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Abstract. Long time series and large-scale rice calendar datasets provide valuable information for agricultural
planning and field management in rice-based cropping systems. However, current regional-level rice calendar
datasets do not accurately distinguish between rice seasons in China, causing uncertainty in crop model simu-
lation and climate change impact analysis. Based on satellite remote sensing data, we extracted transplanting,
heading, and maturity dates of early-, middle-, and late-season rice across China from 2003 to 2022 and estab-
lished a multi-season rice calendar dataset named ChinaRiceCalendar (https://doi.org/10.7910/DVN/EUP8EY,
Liu et al., 2023). Overall, the ChinaRiceCalendar dataset shows good agreement with field-observed pheno-
logical dates of early-, middle-, and late-season rice in Chinese agricultural meteorological stations (AMSs).
According to the calendar data from 2003 to 2022 in China, the transplanting dates for early-, middle-, and late-
season rice shifted by +0.7, −0.7, and −5.1 DOY (day of year) per decade, respectively; the heading dates for
early-, middle-, and late-season rice shifted by−0.5,+2.7, and−0.6 DOY per decade, respectively; the maturity
dates for early-, middle-, and late-season rice shifted by −0.7, +3.8, and −1.6 DOY per decade, respectively.
ChinaRiceCalendar can be utilized to investigate and optimize the spatiotemporal structure of rice cultivation in
China under climate and land use change.

1 Introduction

As one of the major food crops, rice feeds nearly half of
the world’s population (Fahad et al., 2019). In the context
of climate change, continued warming is projected to result
in shorter crop growth periods, lower rice productivity, and
food insecurity in the Asian monsoon region (Carleton, 2017;
Zhao et al., 2017; IPCC, 2022). Revealing changes in rice
phenology will facilitate timely adjustment of planting time,
rice cultivars, and cropping systems under global warming

(Waha et al., 2013; Wang et al., 2022, 2024). Moreover, a dy-
namic rice calendar with key phenological dates is integral to
agricultural monitoring and farmer support systems (Laborte
et al., 2017; Fritz et al., 2019; Mishra et al., 2021). Large-
scale rice calendars can contribute to more reliable simula-
tions of crop growth and yield at regional and global scales
(Franke et al., 2020).

Satellite remote sensing is an effective tool for detect-
ing long-term trends in crop phenology at the regional scale

Published by Copernicus Publications.

https://doi.org/10.7910/DVN/EUP8EY


1690 H. Li et al.: ChinaRiceCalendar – seasonal crop calendars

(Xiao et al., 2006; Kotsuki and Tanaka, 2015; Luo et al.,
2020; Gao and Zhang, 2021; Mishra et al., 2021). Crop phe-
nology detection methods based on remote sensing vegeta-
tion indices (VIs) can be categorized as threshold, inflec-
tion point, and shape model approaches. The threshold ap-
proaches assume that a development stage begins when the
VI value exceeds a predefined threshold (Jönsson and Ek-
lundh, 2004; Boschetti et al., 2009; Pan et al., 2015; Guo
et al., 2016). The inflection point approaches reconstruct the
VI time series curve by filter smoothing or function fitting
and then match the maxima, minima, and inflection points
on the curve to the key phenological events (Zhang et al.,
2003; Sakamoto et al., 2005; Sun et al., 2009; Wang et al.,
2019). The shape model approaches fit observed VI time se-
ries curves by geometric scaling a robust standard VI time
series curve for the specific crop to identify development
stages (Sakamoto et al., 2010; More et al., 2016; Zeng et
al., 2016; Sakamoto et al., 2018). In addition to the methods
based on time series of VIs, there are also rule-based algo-
rithms that integrate multiple approaches and indicators to
detect crop phenology, such as the PhenoRice algorithm pro-
posed by Boschetti et al. (2017). The PhenoRice algorithm,
which combines the advantages of threshold and inflection
point approaches, utilizes the Enhanced Vegetation Index
(EVI), the Normalized Difference Flood Index (NDFI), and
the land surface temperature (LST) to estimate rice planting
dates. The PhenoRice algorithm excels at extracting rice phe-
nology in multiple cropping systems and has been widely
used in East Asia, South Asia, Southeast Asia, and Europe
(Busetto et al., 2019; Liu et al., 2020; Mishra et al., 2021).
However, the performance of the PhenoRice algorithm de-
pends on the division of rice seasons, which requires expert
knowledge about rice-based cropping systems in different re-
gions (Mishra et al., 2021).

