Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1623-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-1623-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Harmonized European Union subnational crop statistics can reveal climate impacts and crop cultivation shifts
Giulia Ronchetti
CORRESPONDING AUTHOR
Arcadia SIT srl, Via Duse 4, 27029 Vigevano (PV), Italy
Luigi Nisini Scacchiafichi
FINCONS SpA, Via Torri Bianche 10, 20871 Vimercate (MB), Italy
Lorenzo Seguini
European Commission, Joint Research Centre (JRC), Ispra, Italy
Iacopo Cerrani
FINCONS SpA, Via Torri Bianche 10, 20871 Vimercate (MB), Italy
Marijn van der Velde
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), Ispra, Italy
Editorial note: the paper was corrected on 5 November 2024 due to missing affiliations.
Related authors
No articles found.
Nicolas Lampach, Jon Olav Skøien, Helena Ramos, Julien Gaffuri, Renate Koeble, Linda See, and Marijn van der Velde
Earth Syst. Sci. Data, 17, 3893–3919, https://doi.org/10.5194/essd-17-3893-2025, https://doi.org/10.5194/essd-17-3893-2025, 2025
Short summary
Short summary
Eurostat and the Joint Research Centre developed a new methodology to make geospatial data from agricultural census available to users while ensuring that no confidential information from individuals is disclosed. The geospatial data presented in the article correspond to the contextual indicators of the monitoring framework of the Common Agricultural Policy. Our exploratory analysis reveals several interesting patterns which contribute to the broader debate on the future of European agriculture.
Lorenzo Seguini, Anja Klisch, Michele Meroni, Anton Vrieling, Giacinto Manfron, Clement Atzberger, and Felix Rembold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-287, https://doi.org/10.5194/essd-2025-287, 2025
Preprint under review for ESSD
Short summary
Short summary
We released a consistent MODIS-VIIRS FPAR timeseries of global FPAR data at 500 m resolution, updated every 10 days since 2000. This dataset is filtered and optimized for agricultural applications and meets the operational needs of the systems for early warning, and crop yield forecasting. We have generated a VIIRS-FPAR timeseries, corrected over the MODIS-FPAR data, to guaranty timeseries continuity beyond 2030, thanks to the future VIIRS missions. Data are freely available.
Raphaël d'Andrimont, Momchil Yordanov, Fernando Sedano, Astrid Verhegghen, Peter Strobl, Savvas Zachariadis, Flavia Camilleri, Alessandra Palmieri, Beatrice Eiselt, Jose Miguel Rubio Iglesias, and Marijn van der Velde
Earth Syst. Sci. Data, 16, 5723–5735, https://doi.org/10.5194/essd-16-5723-2024, https://doi.org/10.5194/essd-16-5723-2024, 2024
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) Copernicus 2022 is a large and systematic in situ field survey of 137 966 polygons over the European Union in 2022. The data contain 82 land cover classes and 40 land use classes.
Raphaël d'Andrimont, Momchil Yordanov, Laura Martinez-Sanchez, Peter Haub, Oliver Buck, Carsten Haub, Beatrice Eiselt, and Marijn van der Velde
Earth Syst. Sci. Data, 14, 4463–4472, https://doi.org/10.5194/essd-14-4463-2022, https://doi.org/10.5194/essd-14-4463-2022, 2022
Short summary
Short summary
Between 2006 and 2018, 875 661 LUCAS cover (i.e. close-up) photos were taken over a systematic sample of the European Union. This geo-located photo dataset has been curated and is being made available along with the surveyed label data, including land cover and plant species.
Raphaël d'Andrimont, Astrid Verhegghen, Michele Meroni, Guido Lemoine, Peter Strobl, Beatrice Eiselt, Momchil Yordanov, Laura Martinez-Sanchez, and Marijn van der Velde
Earth Syst. Sci. Data, 13, 1119–1133, https://doi.org/10.5194/essd-13-1119-2021, https://doi.org/10.5194/essd-13-1119-2021, 2021
Short summary
Short summary
The Land Use/Cover Area frame Survey (LUCAS) is a regular in situ land cover and land use ground survey exercise that extends over the whole of the European Union. A new LUCAS module specifically tailored to Earth observation was introduced in 2018: the LUCAS Copernicus module. This paper summarizes the LUCAS Copernicus survey and provides the unique resulting data: 58 426 polygons with level-3 land cover (66 specific classes including crop type) and land use (38 classes).
