Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-447-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-15-447-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-hazard susceptibility mapping of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago
High North Department, Norwegian Institute for Cultural Heritage
Research (NIKU), Fram Centre, N-9296, Tromsø, Norway
College of Humanities, Arts and Social Sciences, Flinders University,
Adelaide, SA 5042, Australia
Department of Physics and Astronomy, University of Bologna, Viale
Berti Pichat 6/2, 40127 Bologna, Italy
Lena Rubensdotter
Geohazard and Earth Observation, Geological Survey of Norway (NGU), P.O. Box 6315 Torgarden, 7491,
Trondheim, Norway
Arctic Geology Department, The University Centre in Svalbard (UNIS),
P.O. Box 156, 9171, Longyearbyen, Norway
Hakan Tanyaş
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, PO Box 217, Enschede, AE 7500, the Netherlands
Luigi Lombardo
Faculty of Geo-Information Science and Earth Observation (ITC),
University of Twente, PO Box 217, Enschede, AE 7500, the Netherlands
Related authors
No articles found.
Hunter N. Jimenez, Erkan Istanbulluoglu, Tolga Gorum, Thomas A. Stanley, Pukar M. Amatya, Hakan Tanyas, Mehmet C. Demirel, Aykut Akgun, and Deniz Bozkurt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3011, https://doi.org/10.5194/egusphere-2025-3011, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
After a major earthquake struck near the Türkiye/Syria border in February 2023, a powerful storm brought intense rainfall to the region, triggering additional landslides. We used satellite data and a physics-based model to map probabilistic landslide hazard using both coseismic and hydrologic drivers. We also explored how the sequence of these disasters affected landslide risk. Finally, we offer a method for seasonal forecasting of landslide hazard in at-risk areas using the historic climate.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950, https://doi.org/10.5194/egusphere-2023-2950, 2023
Preprint archived
Short summary
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.
Robert Emberson, Dalia B. Kirschbaum, Pukar Amatya, Hakan Tanyas, and Odin Marc
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, https://doi.org/10.5194/nhess-22-1129-2022, 2022
Short summary
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021, https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Short summary
This study exploits 66 years of flash flood disasters across China.
The conclusions are as follows. The clustering procedure highlights distinct spatial and temporal patterns of flash flood disasters at different scales. There are distinguished seasonal, yearly and even long-term persistent flash flood behaviors of flash flood disasters. Finally, the decreased duration of clusters in the recent period indicates a possible activation induced by short-duration extreme rainfall events.
Cited articles
Adhikari, P., Hong, Y., Douglas, K. R., Kirschbaum, D. B., Gourley, J.,
Adler, R., and Robert Brakenridge, G.: A digitized global flood inventory
(1998–2008): compilation and preliminary results, Nat. Hazards, 55,
405–422, https://doi.org/10.1007/s11069-010-9537-2, 2010.
Aguilera, Q., Lombardo, L., Tanyas, H., and Lipani, A.: On the prediction of
landslide occurrences and sizes via Hierarchical Neural Networks,
Stoch. Env. Res. Risk A., 36, 2031–2048, https://doi.org/10.1007/s00477-022-02215-0,
2022.
Ardizzone, F., Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Impact of mapping errors on the reliability of landslide hazard maps, Nat. Hazards Earth Syst. Sci., 2, 3–14, https://doi.org/10.5194/nhess-2-3-2002, 2002.
Atkinson, P., Jiskoot, H., Massari, R., and Murray, T.: Generalized linear
modelling in geomorphology, Earth Surf. Proc. Land., 23,
1185–1195, https://doi.org/10.1002/(SICI)1096-9837(199812)23:13<1185::AID-ESP928>3.0.CO;2-W, 1998.
Bertolini, R.: Evaluating Performance Variability of Data Pipelines for
Binary Classification with Applications to Predictive Learning Analytics,
State University of New York at Stony Brook ProQuest Dissertations Publishing, 28644493, 511 pp., 2021.
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., and
Abramov, A.: Permafrost is warming at a global scale, Nat. Commun.,
10, 1–11, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Blais-Stevens, A., Kremer, M., Bonnaventure, P. P., Smith, S. L., Lipovsky,
P., and Lewkowicz, A. G.: Active Layer Detachment Slides and Retrogressive
Thaw Slumps Susceptibility Mapping for Current and Future Permafrost
Distribution, Yukon Alaska Highway Corridor, in: Engineering Geology for
Society and Territory, edited by: Lollino, G., Manconi, A., Clague, J.,
Shan, W., and Chiarle, M., Springer, Cham, 449–453,
https://doi.org/10.1007/978-3-319-09300-0_86, 2015.