In China, there are at least three rice-growing seasons
(early, middle, and late seasons) in diverse rice-based crop-
ping systems (e.g., single-rice, double-rice, rice–wheat, rice–
rapeseed, or rice–vegetable systems) (Frolking et al., 2002;
Qiu et al., 2003; Cao et al., 2021; He et al., 2021). Gener-
ally, early-, middle-, and late-season rice in China is trans-
planted around days of the year (DOY) 80–130, DOY 130–
180, and DOY 180–230, respectively. Their typical maturity
dates align with DOY 160–220, DOY 240–290, and DOY
270–330, respectively. Although field observations are im-
portant data sources for studying rice calendars in different
growing seasons, they are usually limited by spatial and tem-
poral discontinuities (Wang et al., 2017). Therefore, previ-
ous studies have typically utilized satellite remote sensing
products to establish rice calendar datasets at the regional
scale (Shihua et al., 2014; Liu et al., 2019; Bai and Xiao,
2020; Luo et al., 2020; Mishra et al., 2021). Nevertheless,
these calendar datasets based on satellite remote sensing do
not rationally classify rice growing seasons across China. For
example, the dataset ChinaCropPhen1km only distinguishes
between early and late rice in double-rice systems (Luo et al.,

2020); the assumptions of the dataset RICA about rice head-
ing dates in different seasons do not correspond to the reali-
ties in China (Mishra et al., 2021). R. Shen et al. (2023) pro-
duced high-resolution distribution maps of single-season rice
but did not explore multiple rice cropping systems. Early-,
middle- and late-season rice in China is not only planted at
different times, but also has distinguishing varietal charac-
teristics, such as different temperature and photoperiod sen-
sitivities (Zong et al., 2021). Thus, a crop calendar that ac-
curately classifies rice seasons will provide reliable data for
agricultural models to calibrate crop parameters at the vari-
ety level. Moreover, effective identification of different rice
seasons will help analyze the response and adaptation of rice
phenology to climate change.

Therefore, to address the shortcomings of the existing rice
calendar datasets in China, we attempted to improve the Phe-
noRice algorithm and use satellite remote sensing data to (1)
establish crop calendars for the early, middle, and late sea-
sons in China; (2) validate the extracted rice calendars in
different growing seasons; and (3) explore the spatiotempo-
ral changes in rice calendar dates in major agricultural zones
across China from 2003 to 2022.

2 Data and methodology

2.1 Study area

We selected seven agricultural zones in China as the study
area: the Northeast Plain (NP), Huanghuaihai Plain (HP),
Loess Plateau (LP), Middle and Lower Yangtze River Re-
gion (MLY), South China Region (SC), Yunnan–Guizhou
Plateau (YGP), and the Sichuan Basin and Surrounding Re-
gion (SCS) (Fig. 1). Due to limited hydrothermal resources,
the NP and HP zones mainly cultivate single-season rice.
Early-, middle-, and late-season rice exist in different crop-
ping systems in the MLY zone. The SC zone has a higher
cropping frequency than the other zones and usually culti-
vates rice twice a year. Parts of Hainan Province cultivate
rice three times a year. Agricultural zoning data were ob-
tained from the Resources and Environment Science and
Data Center (https://www.resdc.cn/data.aspx?DATAID=275,
last access: December 2022).

2.2 Data

2.2.1 Satellite imagery

MODIS (Moderate Resolution Imaging Spectroradiometer)
remote sensing data are widely used in crop phenology de-
tection because of their excellent performance in tempo-
ral and spatial continuity (Reed et al., 1994; Zhang et al.,
2003; Zhao et al., 2011; Son et al., 2013). We selected
two MODIS EVI products for the study area during 2003–
2022: MOD13Q1 (TERRA data) and MYD13Q1 (AQUA
data) (https://doi.org/10.5067/MODIS/MOD13Q1.061, Di-
dan, 2021). Because the TERRA and AQUA data are
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Figure 1. Study area and distribution of agricultural meteorological
stations (AMSs) in China. Publisher’s remark: please note that the
above figure contains disputed territories.

based on the synthetic period of moving 8 d from each
other, the time series of the two 16 d products of
MOD13Q1 and MYD13Q1 have a temporal resolution
of 8 d (Boschetti et al., 2017). The red (ρRED) and
near-red (ρSWIR) bands of MOD13Q1 and MYD13Q1
were used to calculate the Normalized Flooding Index
(NDFI) (Eq. 1). Pixel Reliability, the Usefulness In-
dex, and Blue Band Reflectance from MOD13Q1 and
MYD13Q1 were used to assess data quality. The Land
Surface Temperature (LST) product from MOD11A2
(https://doi.org/10.5067/MODIS/MOD11A2.061, Wan et al.,
2021) was employed to estimate land surface temperature
during rice planting.

