Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2347-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An improved global land cover mapping in 2015 with 30 m resolution (GLC-2015) based on a multisource product-fusion approach
Bingjie Li
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Xiaocong Xu
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Xiaoping Liu
CORRESPONDING AUTHOR
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
Zhuhai, 519080, China
Qian Shi
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Haoming Zhuang
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Yaotong Cai
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Da He
Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Related authors
Yaotong Cai, Peng Zhu, Xing Li, Xiaoping Liu, Yuhe Chen, Qianhui Shen, Xiaocong Xu, Honghui Zhang, Sheng Nie, Cheng Wang, Jia Wang, Bingjie Li, Changjiang Wu, and Haoming Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-96, https://doi.org/10.5194/essd-2025-96, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
China’s forests play a crucial role in storing carbon and mitigating climate change, yet long-term, high-resolution data on their biomass have been limited. We developed a 30-m annual forest aboveground biomass dataset from 1985 to 2023 using satellite data and deep learning. Our results reveal significant biomass gains, regional variations, and the impact of forest policies. This dataset provides valuable insights for climate research, conservation planning, and sustainable forest management.
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data, 17, 2535–2551, https://doi.org/10.5194/essd-17-2535-2025, https://doi.org/10.5194/essd-17-2535-2025, 2025
Short summary
Short summary
The currently available urban canopy parameter (UCP) datasets are limited to just a few cities for urban climate simulations by the Weather Research and Forecasting (WRF) model. To address this gap, we develop a global 1 km spatially continuous UCP dataset (GloUCP) which provides superior spatial coverage and higher accuracy in capturing urban morphology across diverse regions. It has great potential to support further advancements in urban climate modeling and related applications.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Yaotong Cai, Peng Zhu, Xing Li, Xiaoping Liu, Yuhe Chen, Qianhui Shen, Xiaocong Xu, Honghui Zhang, Sheng Nie, Cheng Wang, Jia Wang, Bingjie Li, Changjiang Wu, and Haoming Zhuang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-96, https://doi.org/10.5194/essd-2025-96, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
China’s forests play a crucial role in storing carbon and mitigating climate change, yet long-term, high-resolution data on their biomass have been limited. We developed a 30-m annual forest aboveground biomass dataset from 1985 to 2023 using satellite data and deep learning. Our results reveal significant biomass gains, regional variations, and the impact of forest policies. This dataset provides valuable insights for climate research, conservation planning, and sustainable forest management.
Yangzi Che, Xuecao Li, Xiaoping Liu, Yuhao Wang, Weilin Liao, Xianwei Zheng, Xucai Zhang, Xiaocong Xu, Qian Shi, Jiajun Zhu, Honghui Zhang, Hua Yuan, and Yongjiu Dai
Earth Syst. Sci. Data, 16, 5357–5374, https://doi.org/10.5194/essd-16-5357-2024, https://doi.org/10.5194/essd-16-5357-2024, 2024
Short summary
Short summary
Most existing building height products are limited with respect to either spatial resolution or coverage, not to mention the spatial heterogeneity introduced by global building forms. Using Earth Observation (EO) datasets for 2020, we developed a global height dataset at the individual building scale. The dataset provides spatially explicit information on 3D building morphology, supporting both macro- and microanalysis of urban areas.
Wanru He, Xuecao Li, Yuyu Zhou, Zitong Shi, Guojiang Yu, Tengyun Hu, Yixuan Wang, Jianxi Huang, Tiecheng Bai, Zhongchang Sun, Xiaoping Liu, and Peng Gong
Earth Syst. Sci. Data, 15, 3623–3639, https://doi.org/10.5194/essd-15-3623-2023, https://doi.org/10.5194/essd-15-3623-2023, 2023
Short summary
Short summary
Most existing global urban products with future projections were developed in urban and non-urban categories, which ignores the gradual change of urban development at the local scale. Using annual global urban extent data from 1985 to 2015, we forecasted global urban fractional changes under eight scenarios throughout 2100. The developed dataset can provide spatially explicit information on urban fractions at 1 km resolution, which helps support various urban studies (e.g., urban heat island).
