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Abstract. Global land cover (GLC) information with fine spatial resolution is a fundamental data input for
studies on biogeochemical cycles of the Earth system and global climate change. Although there are several
public GLC products with 30 m resolution, considerable inconsistencies were found among them, especially in
fragmented regions and transition zones, which brings great uncertainties to various application tasks. In this
paper, we developed an improved global land cover map in 2015 with 30 m resolution (GLC-2015) by fusing
multiple existing land cover (LC) products based on the Dempster–Shafer theory of evidence (DSET). Firstly,
we used more than 160 000 global point-based samples to locally evaluate the reliability of the input products
for each land cover class within each 4◦× 4◦ geographical grid for the establishment of the basic probability
assignment (BPA) function. Then, Dempster’s rule of combination was used for each 30 m pixel to derive the
combined probability mass of each possible land cover class from all the candidate maps. Finally, each pixel
was determined with a land cover class based on a decision rule. Through this fusing process, each pixel is
expected to be assigned the land cover class that contributes to achieving a higher accuracy. We assessed our
product separately with 34 711 global point-based samples and 201 global patch-based samples. Results show
that the GLC-2015 map achieved the highest mapping performance globally, continentally, and ecoregionally
compared with the existing 30 m GLC maps, with an overall accuracy of 79.5 % (83.6 %) and a kappa coefficient
of 0.757 (0.566) against the point-based (patch-based) validation samples. Additionally, we found that the GLC-
2015 map showed substantial outperformance in the areas of inconsistency, with an accuracy improvement of
19.3 %–28.0 % in areas of moderate inconsistency and 27.5 %–29.7 % in areas of high inconsistency. Hopefully,
this improved GLC-2015 product can be applied to reduce uncertainties in the research on global environmental
changes, ecosystem service assessments, and hazard damage evaluations. The GLC-2015 map developed in this
study is available at https://doi.org/10.6084/m9.figshare.22358143.v2 (Li et al., 2023).

1 Introduction

Land cover (LC), influenced by both nature and human ac-
tivities (Running, 2008; Gong et al., 2013; Song et al., 2018;
H. Liu et al., 2021), is a significant component of the Earth
system (Yang and Huang, 2021). Global land cover (GLC)
products can serve as fundamental data for various studies,
such as climate and environmental changes (Bounoua et al.,

2002; Foley et al., 2005; Grimm et al., 2008; Yang et al.,
2013; Schewe et al., 2019), food security (Verburg et al.,
2013; Ban et al., 2015), carbon cycling (Moody and Wood-
cock, 1994; Defries et al., 2002; Gómez et al., 2016), biodi-
versity conservation (Chapin et al., 2000; Giri et al., 2005),
and land management (Mayaux et al., 2004; Verburg et al.,
2011). Therefore, there is a pressing need for a detailed,
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accurate, and high-quality GLC product to support global
change research and sustainable development.

In the preliminary stage, LC mapping mainly relied
on visual interpretation, which is time-consuming, labor-
intensive, and difficult to apply at the global scale (Gong,
2012). In recent decades, satellite remote-sensing data,
which can provide information on large-area coverage and
long-term monitoring, have been adopted to generate GLC
products. With coarse-resolution satellite data such as the
Advanced Very High Resolution Radiometer (AVHRR),
Moderate Resolution Imaging Spectroradiometer (MODIS),
Medium Resolution Imaging Spectrometer (MERIS), and
Global Land Surface Satellite (GLASS), a variety of GLC
products have been developed at 5 km to 300 m resolution
(Loveland et al., 2000; Hansen et al., 2000; Bartholomé and
Belward, 2005; Friedl et al., 2010; Defourny et al., 2018;
H. Liu et al., 2020). Although these GLC products have been
widely applied to many applications, it has been proven that
the differences between sensors, classification systems, and
considerably low accuracies in areas prevent harmonization
of these products (Herold et al., 2008; Verburg et al., 2011;
Grekousis et al., 2015). Also, these products are far from pro-
viding enough fine spatial details of LC due to their relatively
coarse spatial resolution, which does not meet the demands
of many studies (Giri et al., 2013; Yang et al., 2017). To al-
low research which can capture most human activity, finer-
resolution (e.g., 30 m) GLC products are required (Giri et al.,
2013).