NDFI=
ρRED− ρSWIR

ρRED+ ρSWIR
(1)

All the above raster data were downloaded and spatially
aggregated to 1 km resolution by the Google Earth Engine
(GEE) platform and the Python package of Geemap (Wu,
2020).

2.2.2 Validation data

We collected field observations including the transplant-
ing, heading, and maturity dates of early-, middle- (single-
season), and late-season rice between 2003 and 2013 from
338 agricultural meteorological stations (AMSs, https://data.
cma.cn/, last access: March 2022) in China. Moreover, we
compared ChinaRiceCalendar with other multi-season and
regional-scale calendar datasets, including the RiceAtlas
dataset based on the agricultural statistics (Laborte et al.,
2017), the ChinaCropPhen1km dataset based on the Global
Land Surface Satellite (GLASS) leaf area index (LAI) prod-
ucts (Luo et al., 2020), and the RICA dataset based on the
MOD13Q1 and MYD13Q1 products (Mishra et al., 2021).

Figure 2. The technology roadmap for this study.

2.2.3 Additional data

Cropland data were obtained from the International
Geosphere-Biosphere Program (IGBP) classification of the
MODIS land cover product (MCD12Q1) from 2003 to 2022
(https://doi.org/10.5067/MODIS/MCD12Q1.006, Friedl and
Sulla-Menashe, 2023). Digital elevation model (DEM) data
used to create a terrain mask were obtained from the Shut-
tle Radar Topography Mission (SRTM, https://srtm.csi.cgiar.
org, last access: December 2022). Both data are resampled to
a spatial resolution of 1 km.

2.3 Methodology

The technology roadmap of this study is shown in Fig. 2.

2.3.1 Data pre-processing

The data pre-processing in the study falls into three steps.

1. The signal of agronomic flooding was used to help iden-
tify the rice transplanting period, but non-agricultural
wetlands may have similar flooding signals to paddy
fields (Dong and Xiao, 2016; Han et al., 2022). Thus,
the annual cropland extent from 2003 to 2020 was used
to establish a cropland mask to screen the cropland pix-
els of the MODIS EVI data.

2. Given that too high an elevation or too great a slope
is unsuitable for paddy rice cultivation (Gumma et al.,
2011; Dong and Xiao, 2016), only the image pixels with

https://doi.org/10.5194/essd-16-1689-2024 Earth Syst. Sci. Data, 16, 1689–1701, 2024

https://doi.org/10.5067/MODIS/MOD11A2.061
https://data.cma.cn/
https://data.cma.cn/
https://doi.org/10.5067/MODIS/MCD12Q1.006
https://srtm.csi.cgiar.org
https://srtm.csi.cgiar.org


1692 H. Li et al.: ChinaRiceCalendar – seasonal crop calendars

an elevation below 2600 m and a slope less than 8° were
selected to extract rice calendars (Han et al., 2022).

3. To reduce the impacts of cloud contamination, we
deleted the image pixels with reflectances greater than
0.2 in the blue band (Xiao et al., 2006).

2.3.2 Estimation of the rice area and cropping calendar

We combined the PhenoRice algorithm (Boschetti et al.,
2017) with a growing season division method (Kong et al.,
2022) to extract rice pixels and cropping calendars in dif-
ferent growing seasons. Firstly, we identified possible crop
heading periods based on a weighted and smoothed EVI time
series curve in each image pixel. Then we input the possible
heading periods into the PhenoRice algorithm to divide po-
tential growing seasons and check whether the correspond-
ing EVI time series belongs to rice. Lastly, we estimated rice
planting, heading, and maturity dates and categorized them
into early-, middle-, and late-season calendars according to
the respective transplanting and maturity times.