Qian Shi, Mengxi Liu, Andrea Marinoni, and Xiaoping Liu
Earth Syst. Sci. Data, 15, 555–577, https://doi.org/10.5194/essd-15-555-2023, https://doi.org/10.5194/essd-15-555-2023, 2023
Short summary
Short summary
A large-scale and high-resolution urban green space (UGS) product with 1 m of 31 major cities in China (UGS-1m) is generated based on a deep learning framework to provide basic UGS information for relevant UGS research, such as distribution, area, and UGS rate. Moreover, an urban green space dataset (UGSet) with a total of 4454 samples of 512 × 512 in size are also supplied as the benchmark to support model training and algorithm comparison.
Y. Cai, Q. Shi, and X. Liu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-W1-2022, 1–6, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-1-2022, 2022
Cited articles
Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth
observation satellite data: Recent progresses and challenges, ISPRS J.
Photogramm., 103, 1–6, https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015.
Bartholomé, E. and Belward, A. S.: GLC2000: A new approach to global
land cover mapping from Earth observation data, Int. J. Remote Sens., 26,
1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Bounoua, L., DeFries, R., Collatz, G. J., Sellers, P., and Khan, H.: Effects
of land cover conversion on surface climate, Climatic Change, 52, 29–64,
https://doi.org/10.1023/A:1013051420309, 2002.
Bunting, P., Rosenqvist, A., Lucas, R. M., Rebelo, L.-M., Hilarides, L., Thomas, N., Hardy, A., Itoh, T., Shimada, M., and Finlayson, C. M.: The Global Mangrove Watch-A new 2010 global baseline of mangrove extent, Remote Sens., 10, 1669,https://doi.org/10.3390/rs10101669, 2018.
Bunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., and Rebelo, L.-M.: Global mangrove extent change 1996-2020: Global Mangrove Watch version 3.0, Remote Sens., 14, 3657, https://doi.org/10.3390/rs14153657, 2022.
Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek,
P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S.
E., Mack, M. C., and Díaz, S.: Consequences of changing biodiversity,
Nature, 405, 234–242, https://doi.org/10.1038/35012241, 2000.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G.,
Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover
mapping at 30 m resolution: A POK-based operational approach, ISPRS J.
Photogramm., 103, 7–27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
Chen, T. M. and Venkataramanan, V.: Dempster-Shafer theory for intrusion
detection in ad hoc networks, IEEE Internet Comput., 9, 35–41, https://doi.org/10.1109/MIC.2005.123, 2005.
Clinton, N., Yu, L., and Gong, P.: Geographic stacking: Decision fusion to
increase global land cover map accuracy, ISPRS J. Photogramm., 103, 57–65,
https://doi.org/10.1016/j.isprsjprs.2015.02.010, 2015.
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps, S., Lamarche, C.,
Schlerf, M., and Santoro, M.: Land Cover CCI: Product User Guide Version 2,
https://www.esa-landcover-cci.org/?q=webfm_send/84 (last access: 15 January 2022), 2018.
DeFries, R. S., Houghton, R. A., Hansen, M. C., Field, C. B., Skole, D., and
Townshend, J.: Carbon emissions from tropical deforestation and regrowth
based on satellite observations for the 1980s and 1990s, P. Natl. Acad.
Sci. USA, 99, 14256–14261, https://doi.org/10.1073/pnas.182560099,
2002.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter,
S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J.
H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A.,
Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of
land use, Science, 309, 570–574, https://doi.org/10.1126/science.1111772, 2005.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, Remote Sens. Environ.,
114, 168–182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Fritz, S., You, L., Bun, A., See, L., McCallum, I., Schill, C., Perger, C.,
Liu, J., Hansen, M., and Obersteiner, M.: Cropland for sub-Saharan Africa: A
synergistic approach using five land cover data sets, Geophys. Res. Lett.,
38, L04404, https://doi.org/10.1029/2010GL046213, 2011.
Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., and Xie, S.: Consistency
analysis and accuracy assessment of three global 30 m land-cover products
over the European Union using the LUCAS dataset, Remote Sens., 12, 3479,
https://doi.org/10.3390/rs12213479, 2020.
Gengler, S. and Bogaert, P.: Combining land cover products using a minimum
divergence and a Bayesian data fusion approach, Int. J. Geogr. Inf. Sci.,
32, 806–826, https://doi.org/10.1080/13658816.2017.1413577,
2018.