With the free accessibility of high-resolution satellite
remote-sensing data, GLC mapping at fine resolution has
been successfully conducted. Using Landsat imagery, there
has been a milestone achievement in that the two GLC prod-
ucts are generated with a fine resolution of 30 m, namely,
the Finer Resolution Observation and Monitoring of Global
Land Cover product (FROM_GLC) (Gong et al., 2013) and
Globeland30 (Chen et al., 2015). After that, a 30 m resolu-
tion GLC mapping in 2017 was achieved using the first all-
season sample set (Li et al., 2017). More recently, Zhang et
al. (2021) used both Landsat time series imagery and high-
quality training data from the Global Spatial Temporal Spec-
tra Library (GSPECLib) to produce a 30 m GLC map in 2015
(GLC_FCS30) with a two-level classification scheme. Sev-
eral attempts have been made to improve the accuracy of
30 m GLC products which are prevalent in the generation of
the GLC mapping task over the last few years. FROM_GLC
was created by employing four classification algorithms to
classify the Landsat images and choosing time series of
MODIS EVI data for training and testing. Globeland30 was
created by proposing a pixel-object-knowledge-based (POK)
method to ensure consistency and accuracy. GLC_FCS30
was generated by adopting local adaptive random forest
models with high-quality training samples derived from the
GSPECLib. Globeland30, FROM_GLC, and GLC_FCS30
are excellent and indispensable GLC products which have
contributed much to various research, such as biodiversity

conservation (Wu et al., 2020; Meng et al., 2023), climate
change (Kim et al., 2016; Xue et al., 2021; Zheng et al.,
2022), and land management (Shafizadeh-Moghadam et al.,
2019). In addition to these multiple-class GLC products,
GLC products for individual LC classes, such as cropland
(Yu et al., 2013; Lu et al., 2020), forest (Hansen et al., 2013;
Shimada et al., 2014; Zhang et al., 2020), wetland (Hu et
al., 2017; Zhang et al., 2023), water (Liao et al., 2014; Pekel
et al., 2016; Pickens et al., 2020), and impervious surfaces
(Gong et al., 2020; Huang et al., 2021, 2022; X. Liu et al.,
2020), have been successfully generated.

Despite the great efforts in producing more accurate prod-
ucts, the existing 30 m GLC products still show unstable
performance in certain LC classes and some specific areas
(Sun et al., 2016; Kang et al., 2020). Furthermore, the ex-
isting 30 m products showed great agreement in overall spa-
tial distribution patterns but significant spatial inconsistency
in some specific areas (heterogeneous areas and transition
zones) and spectrally similar classes (forest and shrubland,
cropland and grassland) (Gao et al., 2020; L. Liu et al., 2021).
The spatial inconsistency between the existing 30 m GLC
products resulted from differences in their classification sys-
tems, classification techniques employed, source data, and
spatial distributions and sizes of training samples (Yang et
al., 2017; Gao et al., 2020). Due to the aforesaid limitations,
users of GLC products still have difficulties in an appropri-
ate selection of data for their specific application. Ultimately,
this situation leads to uncertainties in outcomes of related
studies when different 30 m GLC products are used. For GLC
mapping with fine spatial resolution, more efforts should be
focused on improving the mapping in heterogenous and frag-
mented landscapes (Herold et al., 2008; L. Liu et al., 2021).
Therefore, it is pressing to generate a more accurate and re-
liable GLC product with high classification accuracy, espe-
cially for spatially inconsistent regions and low-accuracy LC
classes.