1. Divide potential growing seasons. The PhenoRice al-
gorithm requires a pre-specification of rice heading pe-
riods in different growing seasons to extract the cor-
responding VI time series. To reduce the uncertainty
caused by the artificial division of growing seasons, we
employed the phenofit R package developed by Kong
et al. (2022) to identify possible heading periods in
each image pixel. (1) The weighted Whittaker method
in the phenofit R package was employed to smoothen
the MODIS–EVI time series (Kong et al., 2022). The
Whittaker smoothing function can robustly capture sea-
sonal signals with little noise interference, and it is
widely used to identify crop phenology (Atzberger
and Eilers, 2011; Bush et al., 2017). The curve fitting
mainly relies on information from good-quality points
but also extracts the limited information available from
the marginal- and bad-quality points. During the rough
fitting to the EVI time series, we categorized the data
quality of the observations according to their quality
control (QC) information (SummaryQA of MOD13A1)
and assigned weights of 1.0, 0.5, and 0.2 to the good-
, marginal-, and bad-quality VI observations, respec-
tively. (2) Following Kong et al. (2022), the possible
heading date (peak point date) in each crop season was
identified by the smoothed EVI time series, based on
the rules that only one peak value is inside a growing
season and that two trough values define a growing sea-
son. (3) The possible heading periods (peak point dates
±16 d) detected in each image pixel were input into the
PhenoRice algorithm to generate the potential growing
seasons.

2. Check whether the pixel belongs to a rice-cultivated
area. Whether the pixel belongs to a rice-cultivated area

during the selected growing season is checked using the
following procedure (Boschetti et al., 2017). (1) Com-
pare the observed maximum and minimum EVI val-
ues with the corresponding thresholds for paddy fields
(EVImax_th and EVImin_th) to reduce misclassification
problems with evergreen forests and non-vegetative ar-
eas. (2) Check for the existence of a maximum inflec-
tion point on the EVI curve, which must show a con-
sistent increasing trend before the maxima and a con-
sistent decreasing trend after the maxima. The time in-
terval between the inflection points of the minimum
and maximum EVI values during the season must fall
within the range of rice vegetative growing periods [vl1,
vl2]. (3) Check whether the meteorological conditions
on the day of the minimum are favourable for rice crop
establishment based on a MODIS-LST value above a
specified threshold (LSTth). (4) Detect a flood signal
(NDFI≥minndfi) within a time window (winfl) centred
on the minimum. (5) Check whether there is a consistent
increase in EVI observed after the minimum. (6) Check
whether EVI decreases by more than decrth % of the
amplitude of the minimum–maximum range in a time
window after the maxima (windecr). Only if all the
above requirements are satisfied is the selected growing
season in the pixel labelled as a rice season. The Phe-
noRice parameters used in the study were calibrated by
the phenological observations from the AMSs in China
(Table 1).

3. Estimate rice planting, heading, and maturity dates.
The rice calendar dates were estimated in the detected
rice pixels within the rice seasons. On the EVI time se-
ries curve, the onset date of the field growth period cor-
responds to the date of the minimum point closest to
the retained maximum. The heading time corresponds
to the date of the retained maximum point. The maturity
date corresponds to the date when the EVI declined by
decrth % of the amplitude of the minimum–maximum
range. Additionally, the study categorized the detected
rice calendars as early, middle, and late seasons based
on their respective ranges of transplanting and maturity
dates in each province (Table 2).

2.3.3 Data validation

Taking AMS field observations as benchmarks, we eval-
uated the accuracy of rice calendar dates derived from
four multi-season rice calendars: ChinaRiceCalendar, Chi-
naCropPhen1km, RiceAtlas, and RICA. These regional rice
calendars can be divided into two categories: raster datasets
(ChinaRiceCalendar and ChinaCropPhen1km) and district-
level datasets (RiceAtlas and RICA). For ChinaRiceCalen-
dar and ChinaCropPhen1km, we sought the nearest rice pixel
around each AMS site for data pairing. In instances where
there was no corresponding rice pixel within a 4 km radius
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Table 1. PhenoRice parameters used in the study (EVImax_th: the EVI threshold above which a local maximum can be considered the peak
of a growing season; EVImin_th: the EVI threshold below which a local minimum can be considered the start of a growing season; vl1:
the shortest vegetative growth length; vl2: the longest vegetative growth length; tl1: the shortest field growth length; tl2: the longest field
growth length; LSTth: the minimum land surface temperature for rice planting; Winfl: time window for capturing flooding signals; minndfi:
threshold for the NDFI; Windecr: threshold for a decline window after the EVI maximum; decth: percent decrease in the EVI after the EVI
maximum).