Giri, C., Zhu, Z., and Reed, B.: A comparative analysis of the Global Land
Cover 2000 and MODIS land cover datasets, Remote Sens. Environ., 94,
123–132, https://doi.org/10.1016/j.rse.2004.09.005, 2005.
Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of
global land cover characterization, mapping, and monitoring, Int. J. Appl.
Earth Obs., 25, 30–37, https://doi.org/10.1016/j.jag.2013.03.005, 2013.
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time
series data for land cover classification: A review, ISPRS J. Photogramm.,
116, 55–72, https://doi.org/10.1016/j.isprsjprs.2016.03.008,
2016.
Gong, P.: Remote sensing of environmental change over China: A review, Sci.
Bull., 57, 2793–2801, https://doi.org/10.1007/s11434-012-5268-y, 2012.
Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., Niu, Z., Huang,
X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X.,
Cheng, Q., Hu, L., Yao, W., Zhang, H., Zhu, P., Zhao, Z., Zhang, H., Zheng,
Y., Ji, L., Zhang, Y., Chen, H., Yan, A., Guo, J., Yu, L., Wang, L., Liu,
X., Shi, T., Zhu, M., Chen, Y., Yang, G., Tang, P., Xu, B., Giri, C.,
Clinton, N., Zhu, Z., Chen, J., and Chen, J.: Finer resolution observation
and monitoring of global land cover: first mapping results with Landsat TM
and ETM+ data, Int. J. Remote Sens., 34, 2607–2654, https://doi.org/10.1080/01431161.2012.748992, 2013.
Gong, P., Yu, L., Li, C., Wang, J., Liang, L., Li, X., Ji, L., Bai, Y.,
Cheng, Y., and Zhu, Z.: A new research paradigm for global land cover
mapping, Ann. GIS, 22, 87–102, https://doi.org/10.1080/19475683.2016.1164247, 2016.
Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., Liu, X., Xu, B.,
Yang, J., Zhang, W., and Zhou, Y.: Annual maps of global artificial
impervious area (GAIA) between 1985 and 2018, Remote Sens. Environ., 236,
111510, https://doi.org/10.1016/j.rse.2019.111510, 2020.
Grekousis, G., Mountrakis, G., and Kavouras, M.: An overview of 21 global
and 43 regional land-cover mapping products, Int. J. Remote Sens., 36,
5309–5335, https://doi.org/10.1080/01431161.2015.1093195, 2015.
Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai,
X., and Briggs, J. M.: Global change and the ecology of cities, Science,
319, 756–760, https://doi.org/10.1126/science.1150195, 2008.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global
land cover classification at 1 km spatial resolution using a classification
tree approach, Int. J. Remote Sens., 21, 1331–1364, https://doi.org/10.1080/014311600210209, 2000.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R.,
Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R.
G.: High-resolution global maps of 21st-century forest cover change,
Science, 342, 850–853, https://doi.org/10.1126/science.1244693,
2013.
Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., and Schmullius, C.:
Some challenges in global land cover mapping: An assessment of agreement and
accuracy in existing 1 km datasets, Remote Sens. Environ., 112, 2538–2556,
https://doi.org/10.1016/j.rse.2007.11.013, 2008.
Hu, L., Chen, Y., Xu, Y., Zhao, Y., Yu, L., Wang, J., and Gong, P.: A 30
meter land cover mapping of China with an efficient clustering algorithm
CBEST, Sci. China Earth Sci., 57, 2293–2304, https://doi.org/10.1007/s11430-014-4917-1, 2014.
Hu, S., Niu, Z., Chen, Y., Li, L., and Zhang, H.: Global wetlands: Potential
distribution, wetland loss, and status, Sci. Total Environ., 586, 319–327,
https://doi.org/10.1016/j.scitotenv.2017.02.001, 2017.
Huang, X., Li, J., Yang, J., Zhang, Z., Li, D., and Liu, X.: 30 m global
impervious surface area dynamics and urban expansion pattern observed by
Landsat satellites: From 1972 to 2019, Sci. China Earth Sci., 64,
1922–1933, https://doi.org/10.1007/s11430-020-9797-9, 2021.
Huang, X., Yang, J., Wang, W., and Liu, Z.: Mapping 10 m global impervious surface area (GISA-10m) using multi-source geospatial data, Earth Syst. Sci. Data, 14, 3649–3672, https://doi.org/10.5194/essd-14-3649-2022, 2022.