According to Gong et al. (2016), inconsistencies between
LC products indicate available complementary information,
and more robust and reliable data can be generated by inte-
grating the input maps with the data-fusion method. Given
that different maps have disagreement and provide accurate
information in different locations, we can make a best choice
for the class label assigned to each pixel by weighting the
credibility of all the available information and combining
them through a decision rule (Clinton et al., 2015). In this
way, the output map of integration on input maps can re-
duce the overall risk of assigning a wrong class label to a
pixel and at least achieve the average performance of input
maps. Several attempts have been made to produce an accu-
rate and consistent LC map using various methods, such as
majority voting (MV), fuzzy agreement, and Bayesian the-
ory. Iwao et al. (2011) created a GLC map based on a sim-
ple majority voting method. Jung et al. (2006) generated a
1 km GLC map by combination of MODIS, GLC2000, and
GLCC data based on fuzzy agreement scoring. Subsequently,
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Fritz et al. (2011) extended the synergy method of Jung et
al. (2006) by ranking LC maps and mapped the cropland ex-
tent in sub-Saharan Africa. See et al. (2015) generated two
GLC products by integrating medium-resolution LC prod-
ucts with geographically weighted regression (GWR). Gen-
gler and Bogaert (2018) proposed a Bayesian data-fusion
method and applied it to the LC mapping for a specific re-
gion in Belgium. All these studies have demonstrated that
the fusion method can create an integrated LC product where
the mapping accuracy is greatly improved by combining the
best of the candidate maps. However, the MV method is sen-
sitive to the quality of the candidate maps and has significant
uncertainties when the input products exhibit great disagree-
ment (Chen and Venkataramanan, 2005). The fuzzy agree-
ment is highly subjective since it depends on expert assess-
ment, while the Bayesian theory requires prior knowledge or
conditional probabilities and fails to handle the states of ig-
norance (Liu and Xu, 2021).

The Dempster–Shafer theory of evidence (DSET) is an
evidence-based approach to reason with uncertainties. Unlike
the majority voting, the DSET method can discount evidence
from inaccurate information with a probability mass that re-
flects the degree of belief rather than a binary decision (Razi
et al., 2019). In contrast to the Bayesian theory, the DSET
can integrate evidence from a variety of sources without the
requirement of prior knowledge (Chen and Venkataramanan,
2005). Moreover, the reliability of the final fused results
based on the DSET method is measured with a total degree
of belief. Although previous literature focused on the appli-
cation of the DSET method in multisource data aggregation,
very little research has been conducted globally due to the
lack of accurate and sufficient samples and the demand for
adequate computing resources.

In this research, we propose a multisource product-fusion
approach on the Google Earth Engine (GEE) platform to pro-
duce an improved GLC product in 2015 (GLC-2015) with
30 m resolution. The fusion approach we proposed aims to
deal with the inconsistency between previous 30 m GLC
products and generate a map which has better mapping per-
formance than any of the candidate maps by evaluating the
mapping accuracy of these existing products at the local scale
and choosing the most credible LC class. To fulfill the pur-
pose, we first performed reliability evaluation, where the ac-
curacy of each product for each LC class in each 4◦× 4◦ geo-
graphical grid is regarded as the evidential probability of cre-
ating the basic probability assignment (BPA) function. Then,
the BPA values of all the LC classes from different prod-
ucts were fused according to Dempster’s rule of combina-
tion. Finally, the GLC-2015 map was integrated after a final
accepted LC class with the maximum combined probability
mass was assigned to each 30 m pixel. The GLC-2015 map
was separately validated with two different validation sets,
namely, global point-based samples and global patch-based
samples, and compared with the existing products. More-
over, we provided an analysis for the mapping improvement

of GLC-2015 compared to other GLC products in areas of
high mapping inconsistency. The GLC-2015 map is proven
to be accurate and credible and can significantly improve the
mapping accuracy in areas of high inconsistency.

2 Datasets

2.1 Multiple-class GLC products

Three existing 30 m GLC products with multiple classes, in-
cluding GlobeLand30, FROM_GLC, and GLC_FCS30, were
employed as input maps in the fusion based on the DSET. A
summary of their detailed information is shown in Table 1.