Province EVImax_th EVImin_th vl1 vl2 tl1 tl2 LSTth Winfl minndfi Windecr Decth
(d) (d) (d) (d) (°C) (d) (d)

Anhui 0.4 0.25 32 72 64 120 15 24 0 64 0.5
Chongqing 0.4 0.25 64 88 96 136 15 24 0 64 0.5
Fujian 0.4 0.25 24 88 56 128 15 24 0 64 0.5
Guangdong 0.4 0.25 40 96 72 120 15 24 0 64 0.5
Guangxi 0.4 0.25 40 88 72 120 15 24 0 64 0.5
Guizhou 0.4 0.25 56 96 80 152 15 24 0 64 0.5
Hainan 0.4 0.25 56 112 80 128 15 24 0 64 0.5
Hebei 0.4 0.25 56 112 104 152 15 24 0 64 0.5
Heilongjiang 0.4 0.25 56 96 104 136 15 24 0 64 0.5
Henan 0.4 0.25 56 88 96 120 15 24 0 64 0.5
Hubei 0.4 0.25 24 112 56 152 15 24 0 64 0.5
Hunan 0.4 0.25 32 96 56 136 15 24 0 64 0.5
Jiangsu 0.4 0.25 56 88 104 136 15 24 0 64 0.5
Jiangxi 0.4 0.25 32 80 64 120 15 24 0 64 0.5
Jilin 0.4 0.25 56 96 96 136 15 24 0 64 0.5
Liaoning 0.4 0.25 56 96 104 152 15 24 0 64 0.5
Ningxia 0.4 0.25 64 88 112 152 15 24 0 64 0.5
Shaanxi 0.4 0.25 64 88 104 128 15 24 0 64 0.5
Shandong 0.4 0.25 56 80 96 120 15 24 0 64 0.5
Shanxi 0.4 0.25 64 88 104 128 15 24 0 64 0.5
Sichuan 0.4 0.25 56 96 80 160 15 24 0 64 0.5
Yunnan 0.4 0.25 24 112 56 160 15 24 0 64 0.5
Zhejiang 0.4 0.25 32 72 64 128 15 24 0 64 0.5

around an AMS site, the site was excluded from the analy-
sis. Also, we conducted a comparison between district-level
rice calendars obtained from RiceAtlas and RICA, juxta-
posed with AMS data distributed within the respective dis-
tricts. Two criteria were used to evaluate the accuracy of the
estimated rice areas and cropping dates in each season, i.e.,
root mean squared error (RMSE, Eq. 2) and R2 (Eq. 3):

RMSE=

√√√√ 1
N

N∑
i=1

(truei − esti)2, (2)

R2
=

 ∑N
i=1

(
esti− est

)(
truei− true

)√∑N
i=1
(
esti− est

)2√∑N
i=1
(
truei − true

)2
2

, (3)

where truei is the true value in the ith province or AMS; esti
is the corresponding estimated value; est and true denote the
mean of the estimated and true values, respectively; and N is
the number of provinces or AMSs.

Additionally, in order to investigate the historical shifts of
rice phenological dates in China, we analyzed the trends of
rice planting, heading, and maturity dates at the county level
by a Sen and Mann–Kendall trend analysis at a significance

level of 0.05. The trend analysis method is detailed in Gocic
and Trajkovic (2013).

3 Results

3.1 Validation of ChinaRiceCalendar

The key phenological dates estimated in the study show high
consistency with the data from AMSs (Fig. 3). The R2 be-
tween rice phenological dates from ChinaRiceCalendar and
AMSs is 0.95. The R2 values between ChinaRiceCalendar
and AMS data for transplanting, heading, and maturity dates
in China are 0.91, 0.88, and 0.90, respectively. The RMSEs
of transplanting, heading, and maturity dates in ChinaRice-
Calendar are approximately 14 d. TheR2 values between rice
phenological dates from ChinaRiceCalendar and AMS data
for early-, middle-, and late-season rice are 0.91, 0.94, and
0.90, respectively.

Also, we calculated the RMSE of the estimated rice crop-
ping dates in the seven agricultural regions in China (Fig. 4).
Overall, the estimated rice calendars are more accurate in
northern China than in the south. For early-season rice, the
RMSE averages of the estimated cropping dates are 12.73,
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Table 2. Classification criteria of seasons for detected rice calendars by province in China.

