10.5194/essd-16-3307-2024, 2024
Short summary
ChinaSoyArea10m: a dataset of soybean-planting areas with a spatial resolution of 10 m across China from 2017 to 2021
Qinghang Mei, Zhao Zhang, Jichong Han, Jie Song, Jinwei Dong, Huaqing Wu, Jialu Xu, and Fulu Tao
Earth Syst. Sci. Data, 16, 3213–3231, https://doi.org/10.5194/essd-16-3213-2024,https://doi.org/10.5194/essd-16-3213-2024, 2024
Short summary

Cited articles

Atzberger, C. and Eilers, P. H.: Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, Int. J. Remote Sens., 32, 3689–3709, 2011. 
Aybar, C., Montero, D., Barja, A., Herrera, F., Gonzales, A., and Espinoza, W.: Combining R and Earth Engine, in: Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Cham, Springer International Publishing, 629–651, https://doi.org/10.1007/978-3-031-26588-4_31, 2023. 
Bai, H. and Xiao, D.: Spatiotemporal changes of rice phenology in China during 1981–2010, Theor. Appl. Clim., 140, 1483–1494, 2020. 
Boschetti, M., Stroppiana, D., Brivio, P., and Bocchi, S.: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643–4662, 2009. 
Boschetti, M., Busetto, L., Manfron, G., Laborte, A., Asilo, S., Pazhanivelan, S., and Nelson, A.: PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series, Remote Sens. Environ., 194, 347–365, 2017. 
Download
Short summary
Utilizing satellite remote sensing data, we established a multi-season rice calendar dataset named ChinaRiceCalendar. It exhibits strong alignment with field observations collected by agricultural meteorological stations across China. ChinaRiceCalendar stands as a reliable dataset for investigating and optimizing the spatiotemporal dynamics of rice phenology in China, particularly in the context of climate and land use changes.
Altmetrics
Final-revised paper
Preprint