Brabb, E. E., Pampeyan, E. H., and Bonilla, M. G.: Landslide susceptibility
in San Mateo County, California, Reston, VA, 1, https://doi.org/10.3133/mf360, 1972.
Brenning, A.: Spatial cross-validation and bootstrap for the assessment of
prediction rules in remote sensing: The R package sperrorest, 2012 IEEE
International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012, 5372–5375,
https://doi.org/10.1109/IGARSS.2012.6352393, 2012.
Bryce, E., Lombardo, L., van Westen, C., Tanyas, H., and Castro-Camilo, D.:
Unified landslide hazard assessment using hurdle models: a case study in the
Island of Dominica, Stoch. Env. Res. Risk A., 36, 2071–2084,
https://doi.org/10.1007/s00477-022-02239-6, 2022.
Cassidy, A. E., Christen, A., and Henry, G. H. R.: Impacts of active
retrogressive thaw slumps on vegetation, soil, and net ecosystem exchange of
carbon dioxide in the Canadian High Arctic, Arctic Science, 3, 179–202,
https://doi.org/10.1139/as-2016-0034, 2017.
Clauset, A., Shalizi, C. R., and Newman, M. E. J.: Power-Law Distributions
in Empirical Data, SIAM Rev., 51, 661–703, https://doi.org/10.1137/070710111, 2009.
Daanen, R. P., Grosse, G., Darrow, M. M., Hamilton, T. D., and Jones, B. M.: Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska, Nat. Hazards Earth Syst. Sci., 12, 1521–1537, https://doi.org/10.5194/nhess-12-1521-2012, 2012.
Demidov, N. E., Borisik, A. L., Verkulich, S. R., Wetterich, S., Gunar, A.
Y., Demidov, V. E., Zheltenkova, N. V., Koshurnikov, A. V., Mikhailova, V.
M., Nikulina, A. L., Novikov, A. L., Savatyugin, L. M., Sirotkin, A. N.,
Terekhov, A. V., Ugrumov, Y. V., and Schirrmeister, L.: Geocryological and
Hydrogeological Conditions of the Western Part of Nordenskiold Land
(Spitsbergen Archipelago), Izvestiya, Atmospheric and Oceanic Physics, 56,
1376–1400, https://doi.org/10.1134/s000143382011002x, 2021.
Densmore, A. L., Ellis, M. A., and Anderson, R. S.: Landsliding and the
evolution of normal-fault-bounded mountains,
J. Geophys. Res.-Sol. Ea., 103, 15203–15219, https://doi.org/10.1029/98jb00510, 1998.
Ding, Y., Mu, C., Wu, T., Hu, G., Zou, D., Wang, D., Li, W., and Wu, X.:
Increasing cryospheric hazards in a warming climate, Earth-Sci. Rev., 213,
103500, https://doi.org/10.1016/j.earscirev.2020.103500, 2021.
Do, K.-A., Müller, P., and Tang, F.: A Bayesian mixture model for
differential gene expression, J. Roy. Stat. Soc. C.-Appl., 54,
627–644, https://doi.org/10.1111/j.1467-9876.2005.05593.x, 2005.
Emberson, R., Kirschbaum, D. B., Amatya, P., Tanyas, H., and Marc, O.: Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories, Nat. Hazards Earth Syst. Sci., 22, 1129–1149, https://doi.org/10.5194/nhess-22-1129-2022, 2022.
Ford, J. D., Pearce, T., Canosa, I. V., and Harper, S.: The rapidly changing
Arctic and its societal implications, Wires Clim. Change, 12, e735,
https://doi.org/10.1002/wcc.735, 2021.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E., and
Skaugen, T. E.: Temperature and Precipitation Development at Svalbard
1900–2100, Adv. Meteorol., 2011, 1–14, https://doi.org/10.1155/2011/893790, 2011.
Frey, K. E. and McClelland, J. W.: Impacts of permafrost degradation on
arctic river biogeochemistry, Hydrol. Process., 23, 169–182,
https://doi.org/10.1002/hyp.7196, 2009.