GlobeLand30, a widely used global geoinformation prod-
uct, was produced by the POK-based method using Landsat
and HJ-1 satellite images. Globeland30 products are freely
accessible online at the website (http://www.globalland30.
org, last access: 15 April 2023) for 2000 and 2010. From
the accuracy assessment, Globeland30 for the year 2010 had
an overall accuracy exceeding 80.0 % using large samples
(Chen et al., 2015). Although the data time of GlobeLand30
is 2010, which has a 5-year gap with other products, it was
used because the changed areas of LC caused by the time in-
terval are tiny compared to the global land area. In addition,
there is relatively less uncertainty due to LC changes than
due to inaccurate classification (Xu et al., 2014). Most spatial
disagreements between the existing maps are about classifi-
cation errors rather than LC changes over the time interval
(McCallum et al., 2006; See et al., 2015).

FROM_GLC, the first 30 m GLC product generated us-
ing numerous Landsat images, has a fine classification sys-
tem with a two-level structure. It achieved an overall accu-
racy (OA) of 64.5 % through validation with the complete
test samples and 71.5 % with a subset of test samples in ho-
mogeneous areas (Gong et al., 2013).

GLC_FCS30 was developed using Landsat time series
data and large training samples from the GSPECLib. It has a
two-level classification scheme that contains 16 global LCCS
LC classes and 14 detailed regional LC classes. The overall
accuracy of GLC_FCS30 according to the LCCS level-1 val-
idation scheme reached 71.4 % (Zhang et al., 2021).

2.2 Single-class GLC products

To improve the quality of the fusing result, a set of highly
qualified GLC products with a single class at 30 m fine
resolution were also used. Compared to the multiple-class
GLC products, these single-class GLC products are more
likely to provide accurate information since they usually fo-
cus on promoting the mapping performance of a specific
LC class. These products include Global Forest Change
(GFC) (Hansen et al., 2013), Global Annual Urban Dynam-
ics (GAUD) (X. Liu et al., 2020), the Joint Research Cen-
tre’s Global Surface Water (JRC GSW) (Pekel et al., 2016),
and the Global Mangrove Watch (GMW) (Bunting et al.,
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2022). While these single-class products are either annual or
multi-epoch, we only selected these products in the target
year of 2015. The background information of these single-
class products was considered another land cover class (e.g.,
non-water) participating in the fusion. The accuracy of the
background information was defaulted to 0 since it did not
provide information about any of the other nine categories in
our classification system. Table 1 also describes the informa-
tion of these selected single-class GLC products.

GFC resulted from a time series analysis of growing sea-
son Landsat scenes, aiming to provide information about
global tree cover extent, gain, and loss at a 30 m spatial reso-
lution. The accuracy assessment was performed at global and
climate domain scales, the forest gain reached an overall ac-
curacy of 99.6 %, and the forest loss reached 99.7 % across
the globe (Hansen et al., 2013). Up to now, it had a temporary
coverage from 2000 to 2020.

GAUD, which provides 30 m annual urban extent for the
time period of 1985 to 2015, was generated using numer-
ous Landsat images with both a data-fusion approach and a
temporal segmentation approach on the GEE platform. Vali-
dation was conducted across different urban ecoregions and
the globe by the product developer. The accuracy of mapping
an urbanized year was 76.0 % for the period of 1985 to 2000
and 82.0 % for the period of 2000 to 2015 in humid regions
worldwide (X. Liu et al., 2020).

The JRC GSW dataset provides a monthly presentation of
global surface water changes from 1984 to 2015 at a fine
30 m resolution. Expert systems, visual analytics, and evi-
dential reasoning were exploited to detect water extent and
changes. Based on 40 124 validation points over the globe
and across the 32 years, commission accuracies were deter-
mined with overall accuracies of 99.45 % (Thematic Map-
per – TM), 99.35 % (Enhanced Thematic Mapper Plus –
ETM+), and 99.54 % (OLI – Operational Land Imager), and
omission accuracies were reflected in overall accuracies of
97.01 % (TM), 95.79 % (ETM+), and 96.25 % (OLI) (Pekel
et al., 2016). We used the GSW Yearly Water Classification
History v1.1 in the GEE catalog. A single “waterClass” band
is present in each image that provides the water’s seasonality
throughout the year with four types: no data, no water, sea-
sonal water, and permanent water. Since the seasonal water in
GSW data is not as reliable as the permanent water (Meyer et
al., 2020), we selected permanent water bodies and excluded
seasonal water bodies.