Province Early season Middle season Late season

Transplanting dates Maturity dates Transplanting dates Maturity dates Transplanting dates Maturity dates

Anhui 110–150 190–220 130–180 240–280 190–230 270–320
Chongqing – – 110–160 210–280 – –
Fujian 90–140 180–230 140–170 240–270 180–240 270–330
Guangdong 70–140 170–220 – – 200–240 280–340
Guangxi 80–130 180–230 140–180 250–290 180–240 280–340
Guizhou – – 100–180 220–310 – –
Hainan 10–80 110–190 140–180 240–280 180–220 280–320
Hebei – – 120–190 260–300 – –
Heilongjiang – – 120–170 240–290 – –
Henan – – 130–170 240–270 – –
Hubei 110–160 170–220 110–180 230–280 180–220 270–330
Hunan 100–140 180–230 130–170 230–280 180–220 270–330
Jiangsu – – 150–190 260–310 – –
Jiangxi 90–140 180–220 130–180 230–390 180–220 270–320
Jilin – – 130–170 260–290 – –
Liaoning – – 130–170 260–290 – –
Ningxia – – 120–160 250–290 – –
Shaanxi – – 130–160 250–280 – –
Shandong – – 170–200 270–300 – –
Shanxi – – 140–170 250–280 – –
Sichuan – – 100–170 210–300 – –
Yunnan 10–90 130–180 90–170 210–310 170–230 260–330
Zhejiang 100–140 180–230 150–190 270–330 190–220 270–330

Figure 3. Comparison of rice phenological dates between ChinaRiceCalendar and AMS data at the site scale (dashed lines are ±21 d).
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Figure 4. RMSEs of rice phenological dates between ChinaRice-
Calendar and AMS data in the main agricultural regions.

12.43, and 14.53 d in the MLY, SC, and YGP, respectively.
For middle-season rice, the range of the RMSEs in the seven
agricultural regions is from 4.74 d in the HP to 14.34 d in
the YGP. For late-season rice, the RMSE averages of the es-
timated cropping dates are 13.90, 17.54, and 14.25 d in the
MLY, SC, and YGP, respectively.

3.2 Comparison with other calendar datasets

Using AMS field observations as benchmarks, the RMSEs of
rice phenological dates obtained from ChinaRiceCalendar,
ChinaCropPhen1km, RiceAtlas, and RICA are 13.8, 15.0,
17.9, and 22.6 d, respectively. According to the accuracy
evaluation at the seasonal level (Fig. 5), ChinaRiceCalendar
is the only dataset where the RMSE does not exceed 15 d
across the three rice seasons. Compared with the ChinaRice-
Calendar dataset, ChinaCropPhen1km exhibits sub-optimal
performance in early-rice seasons (RMSE= 18 d), RiceAt-
las underperforms in middle-rice seasons (RMSE= 22 d),
and RICA falls short in both middle- and late-rice seasons
(RMSE> 30 d). Overall, ChinaRiceCalendar demonstrates
superior accuracy in the estimated rice calendars compared
to ChinaCropPhen1km, RiceAtlas, and RICA at the annual
and seasonal levels in China.

3.3 Spatial distribution of rice phenological dates

According to the spatial distribution of the detected rice ar-
eas during 2003–2022, early and late rice was mainly grown
in southern China, while middle rice was widely planted in

China from south to north (Figs. 6 and 7). The spatial vari-
ations of rice phenology were significant in the early, mid-
dle, and late seasons. In the NP, HP, and LP, middle rice was
transplanted around DOY150, flowered around DOY230,
and matured around DOY270. In the YGP, the mean trans-
planting date was approximately DOY100 for early rice,
DOY150 for middle rice, and DOY195 for late rice; the
mean heading dates for early-, middle-, and late-season rice
were DOY170, DOY230, and DOY250, respectively. The
mean maturity dates were approximately DOY200 for early
rice, DOY260 for middle rice, and DOY290 for late rice.
In the MLY, the mean transplanting dates were approxi-
mately DOY120 for early rice, DOY160 for middle rice,
and DOY200 for late rice. The mean heading dates were
approximately DOY190 for early rice, DOY230 for middle
rice, and DOY250 for late rice. The mean maturity dates
were DOY210 for early rice, DOY260 for middle rice, and
DOY290 for late rice. In the SC, the mean transplanting dates
were approximately DOY100 for early rice and DOY220
for late rice. The mean heading dates were approximately
DOY170 for early rice and DOY270 for late rice. The mean
maturity dates were approximately DOY200 for early rice
and DOY300 for late rice. For rice in the SCS, the mean
transplanting, heading, and maturity dates were approxi-
mately DOY130, DOY220, and DOY250, respectively.