Gilbert, G. L., O'Neill, H. B., Nemec, W., Thiel, C., Christiansen, H. H.,
Buylaert, J.-P., and Eyles, N.: Late Quaternary sedimentation and permafrost
development in a Svalbard fjord-valley, Norwegian high Arctic,
Sedimentology, 65, 2531–2558, https://doi.org/10.1111/sed.12476, 2018.
Godin, E., Fortier, D., and Burn, C. R.: Geomorphology of a thermo-erosion
gully, Bylot Island, Nunavut, Canada, This article is one of a series of
papers published in this CJES Special Issue on the theme of Fundamental and
applied research on permafrost in Canada Polar Continental Shelf Project
Contribution 043-11, Can. J. Earth Sci., 49, 979–986,
https://doi.org/10.1139/e2012-015, 2012.
Godin, E., Fortier, D., and Coulombe, S.: Effects of thermo-erosion gullying
on hydrologic flow networks, discharge and soil loss, Environ. Res. Lett.,
9, 105010, https://doi.org/10.1088/1748-9326/9/10/105010, 2014.
Godin, E., Osinski, G. R., Harrison, T. N., Pontefract, A., and Zanetti, M.:
Geomorphology of Gullies at Thomas Lee Inlet, Devon Island, Canadian High
Arctic, Permafrost Periglac., 30, 19–34, https://doi.org/10.1002/ppp.1992,
2019.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M.,
and Chang, K.-T.: Landslide inventory maps: New tools for an old problem,
Earth-Sci. Rev., 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Hajian-Tilaki, K.: Receiver Operating Characteristic (ROC) Curve Analysis
for Medical Diagnostic Test Evaluation,
Caspian Journal of Internal Medicine, 4, 627–635, 2013.
Hansen, A.: Landslide Hazard Analysis, in: Slope Instability, edited by:
Brunsen, D. and Prior, D. B., John Wiley and Sons, New York, 523–602, 1984.
Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A.
B., and Sorteberg, A.: Climate in Svalbard 2100 – a knowledge base for
climate adaptation, Norwegian Centre for Climate Services, Oslo, 207, 2019.
Hergarten, S.: Topography-based modeling of large rockfalls and application
to hazard assessment, Geophys. Res. Lett., 39,
L13402,
https://doi.org/10.1029/2012gl052090, 2012.
Hjort, J., Streletskiy, D., Doré, G., Wu, Q., Bjella, K., and Luoto, M.:
Impacts of permafrost degradation on infrastructure, Nat. Rev. Earth
Environ., 3, 24–38, https://doi.org/10.1038/s43017-021-00247-8, 2022.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts
Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-07557-4, 2018.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, John Wiley &
Sons, https://doi.org/10.1002/0471722146, 2000.
Huang, L., Liu, L., Jiang, L., Zhang, T., and Sun, Y.: Detection of Thermal
Erosion Gullies from High-Resolution Images Using Deep Learning, American
Geophysical Union, Fall Meeting 2017, abstract no. C21F-1175, 2017.
Huang, L., Luo, J., Lin, Z., Niu, F., and Liu, L.: Using deep learning to
map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from
CubeSat images, Remote Sens. Environ., 237, 111534, https://doi.org/10.1016/j.rse.2019.111534, 2020.
Huang, L., Lantz, T. C., Fraser, R. H., Tiampo, K. F., Willis, M. J., and
Schaefer, K.: Accuracy, Efficiency, and Transferability of a Deep Learning
Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic,
Remote Sensing, 14, 2747, https://doi.org/10.3390/rs14122747, 2022.
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood,
S., and Niedźwiedź, T.: Recent warming on Spitsbergen–Influence of
atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121,
11913–11931, https://doi.org/10.1002/2016JD025606, 2016.
Iwahana, G., Takano, S., Petrov, R. E., Tei, S., Shingubara, R., Maximov, T.
C., Fedorov, A. N., Desyatkin, A. R., Nikolaev, A. N., and Desyatkin, R. V.:
Geocryological characteristics of the upper permafrost in a tundra-forest
transition of the Indigirka River Valley, Russia, Polar Sci., 8, 96–113,
https://doi.org/10.1016/j.polar.2014.01.005, 2014.