The GMW dataset was produced as a result of the GMW
initiative, which aims to provide consistent information on
mangrove extent. The global mangrove map in 2010 was
generated as a baseline map employing the Extremely Ran-
domized Trees classifier to classify the Advanced Land Ob-
serving Satellite (ALOS) Phased-Array L-band Synthetic
Aperture Radar (PALSAR) and Landsat imagery. Assessed
by a total of 53 878 sample points globally, the overall accu-
racy of the baseline map reached 95.3 %, and the producer’s
accuracy achieved 94.0 % (Bunting et al., 2018). Based on
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the baseline in 2010, mangrove extent maps for six epochs
between 1996 and 2016 have been established, and annual
change monitoring from 2018 and onwards is undertaken.

2.3 National-scale LC products

Land cover products which focus on a national scale are more
likely to possess higher accuracy because they were pro-
duced by experts who have good knowledge of land cover
classes nationally. Thus, the National Land Cover Database
2016 (NLCD 2016) for the year 2016 over the conterminous
United States (CONUS) (Yang et al., 2018), China’s land-
use/cover dataset (CLUD) (Liu et al., 2014) for 2015, and the
annual China land cover dataset (CLCD) (Yang and Huang,
2021) for 2015 were also included in the fusion. The detailed
information on these national-scale products is listed in Ta-
ble 1.

The NLCD 2016 database, which provides continuous and
accurate information on land cover and change from 2001
to 2016 at an interval of 2 or 3 years, was produced based
on a pixel- and object-based approach and an effective post-
classification process (Yang et al., 2018). The level-1 and
level-2 overall accuracy of the NLCD 2016 database for 2016
was 90.6 % and 86.4 % for the CONUS, respectively (Wick-
ham et al., 2021). CLUD, developed by the digital interpreta-
tion method using Landsat images, provides land cover infor-
mation over China from 1980s to 2015. The overall accuracy
of CLUD reached 94.3 % and 91.2 % for level-1 and level-2
land cover classes, respectively (Liu et al., 2014). CLCD was
generated with stable training samples derived from CLUD
and Landsat time series. Assessed with 5463 validation sam-
ples, CLCD obtained an overall accuracy of 79.31 % (Yang
and Huang, 2021).

2.4 Global point-based and patch-based samples

In this study, we collected two sets of global samples,
namely, the global point-based samples and the global patch-
based samples. To collect representative and sufficient sam-
ples efficiently, we divided the world’s terrestrial area into
4◦× 4◦ geographical grids. A total of 1507 grids are dis-
tributed evenly across the globe, shown as Fig. 1.

To derive the global point-based samples, we adopted
stratified random sampling in each grid. The stratified ran-
dom sampling depends on the area ratio of classes from a
land cover product. We used FROM_GLC as prior knowl-
edge rather than Globeland30 and GLC_FCS30 with two
considerations. (1) FROM_GLC has the same data time as
our target map (GLC-2015), while Globeland30 has a 5-year
interval from our samples, which affects the sizes of sam-
ples for each LC class. (2) The 10 level-1 land cover classes
of FROM_GLC are similar to that in the classification sys-
tem of GLC-2015, while GLC_FCS30 has differences from
GLC-2015 in the classification scheme and definition of land
cover classes. First, the FROM_GLC product was used to

Figure 1. Spatial distribution of the 4◦× 4◦ geographical grids over
the world. Six black rectangle tiles with a size of 0.25◦ were used
for visual comparison between our product and the other three prod-
ucts.