Iwao, K., Nasahara, K. N., Kinoshita, T., Yamagata, Y., Patton, D., and
Tsuchida, S.: Creation of new global land cover map with map integration, J.
Geogr. Inf. Syst., 3, 160–165, https://doi.org/10.4236/jgis.2011.32013, 2011.
Jin, Q., Xu, E., and Zhang, X.: A fusion method for multisource land cover
products based on superpixels and statistical extraction for enhancing
resolution and improving accuracy, Remote Sens., 14, 1676, https://doi.org/10.3390/rs14071676, 2022.
Jung, M., Henkel, K., Herold, M., and Churkina, G.: Exploiting synergies of
global land cover products for carbon cycle modeling, Remote Sens. Environ.,
101, 534–553, https://doi.org/10.1016/j.rse.2006.01.020, 2006.
Kang, J., Wang, Z., Sui, L., Yang, X., Ma, Y., and Wang, J.: Consistency
analysis of remote sensing land cover products in the tropical rainforest
climate region: A case study of Indonesia, Remote Sens., 12, 1410,
https://doi.org/10.3390/rs12091410, 2020.
Kim, D., Lim, C.-H., Song, C., Lee, W.-K., Piao, D., Heo, S., and Jeon, S.:
Estimation of future carbon budget with climate change and reforestation
scenario in North Korea, Adv. Space Res., 58, 1002–1016, https://doi.org/10.1016/j.asr.2016.05.049, 2016.
Li, B., Xu, X., Liu, X., Shi, Q., Zhuang, H., Cai, Y., and He, D.: An
improved global land cover mapping in 2015 with 30 m resolution (GLC-2015)
based on a multi-source product fusion approach, figshare [data set], https://doi.org/10.6084/m9.figshare.22358143.v2, 2023.
Li, C., Gong, P., Wang, J., Zhu, Z., Biging, G. S., Yuan, C., Hu, T., Zhang,
H., Wang, Q., Li, X., Liu, X., Xu, Y., Guo, J., Liu, C., Hackman, K. O.,
Zhang, M., Cheng, Y., Yu, L., Yang, J., Huang, H., and Clinton, N.: The
first all-season sample set for mapping global land cover with Landsat-8
data, Sci. Bull., 62, 508–515, https://doi.org/10.1016/j.scib.2017.03.011, 2017.
Liao, A., Chen, L., Chen, J., He, C., Cao, X., Chen, J., Peng, S., Sun, F.,
and Gong, P.: High-resolution remote sensing mapping of global land water,
Sci. China Earth Sci., 57, 2305–2316, https://doi.org/10.1007/s11430-014-4918-0, 2014.
Liu, H., Gong, P., Wang, J., Clinton, N., Bai, Y., and Liang, S.: Annual dynamics of global land cover and its long-term changes from 1982 to 2015, Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, 2020.
Liu, H., Gong, P., Wang, J., Wang, X., Ning, G., and Xu, B.: Production of
global daily seamless data cubes and quantification of global land cover
change from 1985 to 2020 – iMap World 1.0, Remote Sens. Environ., 258,
112364, https://doi.org/10.1016/j.rse.2021.112364, 2021.
Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang,
S., Li, R., Yan, C., Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., and Chi,
W.: Spatiotemporal characteristics, patterns and causes of land use changes
in China since the late 1980s, Dili Xuebao/Acta Geogr. Sin., 69, 3–14,
https://doi.org/10.11821/dlxb201401001, 2014.
Liu, K. and Xu, E.: Fusion and correction of multi-source land cover
products based on spatial detection and uncertainty reasoning methods in
Central Asia, Remote Sens., 13, 244, https://doi.org/10.3390/rs13020244, 2021.
Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.:
Finer-resolution mapping of global land cover: Recent developments,
consistency analysis, and prospects, J. Remote Sens., 2021,
5289697, https://doi.org/10.34133/2021/5289697, 2021.
Liu, X., Huang, Y., Xu, X., Li, X., Li, X., Ciais, P., Lin, P., Gong, K.,
Ziegler, A. D., Chen, A., Gong, P., Chen, J., Hu, G., Chen, Y., Wang, S.,
Wu, Q., Huang, K., Estes, L., and Zeng, Z.: High-spatiotemporal-resolution
mapping of global urban change from 1985 to 2015, Nat. Sustain., 3,
564–570, https://doi.org/10.1038/s41893-020-0521-x, 2020.