Javidan, N., Kavian, A., Pourghasemi, H. R., Conoscenti, C., Jafarian, Z.,
and Rodrigo-Comino, J.: Evaluation of multi-hazard map produced using MaxEnt
machine learning technique, Sci. Rep.-UK, 11, 6496, https://doi.org/10.1038/s41598-021-85862-7,
2021.
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of
analyzing multi-hazard risk: a review, Nat. Hazards, 64, 1925–1958,
https://doi.org/10.1007/s11069-012-0294-2, 2012.
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A
global landslide catalog for hazard applications: method, results, and
limitations, Nat. Hazards, 52, 561–575, https://doi.org/10.1007/s11069-009-9401-4, 2009.
Koevoets, M. J., Hammer, Ø., Olaussen, S., Kim, S., and Smelror, M.:
Integrating subsurface and outcrop data of the Middle Jurassic to Lower
Cretaceous Agardhfjellet Formation in central Spitsbergen, Norw. J. Geol.,
99, 219–252, https://doi.org/10.17850/njg98-4-01, 2019.
Kokelj, S. V. and Jorgenson, M. T.: Advances in Thermokarst Research,
Permafrost Periglac. Process., 24, 108–119, https://doi.org/10.1002/ppp.1779, 2013.
Lacelle, D., Bjornson, J., and Lauriol, B.: Climatic and geomorphic factors
affecting contemporary (1950–2004) activity of retrogressive thaw slumps on
the Aklavik Plateau, Richardson Mountains, NWT, Canada, Permafrost
Periglac. Process., 21, 1–15, https://doi.org/10.1002/ppp.666, 2010.
Lamoureux, S. F. and Lafrenière, M. J.: Fluvial Impact of Extensive
Active Layer Detachments, Cape Bounty, Melville Island, Canada, Arct.
Antarct. Alp. Res., 41, 59–68, https://doi.org/10.1657/1523-0430-41.1.59, 2018.
Lewkowicz, A. G. and Way, R. G.: Extremes of summer climate trigger
thousands of thermokarst landslides in a High Arctic environment, Nat.
Commun., 10, 1329, https://doi.org/10.1038/s41467-019-09314-7, 2019.
Li, C., Ma, T., Zhu, X., and Li, W.: The power–law relationship between
landslide occurrence and rainfall level, Geomorphology, 130, 221–229,
https://doi.org/10.1016/j.geomorph.2011.03.018, 2011.
Lima, P., Steger, S., and Glade, T.: Counteracting flawed landslide data in
statistically based landslide susceptibility modelling for very large areas:
a national-scale assessment for Austria, Landslides, 18, 3531–3546,
https://doi.org/10.1007/s10346-021-01693-7, 2021.
Lombardo, L. and Mai, P. M.: Presenting logistic regression-based landslide
susceptibility results, Eng. Geol., 244, 14–24,
https://doi.org/10.1016/j.enggeo.2018.07.019, 2018.
Lombardo, L. and Tanyas, H.: Chrono-validation of near-real-time landslide
susceptibility models via plug-in statistical simulations, Eng. Geol., 278, 105818, https://doi.org/10.1016/j.enggeo.2020.105818, 2020.
Lombardo, L., Tanyas, H., and Nicu, I. C.: Spatial modeling of multi-hazard
threat to cultural heritage sites, Eng. Geol., 277,
105776, https://doi.org/10.1016/j.enggeo.2020.105776, 2020.
Lombardo, L., Tanyas, H., Huser, R., Guzzetti, F., and Castro-Camilo, D.:
Landslide size matters: A new data-driven, spatial prototype, Eng. Geol.,
293, 106288, https://doi.org/10.1016/j.enggeo.2021.106288, 2021.
Luoto, M. and Hjort, J.: Evaluation of current statistical approaches for
predictive geomorphological mapping, Geomorphology, 67, 299–315,
https://doi.org/10.1016/j.geomorph.2004.10.006, 2005.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf. Proc. Land., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Meena, S. R., Soares, L. P., Grohmann, C. H., van Westen, C., Bhuyan, K.,
Singh, R. P., Floris, M., and Catani, F.: Landslide detection in the
Himalayas using machine learning algorithms and U-Net, Landslides, 19,
1209–1229, https://doi.org/10.1007/s10346-022-01861-3, 2022.
Melvær, Y., Faste Aas, H., and Skiglund, A.: Terrengmodell Svalbard (S0
Terrengmodell) [data set], https://doi.org/10.21334/npolar.2014.dce53a47, 2014.