Cited articles
AMIS: AMIS Market Database, https://app.amis-outlook.org/#/market-database/supply-and-demand-overview (last access: 24 August 2023), 2022. a
Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., da Cunha, C. G., Goddard, L., Schauberger, B., Sonder, K., Podestá, G., van der Velde, M., and You, L.: Twentieth Century Crop Statistics, 1900–2017., https://sedac.ciesin.columbia.edu/data/set/food-twentieth-century-crop-statistics-1900-2017 (last access: 24 August 2023), 2022. a
Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., da Cunha, C. G., Goddard, L., Schauberger, B., Sonder, K., Podestá, G., van der Velde, M., and You, L.: Climate variability and simultaneous breadbasket yield shocks as observed in long-term yield records, Agr. Forest Meteorol., 331, 109321, https://doi.org/10.1016/j.agrformet.2023.109321, 2023. a
Avitabile, V., Baldoni, E., Baruth, B., Bausano, G., Boysen-Urban, K., Caldeira, C., Camia, A., Cazzaniga, N., Ceccherini, G., Laurentis, V. D., Doerner, H., Giuntoli, J., Gras, M., Garcia, J. G., Gurria, P., Hassegawa, M., JasineviČius, G., Jonsson, R., Konrad, C., Kupschus, S., Notte, A. L., M'barek, R., Mannini, A., Migliavacca, M., Mubareka, S., Patani, S., Pilli, R., Rebours, C., Ronchetti, G., Ronzon, T., Rougieoux, P., Sala, S., Lopez, J. S., Mengual, E. S., Sinkko, T., Sturm, V., Leeuwen, M. V., Vasilakopoulos, P., Verkerk, P. J., Virtanen, J., Winker, H., and Zulian, G.: Biomass production, supply, uses and flows in the European Union. Integrated assessment, Technical Report, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/811744, JRC132358, 2023. a
Ballot, R., Guilpart, N., and Jeuffroy, M.-H.: The first map of crop sequence types in Europe over 2012–2018, Earth Syst. Sci. Data, 15, 5651–5666, https://doi.org/10.5194/essd-15-5651-2023, 2023. a
Becker-Reshef, I., Barker, B., Whitcraft, A., Oliva, P., Mobley, K., Justice, C., and Sahajpal, R.: Crop Type Maps for Operational Global Agricultural Monitoring, Sci. Data, 10, 172, https://doi.org/10.1038/s41597-023-02047-9, 2023. a
Beillouin, D., Schauberger, B., Bastos, A., Ciais, P., and Makowski, D.: Impact of extreme weather conditions on European crop production in 2018, Philos. T. R. Soc. B, 375, 20190510, https://doi.org/10.1098/rstb.2019.0510, 2020. a
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x, 2018. a
Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., and Hostert, P.: Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany, Remote Sens. Environ., 269, 112831, https://doi.org/10.1016/j.rse.2021.112831, 2022. a
Ceglar, A., Toreti, A., Lecerf, R., Van der Velde, M., and Dentener, F.: Impact of meteorological drivers on regional inter-annual crop yield variability in France, Agr. Forest Meteorol., 216, 58–67, https://doi.org/10.1016/j.agrformet.2015.10.004, 2016. a
Cerrani, I., Ronchetti, G., Nisini Scacchiafichi, L., López Lozano, R., and Van der Velde, M.: Algorithm for the disaggregation of crop area statistics in the MARS crop yield forecasting system, European Commission, Ispra, 2023. a
d'Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., and Van der Velde, M.: From parcel to continental scale–A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations, Remote Sens. Environ., 266, 112708, https://doi.org/10.1016/j.rse.2021.112708, 2021. a, b
European Parliament, EPRS: Statistics on agricultural input and output (SAIO), European Parliament Research Service, https://www.europarl.europa.eu/legislative-train/theme-agriculture-and-rural-development-agri/file-saio, last access: 28 August 2023. a
Eurostat: Strategy for agricultural statistics for 2020 and beyond, Crop statistics working group, Publications Office of the European Union, Luxembourg, 2015a. a
Eurostat: Regions in the European Union. Nomenclature of territorial units for statistics NUTS 2013/EU-28, Publications Office of the European Union, Luxembourg, 2015b. a
Eurostat: Regions in the European Union, edition 2018, Nomenclature of territorial units for statistics -NUTS 2016/EU-28, Publications Office of the European Union, Luxembourg, https://doi.org/10.2785/475524, 2018. a, b
Eurostat: European Statistical System (ESS), European Commission, Directorate-General for Communication, https://ec.europa.eu/eurostat/web/european-statistical-system (last access: 25 July 2023), 2023a. a