3.4 Temporal changes in rice phenological dates

Based on the trend analysis of rice phenological dates from
2003 to 2022 in China (Fig. 8), the mean transplanting dates
for early-, middle-, and late-season rice shifted by +0.74,
−0.68, and −5.12 DOY per decade, respectively. The mean
heading dates for early-, middle-, and late-season rice shifted
by −0.51, +2.73, and −0.60 DOY per decade, respectively.
The mean maturity dates for early, middle, and late rice
shifted by −0.67, +3.75, and −1.62 DOY per decade, re-
spectively. The detected shifts in rice phenological dates dur-
ing 2003–2022 depended on the agricultural region (Fig. 9).
For middle-season rice in the NP, 76 % of the counties
showed a significant or slight advance in transplanting dates,
while 71 % of the counties showed a significant or slight de-
lay in maturity dates. In the MLY, 59 %, 66 %, and 72 % of
the rice-producing counties showed a significant or slight de-
lay in the transplanting, heading, and maturity dates of mid-
dle rice, respectively. In the SCS, 79 %, 86 %, and 80 % of
the rice-producing counties showed a significant or slight de-
lay in the transplanting, heading, and maturity dates of mid-
dle rice, respectively. In the YGP, 77 %, 67 %, and 59 % of
the rice-producing counties showed a significant or slight de-
lay in the transplanting, heading, and maturity dates of mid-
dle rice, respectively. In the HP and the LP, rice phenologi-
cal dates did not show a consistent or significant trend. For
early-season rice, transplanting tends to be delayed, but ma-
turity tends to be earlier in the SC. In most parts of China,
the detected trends in early-rice phenological dates were not
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Figure 5. Comparison of rice phenological dates between calendar datasets and AMS data at the site scale in the early (green), middle
(orange), and late (blue) seasons.

significant during 2003–2022. For late-season rice in China,
64 % of the counties showed a significant or slight advance
in transplanting dates, whereas 64 % of the counties showed
a significant or slight delay in heading and maturity dates.

4 Uncertainties in ChinaRiceCalendar

This study used MODIS remote sensing data to extract rice
phenological dates in various growing seasons in China. The
MODIS remote sensing products have an appropriate tem-
poral resolution, long time series, and good time consistency
for analyzing changes in rice calendars at the regional scale.
Moreover, the MODIS data are easy to obtain and process on
the GEE platform, allowing for automated and timely updat-
ing of the calendar dataset. Nevertheless, discerning early-
and late-rice pixels is more difficult than identifying middle-
rice pixels in MODIS data, resulting in lower accuracy of the
detected rice calendars in southern China (MLY, SC, SCS,
YGP) than in northern China (NP, HP, LP).

There are several factors leading to the incomplete identi-
fication of rice pixels in the early and late seasons in southern
China. Firstly, the pixel-based detection of rice areas may be
interfered with by the contamination of clouds, aerosols, and
water vapor, especially during the monsoon season, when
late rice is transplanted (Xiao et al., 2005; Clauss et al., 2016;
Mishra et al., 2021). Because synthetic aperture radar (SAR)

can penetrate through clouds, subsequent studies could com-
bine optical and SAR images to avoid the impacts of clouds
(R. Shen et al., 2023). Utilizing geostationary satellite obser-
vations to increase the temporal frequency of remote sensing
data may also be an effective way of improving the accu-
racy of rice calendars (Y. Shen et al., 2023). Secondly, di-
verse multi-cropping systems, complex topography, and the
fragmentation of croplands in southern China make the pixel
detection for early and late rice more challenging (Dong
and Xiao, 2016). Producing satellite remote sensing data
with higher spatial resolution and integrating multiple data
sources from satellite–airborne–ground observations will fa-
cilitate real-time monitoring of rice cropping areas at the
regional scale (Zheng et al., 2022; Sun et al., 2023). Addi-
tionally, the PhenoRice algorithm falls short in detecting rice
pixels in rainfed or upland rice systems due to the absence
of clear agronomic flooding signals. In China, rice is mainly
planted in flooded paddy fields (Luo et al., 2022), which mit-
igates the problems of detecting rainfed or upland rice. Last
but not least, precisely matching the image pixels from the
MODIS dataset to the agricultural meteorological stations
remains a challenge during data validation. In the future, it
would be beneficial to conduct a quantitative assessment to
determine the representativeness of the MODIS pixels sur-
rounding the AMS site.
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Figure 6. Rice phenological dates at the county scale between 2003 and 2022. ((a) early-rice transplanting dates; (b) middle-rice transplant-
ing dates; (c) late-rice transplanting dates; (d) early-rice heading dates; (e) middle-rice heading dates; (f) late-rice heading dates; (g) early-rice
maturity dates; (h) middle-rice maturity dates; (i) late-rice maturity dates). Publisher’s remark: please note that the above figure contains dis-
puted territories.