Moreno, M., Steger, S., Tanyas, H., and Lombardo, L.: Modeling the size of
co-seismic landslides viadata-driven models the Kaikōura's
example, EarthArXiv [preprint], https://doi.org/10.31223/X5VD1P, 19 April 2022.
Nava, L., Bhuyan, K., Meena, S. R., Monserrat, O., and Catani, F.: Rapid
Mapping of Landslides on SAR Data by Attention U-Net, Remote Sens., 14,
1449, https://doi.org/10.3390/rs14061449, 2022.
Nicu, I. C.: Short overview on international historic climate adaptation of
built heritage to natural hazards: lessons for Norway, Int. J. Conserv.
Sci., 13, 441–456, 2022.
Nicu, I. C. and Fatorić, S.: Climate change impacts on immovable
cultural heritage in polar regions: A systematic bibliometric review, WIREs
Climate Change, e822, https://doi.org/10.1002/wcc.822, 2023.
Nicu, I. C., Lombardo, L., and Rubensdotter, L.: Preliminary assessment of
thaw slump hazard to Arctic cultural heritage in Nordenskiöld Land,
Svalbard, Landslides, 18, 2935–2947, https://doi.org/10.1007/s10346-021-01684-8, 2021a.
Nicu, I. C., Rubensdotter, L., and Lombardo, L.: Thaw slump inventory of
Nordenskiöld Land (Svalbard Archipelago), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.945348, 2022a.
Nicu, I. C., Rubensdotter, L., and Lombardo, L.: Thermo-erosion gullies
inventory of Nordenskiöld Land (Svalbard Archipelago), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.945395, 2022b.
Nicu, I. C., Rubensdotter, L., Stalsberg, K., and Nau, E.: Coastal Erosion
of Arctic Cultural Heritage in Danger: A Case Study from Svalbard, Norway,
Water, 13, 784, https://doi.org/10.3390/w13060784, 2021b.
Nicu, I. C., Tanyas, H., Rubensdotter, L., and Lombardo, L.: A glimpse into
the northernmost thermo-erosion gullies in Svalbard archipelago and their
implications for Arctic cultural heritage, Catena, 212,
106105, https://doi.org/10.1016/j.catena.2022.106105, 2022c.
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.:
Remote sensing quantifies widespread abundance of permafrost region
disturbances across the Arctic and Subarctic, Nat. Commun., 9, 5423,
https://doi.org/10.1038/s41467-018-07663-3, 2018.
Niu, F., Luo, J., Lin, Z., Fang, J., and Liu, M.: Thaw-induced slope
failures and stability analyses in permafrost regions of the Qinghai-Tibet
Plateau, China, Landslides, 13, 55–65, https://doi.org/10.1007/s10346-014-0545-2, 2015.
Norwegian Polar Institute: Terrengmodell Svalbard (S0 Terrengmodell), Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2014.dce53a47, 2014.
NPI: Svalbard Orthophoto, https://geodata.npolar.no/, last access:
10 November 2022a.
NPI: Geologi/Geology, Svalbard, https://geodata.npolar.no/arcgis/rest/services/Temadata/G_Geologi_Svalbard_S250_S750/MapServer, last access: 10 June 2022b.
Oberle, F. K. J., Gibbs, A. E., Richmond, B. M., Erikson, L. H., Waldrop, M.
P., and Swarzenski, P. W.: Towards determining spatial methane distribution
on Arctic permafrost bluffs with an unmanned aerial system,
SN Applied Sciences, 1, 236, https://doi.org/10.1007/s42452-019-0242-9, 2019.
Ramage, J. L., Irrgang, A. M., Herzschuh, U., Morgenstern, A., Couture, N.,
and Lantuit, H.: Terrain controls on the occurrence of coastal retrogressive
thaw slumps along the Yukon Coast, Canada, J. Geophys. Res.-Earth, 122, 1619–1634, https://doi.org/10.1002/2017jf004231, 2017.
Ran, Y., Li, X., Cheng, G., Che, J., Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., Jin, H., Obu, J., Hori, M., Yu, Q., and Chang, X.: New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere, Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022, 2022.
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen,
O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed
nearly four times faster than the globe since 1979, Commun. Earth
Environ., 3, 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically-based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J.,
Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder,
B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C.