Eurostat: History of NUTS, European Commission, Directorate-General for Communication, https://ec.europa.eu/eurostat/web/nuts/history (last access: 31 January 2023), 2023c. a
FAOSTAT: Crops and livestock products, Food and Agriculture Organization of the United Nations (FAO), https://www.fao.org/faostat/en/#data/QCL (last access: 31 January 2023), 2023. a
Finger, R.: Evidence of slowing yield growth–the example of Swiss cereal yields, Food Policy, 35, 175–182, 2010. a
Fontana, G., Toreti, A., Ceglar, A., and De Sanctis, G.: Early heat waves over Italy and their impacts on durum wheat yields, Nat. Hazards Earth Syst. Sci., 15, 1631–1637, https://doi.org/10.5194/nhess-15-1631-2015, 2015. a
Fritz, S., See, L., Laso Bayas, J. C., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., Crutchfield, J., Rembold, F., Rojas, O., Schucknecht, A., Van der Velde, M., Verdin, J., Wu, B., Yan, N., You, L., Gilliams, S., Mücher, S., Tetrault, R.,Moorthy, I., and McCallum, I.: A comparison of global agricultural monitoring systems and current gaps, Agr. Syst., 168, 258–272, 2019. a
García-Condado, S., López-Lozano, R., Panarello, L., Cerrani, I., Nisini, L., Zucchini, A., Van der Velde, M., and Baruth, B.: Assessing lignocellulosic biomass production from crop residues in the European Union: Modelling, analysis of the current scenario and drivers of interannual variability, GCB Bioenergy, 11, 809–831, 2019. a
Guiomar, N., Godinho, S., Pinto-Correia, T., Almeida, M., Bartolini, F., Bezák, P., Biró, M., Bjørkhaug, H., Bojnec, Š., Brunori, G., Corazzin, M., Czekaj, M., Davidova, S., Kania, J., Kristensen, S., Marraccini, E., Molnár, Zs., Niedermayr, J., O'Rourke, E., Ortiz-Miranda, D., Redman, M., Sipiläinen, T., Sooväli-Sepping, H., Šūmane, S., Surová, D., Sutherland, L. A., Tcherkezova, E., Tisenkopfs, T., Tsiligiridis, T., Tudor, M. M., Wagner, K., and Wästfelt, A.: Typology and distribution of small farms in Europe: Towards a better picture, Land Use Policy, 75, 784–798, 2018. a
Guth, M. and Smędzik-Ambroży, K.: Economic resources versus the efficiency of different types of agricultural production in regions of the European union, Econ. Res.-Ekon. Istraz., 33, 1036–1051, https://doi.org/10.1080/1331677X.2019.1585270, 2020. a
Iizumi, T. and Sakai, T.: The global dataset of historical yields for major crops 1981–2016, Sci. Data, 7, 97, https://doi.org/10.1038/s41597-020-0433-7, 2020. a
Joint Research Centre: JRC MARS Bulletin – Crop monitoring in Europe, Publications Office of the European Union, https://joint-research-centre.ec.europa.eu/monitoring-agricultural-resources-mars/jrc-mars-bulletin_en (last access: 24 August 2023), 2023. a
Jørgensen, L. N., Kudsk, P., and Ørum, J. E.: Links between pesticide use pattern and crop production in Denmark with special reference to winter wheat, Crop Prot., 119, 147–157, 2019. a
Kern, A., Barcza, Z., Marjanović, H., Árendás, T., Fodor, N., Bónis, P., Bognár, P., and Lichtenberger, J.: Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices, Agr. Forest Meteorol., 260, 300–320, 2018. a
Kowalik, W., Dabrowska-Zielinska, K., Meroni, M., Raczka, T. U., and de Wit, A.: Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries, Int. J. Appl. Earth Obs., 32, 228–239, 2014. a
Lennert, J. and Farkas, J. Z.: Transformation of agriculture in Hungary in the period 1990–2020, Studia, 56, 33–72, 2020. a
López-Lozano, R., Duveiller, G., Seguini, L., Meroni, M., García-Condado, S., Hooker, J., Leo, O., and Baruth, B.: Towards regional grain yield forecasting with 1 km-resolution EO biophysical products: Strengths and limitations at pan-European level, Agr. Forest Meteorol., 206, 12–32, 2015. a
MAPA: Ministery of Agriculture, Fisheries and Food, https://www.mapa.gob.es/en/default.aspx, last access: 31 January 2023. a
Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochem. Cy., 22, https://doi.org/10.1029/2007GB002947, 2008. a
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., and Foley, J. A.: Closing yield gaps through nutrient and water management, Nature, 490, 254–257, 2012. a
Neumann, M. and Smith, P.: Carbon uptake by European agricultural land is variable, and in many regions could be increased: Evidence from remote sensing, yield statistics and models of potential productivity, Sci. Total Environ., 643, 902–911, 2018. a