Figure 7. Rice phenological dates in rice-producing counties between 2003 and 2022 ((a) transplanting dates; (b) heading dates; (c) maturity
dates).
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Figure 8. Temporal trends in rice phenological dates at the county scale from 2003 to 2022 ((a) early-rice transplanting dates; (b) middle-rice
transplanting dates; (c) late-rice transplanting dates; (d) early-rice heading dates; (e) middle-rice heading dates; (f) late-rice heading dates;
(g) early-rice maturity dates; (h) middle-rice maturity dates; (i) late-rice maturity dates). Publisher’s remark: please note that the above figure
contains disputed territories.

In this study, we improved the method of growing sea-
son division in the PhenoRice algorithm. We also attempted
to remove non-paddy pixels and reduce the impacts of low-
quality data on the reconstruction of EVI time series curves.
Although the local tuning of the PhenoRice algorithm pa-
rameters could further improve the results, we employed
a single configuration of EVI threshold values (EVImax_th,
EVImin_th, Windecr, and decth) in the PhenoRice algorithm
across China because automated methods that perform ro-
bustly are essential for developing timely information about
crop calendars over large extents (Mishra et al., 2021). Sub-
sequently, we will try to automate the generation and updat-
ing of ChinaRiceCalendar based on the rgee package (Aybar
et al., 2023).

5 Data availability

ChinaRiceCalendar is a raster dataset with 1 km spa-
tial resolution. The dataset has two parts: detected rice
pixel data (*_rice_pixels.tif) and county-level rice calen-
dar data (*_county_level.tif). The spatial reference sys-
tem of the dataset is WGS_1984_UTM_Zone_49N. The
dataset currently includes mean calendar dates during
five periods: 2003–2007, 2008–2012, 2013–2017, 2018–

2022, and 2003–2022. ChinaRiceCalendar is available at
https://doi.org/10.7910/DVN/EUP8EY (Liu et al., 2023).

6 Conclusions

Utilizing MODIS time series data, we established a multi-
season rice calendar dataset named ChinaRiceCalendar, en-
compassing transplanting, heading, and maturity dates of
early-, middle-, and late-season rice in China from 2003 to
2022. The rice phenological dates within ChinaRiceCalen-
dar, estimated through the enhanced PhenoRice algorithm,
exhibit strong alignment with field observations collected by
agricultural meteorological stations across China. The R2

values between ChinaRiceCalendar and field data for early-,
middle-, and late-season rice consistently surpass 0.90, with
RMSE values below 15 d in the three rice seasons. Accord-
ing to the calendar data from 2003 to 2022, the transplant-
ing dates for early-, middle-, and late-season rice shifted
by +0.7, −0.7, and −5.1 DOY per decade, respectively; the
heading dates for early-, middle-, and late-season rice shifted
by −0.5, +2.7, and −0.6 DOY per decade, respectively; and
the maturity dates for early-, middle-, and late-season rice
shifted by −0.7, +3.8, and −1.6 DOY per decade, respec-
tively. In summary, ChinaRiceCalendar stands as a reliable
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Figure 9. Temporal trends in rice phenological dates at the regional
level from 2003 to 2022 (early_p: early-rice transplanting dates;
middle_p: middle-rice transplanting dates; late_p: late-rice trans-
planting dates; early_h: early-rice heading dates; middle_h: middle-
rice heading dates; late_h: late-rice heading dates; early_m: early-
rice maturity dates; middle_m: middle-rice maturity dates; late_m:
late-rice maturity dates).

dataset for investigating and optimizing the spatiotemporal
dynamics of rice cultivation in China, particularly in the con-
text of climate and land use changes.
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