F.: Cross-validation strategies for data with temporal, spatial,
hierarchical, or phylogenetic structure, Ecography, 40, 913–929,
https://doi.org/10.1111/ecog.02881, 2017.
Roccati, A., Paliaga, G., Luino, F., Faccini, F., and Turconi, L.: GIS-Based
Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment,
Land, 10, 162, https://doi.org/10.3390/land10020162, 2021.
Rossi, M., Cardinali, M., Fiorucci, F., Marchesini, I., Mondini, A. C.,
Santangelo, M., Ghosh, S., Riguer, D. E. L., Lahousse, T., Chang, K. T., and
Guzzetti, F.: A tool for the estimation of the distribution of landslide
area in R, EGU General Assembly, Vienna, Austria, 22–27 April 2012.
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., and van Ewijk, K. Y.:
Transferability of regional permafrost disturbance susceptibility modelling
using generalized linear and generalized additive models, Geomorphology,
264, 95–108, https://doi.org/10.1016/j.geomorph.2016.04.011, 2016.
Rudy, A. C. A., Lamoureux, S. F., Treitz, P., Ewijk, K. V., Bonnaventure, P.
P., and Budkewitsch, P.: Terrain Controls and Landscape-Scale Susceptibility
Modelling of Active-Layer Detachments, Sabine Peninsula, Melville Island,
Nunavut, Permafrost Periglac. Process., 28, 79–91, https://doi.org/10.1002/ppp.1900,
2017.
Saha, A., Pal, S. C., Santosh, M., Janizadeh, S., Chowdhuri, I., Norouzi,
A., Roy, P., and Chakrabortty, R.: Modelling multi-hazard threats to
cultural heritage sites and environmental sustainability: The present and
future scenarios, J. Clean. Prod., 320, 128713,
https://doi.org/10.1016/j.jclepro.2021.128713, 2021.
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and
timing of permafrost carbon release in response to climate warming, Tellus
B, 63, 165–180, https://doi.org/10.1111/j.1600-0889.2011.00527.x, 2011.
Schmitt, R. G., Tanyas, H., Jessee, M. A. N., Zhu, J., Biegel, K. M.,
Allstadt, K. E., Jibson, R. W., van Westen, C. J., Sato, H. P., Wald, D. J.,
and Godt, J. W.: An open repository of earthquake-triggered ground-failure
inventories, U.S. Geological Survey, Reston, VA, USA, 17, https://doi.org/10.3133/ds1064,
2017.
Séjourné, A., Costard, F., Fedorov, A., Gargani, J., Skorve, J.,
Massé, M., and Mège, D.: Evolution of the banks of thermokarst lakes
in Central Yakutia (Central Siberia) due to retrogressive thaw slump
activity controlled by insolation, Geomorphology, 241, 31–40,
https://doi.org/10.1016/j.geomorph.2015.03.033, 2015.
Sidorchuk, A.: The Potential of Gully Erosion on the Yamal Peninsula, West
Siberia, Sustainability, 12, 260, https://doi.org/10.3390/su12010260, 2019.
Smith, S. L., O'Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V.
E.: The changing thermal state of permafrost, Nat. Rev. Earth Environ., 3,
10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022.
Steger, S., Mair, V., Kofler, C., Pittore, M., Zebisch, M., and
Schneiderbauer, S.: Correlation does not imply geomorphic causation in
data-driven landslide susceptibility modelling - Benefits of exploring
landslide data collection effects, Sci. Total Environ., 776, 145935,
https://doi.org/10.1016/j.scitotenv.2021.145935, 2021.
Swanson, D. and Nolan, M.: Growth of Retrogressive Thaw Slumps in the Noatak
Valley, Alaska, 2010–2016, Measured by Airborne Photogrammetry, Remote
Sens., 10, 983, https://doi.org/10.3390/rs10070983, 2018.
Swanson, D. K.: Permafrost thaw-related slope failures in Alaska's Arctic
National Parks, c. 1980–2019, Permafrost Periglac. Process., 32,
392–406, https://doi.org/10.1002/ppp.2098, 2021.
Tanyaş, H., Allstadt, K. E., and van Westen, C. J.: An updated method
for estimating landslide-event magnitude, Earth Surf. Proc. Land., 43, 1836–1847, https://doi.org/10.1002/esp.4359, 2018.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Anna Nowicki Jessee, M.,
Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G.,
Marc, O., and Hovius, N.: Presentation and Analysis of a Worldwide Database
of Earthquake-Induced Landslide Inventories, J. Geophys.
Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017jf004236, 2017.
ten Brink, U. S., Barkan, R., Andrews, B. D., and Chaytor, J. D.: Size
distributions and failure initiation of submarine and subaerial landslides,
Earth Planet. Sc. Lett., 287, 31–42, https://doi.org/10.1016/j.epsl.2009.07.031,
2009.
Titti, G., van Westen, C., Borgatti, L., Pasuto, A., and Lombardo, L.: When
Enough Is Really Enough? On the Minimum Number of Landslides to Build
Reliable Susceptibility Models, Geosciences, 11,
469, https://doi.org/10.3390/geosciences11110469, 2021.
Titti, G., Sarretta, A., Lombardo, L., Crema, S., Pasuto, A., and Borgatti,
L.: Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS,
Front. Earth Sci., 10, 842425, https://doi.org/10.3389/feart.2022.842425, 2022.
UN Department of Economic and Social Affairs: Agenda 21, United Nations Conference on Environment & Development Rio de Janerio, Brazil, 3 to 14 June 1992.
Veh, G.: On the cause of thermal erosion on ice-rich permafrost (Lena River
Delta/ Siberia), Mathematisch-Geographische Fakultät, Katholische
Universität Eichstätt-Ingolstadt, Potsdam, 112 pp., 2015.
Voigt, C., Marushchak, M. E., Mastepanov, M., Lamprecht, R. E., Christensen,
T. R., Dorodnikov, M., Jackowicz-Korczyński, M., Lindgren, A., Lohila,
A., and Nykänen, H.: Ecosystem carbon response of an Arctic peatland to
simulated permafrost thaw, Glob. Change Biol., 25, 1746–1764,
https://doi.org/10.1111/gcb.14574, 2019.
Ward Jones, M. K., Pollard, W. H., and Jones, B. M.: Rapid initialization of
retrogressive thaw slumps in the Canadian high Arctic and their response to
climate and terrain factors, Environ. Res. Lett., 14, 055006,
https://doi.org/10.1088/1748-9326/ab12fd, 2019.
Xia, Z., Huang, L., Fan, C., Jia, S., Lin, Z., Liu, L., Luo, J., Niu, F., and Zhang, T.: Retrogressive thaw slumps along the Qinghai–Tibet Engineering Corridor: a comprehensive inventory and their distribution characteristics, Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, 2022.
Yin, G., Luo, J., Niu, F., Lin, Z., and Liu, M.: Machine learning-based
thermokarst landslide susceptibility modeling across the permafrost region
on the Qinghai-Tibet Plateau, Landslides, 18, 2639–2649,
https://doi.org/10.1007/s10346-021-01669-7, 2021.
Ziaja, W.: Glacial Recession in Sorkappland and Central
Nordenskiolöland, Spitsbergen, Svalbard, during the 20th Century, Arct.
Antarct. Alp. Res., 33, 36–41, https://doi.org/10.1080/15230430.2001.12003402, 2001.
Ziaja, W.: Spitsbergen Landscape under 20thCentury Climate Change:
Sørkapp Land, AMBIO: A Journal of the Human Environment, 33, 295–299,
https://doi.org/10.1579/0044-7447-33.6.295, 2004.
Zwoliński, Z., Giżejewski, J., Karczewski, A., Kasprzak, M.,
Lankauf, K. R., Migoń, P., Pękala, K., Repelewska-Pękalowa, J.,
Rachlewicz, G., Sobota, I., Stankowski, W., and Zagórski, P.:
Geomorphological settings of Polish research areas on Spitsbergen, Landform
Analysis, 22, 125–143, https://doi.org/10.12657/landfana.022.011, 2013.
Short summary
Thaw slumps and thermo-erosion gullies are cryospheric hazards that are widely encountered in Nordenskiöld Land, the largest and most compact ice-free area of the Svalbard Archipelago. By statistically analysing the landscape characteristics of locations where these processes occurred, we can estimate where they may occur in the future. We mapped 562 thaw slumps and 908 thermo-erosion gullies and used them to create the first multi-hazard susceptibility map in a high-Arctic environment.
Thaw slumps and thermo-erosion gullies are cryospheric hazards that are widely encountered in...
Special issue
Altmetrics
Final-revised paper
Preprint