Loveland, T. R., Reed, B. C., Brown, J. F., Ohlen, D. O., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21,
1303–1330, https://doi.org/10.1080/014311600210191, 2000.
Lu, M., Wu, W., You, L., See, L., Fritz, S., Yu, Q., Wei, Y., Chen, D., Yang, P., and Xue, B.: A cultivated planet in 2010 – Part 1: The global synergy cropland map, Earth Syst. Sci. Data, 12, 1913–1928, https://doi.org/10.5194/essd-12-1913-2020, 2020.
Ludwig, C., Walli, A., Schleicher, C., Weichselbaum, J., and Riffler, M.: A
highly automated algorithm for wetland detection using multi-temporal
optical satellite data, Remote Sens. Environ., 224, 333–351, https://doi.org/10.1016/j.rse.2019.01.017, 2019.
Mayaux, P., Bartholomé, E., Fritz, S., and Belward, A.: A new land-cover
map of Africa for the year 2000, J. Biogeogr., 31, 861–877, https://doi.org/10.1111/j.1365-2699.2004.01073.x, 2004.
McCallum, I., Obersteiner, M., Nilsson, S., and Shvidenko, A.: A spatial
comparison of four satellite derived 1 km global land cover datasets, Int. J.
Appl. Earth Obs., 8, 246–255, https://doi.org/10.1016/j.jag.2005.12.002, 2006.
Meng, Z., Dong, J., Ellis, E. C., Metternicht, G., Qin, Y., Song, X.-P.,
Löfqvist, S., Garrett, R. D., Jia, X., and Xiao, X.: Post-2020
biodiversity framework challenged by cropland expansion in protected areas,
Nat. Sustain., 1–11, https://doi.org/10.1038/s41893-023-01093-w, online first, 2023.
Meyer, M. F., Labou, S. G., Cramer, A. N., Brousil, M. R., and Luff, B. T.:
The global lake area, climate, and population dataset, Sci. Data, 7, 174,
https://doi.org/10.1038/s41597-020-0517-4, 2020.
Moody, A. and Woodcock, C.: Scale-dependent errors in the estimation of
land-cover proportions: Implications for global land-cover datasets,
Photogramm. Eng. Rem. S., 60, 585–594, 1994.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T.
A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R.: Quality
control and assessment of interpreter consistency of annual land cover
reference data in an operational national monitoring program, Remote Sens.
Environ., 238, 111261, https://doi.org/10.1016/j.rse.2019.111261, 2020.
Pickens, A. H., Hansen, M. C., Hancher, M., Stehman, S. V., Tyukavina, A.,
Potapov, P., Marroquin, B., and Sherani, Z.: Mapping and sampling to
characterize global inland water dynamics from 1999 to 2018 with full
Landsat time-series, Remote Sens. Environ., 243, 111792, https://doi.org/10.1016/j.rse.2020.111792, 2020.
Razi, S., Mollaei, M. R. K., and Ghasemi, J.: A novel method for
classification of BCI multi-class motor imagery task based on
Dempster–Shafer theory, Inform. Sciences, 484, 14–26, https://doi.org/10.1016/j.ins.2019.01.053, 2019.
Rottensteiner, F., Trinder, J., Clode, S., and Kubik, K.: Using the
Dempster-Shafer method for the fusion of LIDAR data and multi-spectral
images for building detection, Inform. Fusion, 6, 283–300, https://doi.org/10.1016/j.inffus.2004.06.004, 2005.
Running, S. W.: Ecosystem disturbance, carbon, and climate, Science, 321,
652–653, https://doi.org/10.1126/science.1159607, 2008.
Schewe, J., Gosling, S. N., Reyer, C., Zhao, F., Ciais, P., Elliott, J.,
Francois, L., Huber, V., Lotze, H. K., Seneviratne, S. I., van Vliet, M. T.