Nóia Júnior, R. de S., Deswarte, J.-C., Cohan, J.-P., Martre, P., van der Velde, M., Lecerf, R., Webber, H., Ewert, F., Ruane, A. C., Slafer, G. A., and Asseng, S.: The extreme 2016 wheat yield failure in France, Glob. Change Biol., 29, 3130–3146, 2023. a
Paudel, D., Boogaard, H., de Wit, A., van der Velde, M., Claverie, M., Nisini, L., Janssen, S., Osinga, S., and Athanasiadis, I. N.: Machine learning for regional crop yield forecasting in Europe, Field Crop. Res., 276, 108377, https://doi.org/10.1016/j.fcr.2021.108377, 2022. a
Peltonen-Sainio, P. and Jauhiainen, L.: Large zonal and temporal shifts in crops and cultivars coincide with warmer growing seasons in Finland, Reg. Environ. Change, 20, 1–13, 2020. a
Piikki, K. and Söderström, M.: Digital soil mapping of arable land in Sweden–Validation of performance at multiple scales, Geoderma, 352, 342–350, 2019. a
Rega, C., Short, C., Pérez-Soba, M., and Paracchini, M. L.: A classification of European agricultural land using an energy-based intensity indicator and detailed crop description, Landscape Urban Plan., 198, 103793, https://doi.org/10.1016/j.landurbplan.2020.103793, 2020. a
Reiff, M., Ivanicova, Z., and Surmanova, K.: Cluster analysis of selected world development indicators in the fields of agriculture and the food industry in European Union countries, Agr. Econ.-Czech, 64, 197–205, 2018. a
Republic of Bulgaria: National Statistical Institute, https://www.nsi.bg/en, last access: 31 January 2023. a
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., and Zscheischler, J.: Risk of crop failure due to compound dry and hot extremes estimated with nested copulas, Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, 2020. a
Ronchetti, G., Manfron, G., Weissteiner, C. J., Seguini, L., Scacchiafichi, L. N., Panarello, L., and Baruth, B.: Remote sensing crop group-specific indicators to support regional yield forecasting in Europe, Comput. Electron. Agr., 205, 107633, https://doi.org/10.1016/j.compag.2023.107633, 2023a. a
Schauberger, B., Jägermeyr, J., and Gornott, C.: A systematic review of local to regional yield forecasting approaches and frequently used data resources, Eur. J. Agron., 120, 126153, https://doi.org/10.1016/j.eja.2020.126153, 2020. a
Schmitt, J., Offermann, F., Söder, M., Frühauf, C., and Finger, R.: Extreme weather events cause significant crop yield losses at the farm level in German agriculture, Food Policy, 112, 102359, https://doi.org/10.1016/j.foodpol.2022.102359, 2022. a
Sloat, L. L., Davis, S. J., Gerber, J. S., Moore, F. C., Ray, D. K., West, P. C., and Mueller, N. D.: Climate adaptation by crop migration, Nat. Commun., 11, 1243, https://doi.org/10.1038/s41467-020-15076-4, 2020. a
Statistics Austria: The National Statistical System, https://www.statistik.at/en/about-us/organisation/the-national-statistical-system, last access: 31 January 2023. a
Stürmer, B., Schmidt, J., Schmid, E., and Sinabell, F.: Implications of agricultural bioenergy crop production in a land constrained economy–The example of Austria, Land Use Policy, 30, 570–581, 2013. a
Van der Velde, M., van Diepen, C., and Baruth, B.: The European crop monitoring and yield forecasting system: Celebrating 25 years of JRC MARS Bulletins, 168, 56–57, https://doi.org/10.1016/j.agsy.2018.10.003, 2019. a
Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., and Ewert, F.: No perfect storm for crop yield failure in Germany, Environ. Res. Lett., 15, 104012, https://doi.org/10.1088/1748-9326/aba2a4, 2020. a
Download
Please read the editorial note first before accessing the article.
- Article
(11304 KB) - Full-text XML
Short summary
We present a dataset of EU-wide harmonized subnational crop area, production, and yield statistics with information on data sources, processing steps, missing and derived data, and quality checks. Statistical records (344 282) collected from 1975 to 2020 for soft and durum wheat, winter and spring barley, grain maize, sunflower, and sugar beet were aligned with the EUROSTAT crop legend and the 2016 territorial classification for 961 regions. Time series have a median length of 21 years.
We present a dataset of EU-wide harmonized subnational crop area, production, and yield...
Altmetrics
Final-revised paper
Preprint