H., Vautard, R., Wada, Y., Breuer, L., Büchner, M., Carozza, D. A.,
Chang, J., Coll, M., Deryng, D., de Wit, A., Eddy, T. D., Folberth, C.,
Frieler, K., Friend, A. D., Gerten, D., Gudmundsson, L., Hanasaki, N., Ito,
A., Khabarov, N., Kim, H., Lawrence, P., Morfopoulos, C., Müller, C.,
Müller Schmied, H., Orth, R., Ostberg, S., Pokhrel, Y., Pugh, T. A. M.,
Sakurai, G., Satoh, Y., Schmid, E., Stacke, T., Steenbeek, J., Steinkamp,
J., Tang, Q., Tian, H., Tittensor, D. P., Volkholz, J., Wang, X., and
Warszawski, L.: State-of-the-art global models underestimate impacts from
climate extremes, Nat. Commun., 10, 1005, https://doi.org/10.1038/s41467-019-08745-6, 2019.
See, L., Schepaschenko, D., Lesiv, M., McCallum, I., Fritz, S., Comber, A.,
Perger, C., Schill, C., Zhao, Y., Maus, V., Siraj, M. A., Albrecht, F.,
Cipriani, A., Vakolyuk, M. y., Garcia, A., Rabia, A. H., Singha, K.,
Marcarini, A. A., Kattenborn, T., Hazarika, R., Schepaschenko, M., van der
Velde, M., Kraxner, F., and Obersteiner, M.: Building a hybrid land cover
map with crowdsourcing and geographically weighted regression, ISPRS J.
Photogramm., 103, 48–56, https://doi.org/10.1016/j.isprsjprs.2014.06.016, 2015.
Shafizadeh-Moghadam, H., Minaei, M., Feng, Y., and Pontius, R. G.:
GlobeLand30 maps show four times larger gross than net land change from 2000
to 2010 in Asia, Int. J. Appl. Earth Obs., 78, 240–248, https://doi.org/10.1016/j.jag.2019.01.003, 2019.
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R.,
and Lucas, R.: New global forest/non-forest maps from ALOS PALSAR data
(2007–2010), Remote Sens. Environ., 155, 13–31, https://doi.org/10.1016/j.rse.2014.04.014, 2014.
Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A.,
Vermote, E. F., and Townshend, J. R.: Global land change from 1982 to 2016,
Nature, 560, 639–643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Sun, B., Chen, X., and Zhou, Q.: UNCERTAINTY ASSESSMENT OF GLOBELAND30 LAND COVER DATA SET OVER CENTRAL ASIA, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B8, 1313–1317, https://doi.org/10.5194/isprs-archives-XLI-B8-1313-2016, 2016.
Teluguntla, P., Thenkabail, P. S., Oliphant, A., Xiong, J., Gumma, M. K.,
Congalton, R. G., Yadav, K., and Huete, A.: A 30-m landsat-derived cropland
extent product of Australia and China using random forest machine learning
algorithm on Google Earth Engine cloud computing platform, ISPRS J.
Photogramm., 144, 325–340, https://doi.org/10.1016/j.isprsjprs.2018.07.017, 2018.
Verburg, P. H., Neumann, K., and Nol, L.: Challenges in using land use and
land cover data for global change studies, Glob. Change Biol., 17, 974–989,
https://doi.org/10.1111/j.1365-2486.2010.02307.x, 2011.
Verburg, P. H., Mertz, O., Erb, K.-H., Haberl, H., and Wu, W.: Land system
change and food security: towards multi-scale land system solutions, Curr.
Opin. Env. Sust., 5, 494–502, https://doi.org/10.1016/j.cosust.2013.07.003, 2013.
Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., and Dewitz, J. A.:
Thematic accuracy assessment of the NLCD 2016 land cover for the
conterminous United States, Remote Sens. Environ., 257, 112357, https://doi.org/10.1016/j.rse.2021.112357, 2021.
Wu, J., Wang, X., Zhong, B., Yang, A., Jue, K., Wu, J., Zhang, L., Xu, W.,
Wu, S., Zhang, N., and Liu, Q.: Ecological environment assessment for
Greater Mekong Subregion based on Pressure-State-Response framework by
remote sensing, Ecol. Indic., 117, 106521, https://doi.org/10.1016/j.ecolind.2020.106521, 2020.
Wulder, M. A., Li, Z., Campbell, E. M., White, J. C., Hobart, G.,
Hermosilla, T., and Coops, N. C.: A national assessment of wetland status
and trends for Canada's forested ecosystems using 33 years of earth
observation satellite data, Remote Sens., 10, 1623, https://doi.org/10.3390/rs10101623, 2018.
Xiong, J., Thenkabail, P. S., Tilton, J. C., Gumma, M. K., Teluguntla, P.,
Oliphant, A., Congalton, R. G., Yadav, K., and Gorelick, N.: Nominal 30-m
cropland extent map of continental Africa by integrating pixel-based and
object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth
Engine, Remote Sens., 9, 1065, https://doi.org/10.3390/rs9101065, 2017.
Xu, G., Zhang, H., Chen, B., Zhang, H., Yan, J., Chen, J., Che, M., Lin, X.,
and Dou, X.: A Bayesian based method to generate a synergetic land-cover map
from existing land-cover products, Remote Sens., 6, 5589–5613, https://doi.org/10.3390/rs606558910.3390/rs6065589, 2014.
Xue, J., Wang, Y., Teng, H., Wang, N., Li, D., Peng, J., Biswas, A., and
Shi, Z.: Dynamics of vegetation greenness and its response to climate
change in Xinjiang over the past two decades, Remote Sens., 13, 4063,
https://doi.org/10.3390/rs13204063, 2021.
Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907–3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.
Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J.,
and Dickinson, R.: The role of satellite remote sensing in climate change
studies, Nat. Clim. Change, 3, 875–883, https://doi.org/10.1038/nclimate1908, 2013.
Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S. M., Case,
A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B., Liknes, G.
C., Rigge, M., and Xian, G.: A new generation of the United States National
Land Cover Database: Requirements, research priorities, design, and
implementation strategies, ISPRS J. Photogramm., 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018.
Yang, Y., Xiao, P., Feng, X., and Li, H.: Accuracy assessment of seven
global land cover datasets over China, ISPRS J. Photogramm., 125, 156–173,
https://doi.org/10.1016/j.isprsjprs.2017.01.016, 2017.
Yu, L., Wang, J., Clinton, N., Xin, Q., Zhong, L., Chen, Y., and Gong, P.:
FROM-GC: 30 m global cropland extent derived through multisource data
integration, Int. J. Digit. Earth, 6, 521–533, https://doi.org/10.1080/17538947.2013.822574, 2013.
Zhang, C., Dong, J., and Ge, Q.: Quantifying the accuracies of six 30-m
cropland datasets over China: A comparison and evaluation analysis, Comput.
Electron. Agr., 197, 106946, https://doi.org/10.1016/j.compag.2022.106946, 2022.
Zhang, M., Ma, M., De Maeyer, P., and Kurban, A.: Uncertainties in
classification system conversion and an analysis of inconsistencies in
global land cover products, ISPRS Int. J. Geo-Inf., 6, 112, https://doi.org/10.3390/ijgi6040112, 2017.
Zhang, X., Long, T., He, G., Guo, Y., Yin, R., Zhang, Z., Xiao, H., Li, M.,
and Cheng, B.: Rapid generation of global forest cover map using Landsat based
on the forest ecological zones, J. Appl. Remote Sens., 14, 022211, https://doi.org/10.1117/1.JRS.14.022211, 2020.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265–293, https://doi.org/10.5194/essd-15-265-2023, 2023.
Zhao, J., Yu, L., Liu, H., Huang, H., Wang, J., and Gong, P.: Towards an
open and synergistic framework for mapping global land cover, PeerJ, 9,
e11877, https://doi.org/10.7717/peerj.11877, 2021.
Zheng, W., Liu, Y., Yang, X., and Fan, W.: Spatiotemporal variations of
forest vegetation phenology and its response to climate change in northeast
China, Remote Sens., 14, 2909, https://doi.org/10.3390/rs14122909, 2022.
Short summary
A global land cover map with fine spatial resolution is important for climate and environmental studies, food security, or biodiversity conservation. In this study, we developed an improved global land cover map in 2015 with 30 m resolution (GLC-2015) by fusing the existing land cover products based on the Dempster–Shafer theory of evidence on the Google Earth Engine platform. The GLC-2015 performed well, with an OA of 79.5 % (83.6 %) assessed with the global point-based (patch-based) samples.
A global land cover map with fine spatial resolution is important for climate and environmental...
Altmetrics
Final-revised paper
Preprint