calculate the area ratio of each LC class. Then, points were
randomly extracted from FROM_GLC according to the area
ratio and spatial location of each class. Finally, more than
200 000 global samples were collected. Through the sam-
pling method mentioned above, the global point-based sam-
ples were even across the globe and sufficient for each class
in each grid. Therefore, more than 50 points could be easily
derived for classes with a small area ratio in the 4◦× 4◦ grid.
FROM_GLC shows low accuracy for some LC classes, espe-
cially for cropland and forest (Gao et al., 2020; L. Liu et al.,
2021; Zhang et al., 2021, 2022). If the global samples were
extracted with the LC class label from FROM_GLC, there
would be inevitable errors. Therefore, FROM_GLC was only
used to determine the sizes and locations of samples for each
class. Instead, all the points were manually labeled according
to Google Earth high-resolution images. The whole sample
set was randomly split into two subsets: 80 % of the global
samples were used to assess the accuracy of each GLC prod-
uct for various LC classes at the global scale and in each grid.
The remaining 20 % were used for the validation of the GLC-
2015 map and data intercomparison between different prod-
ucts. Figure 2 presents the distribution of the whole global
point-based samples and the subset for accuracy assessment
and data intercomparison.

To verify the consistency between GLC-2015 and the ac-
tual pattern of the landscape at the local scale, we also estab-
lished the global patch-based samples. Simple random sam-
pling was used to derive 5 km× 5 km blocks over the world’s
terrestrial area and across different ecoregions because it is
easy to perform and capable of augmenting the sample size
from target areas (Pengra et al., 2020). Since inconsistency
between current GLC maps tends to appear in the heteroge-
neous areas, such as fragmented regions and transition zones,
we slightly increased the sample size for areas with the het-
erogeneous landscape to better evaluate our mapping results.
In total, there were 201 blocks selected as the global patch-
based samples, as displayed in Fig. 3a. Then, for each block
in the patch-based samples, we used ArcGIS 10.5 software
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Figure 2. Spatial distribution of (a) the global point-based samples and (b) the subset of the global point-based samples for accuracy
assessment and data intercomparison; the proportions of each LC class are shown in the pie chart.

to derive polygons (patches) of various sizes which captured
the real landscape on the high-resolution images. Meanwhile,
each polygon was manually labeled with a LC class. Four
examples of producing patch-based samples are shown in
Fig. 3b and c.

3 Methods

In this study, we proposed a multisource product-fusion
method to produce the GLC-2015 map. The procedure
mainly comprised the fusion based on the Dempster–Shafer
theory of evidence (DSET), accuracy assessment, and data
intercomparison as shown in Fig. 4. The basis of this study is
the fusion of multisource products based on the DSET. The
fusion method was performed at the pixel level, and it in-
volves the following three main steps. (1) Construct the BPA
function of each pixel that belongs to each LC class consid-
ering the accuracy assessment of various products. (2) Cal-
culate the combined probability mass for each class per pixel
using Dempster’s rule of combination. (3) Determine the fi-
nally accepted LC class per pixel by a decision rule. After-
wards, pixels with a determined LC class were integrated
to generate a new map. For large-scale or global land cover
mapping, previous researchers divided the study area into a
lot of subregions and conducted classification in each subre-

gion on GEE (Gong et al., 2020; X. Liu et al., 2020; Huang
et al., 2021; Jin et al., 2022; Zhang et al., 2021; Zhao et al.,
2021). The shape and size of the subregion vary in previous
work, such as hexagons with a side length of 2◦ and geo-
graphical grids with sizes of 1◦× 1◦, 3.5◦× 3.5◦, 5◦× 5◦, or
10◦× 10◦. When deciding on the sizes of subregions, two
important factors should be considered. The sizes of samples
in each subregion should be sufficient so that the rare land
cover classes will not be missed. On the other hand, it is im-
possible to implement mapping work in a subregion as large
as we want due to memory constraints. To determine the ap-
propriate size, we tested different sizes of the subregion (see
Table S1 in the Supplement). The result shows that dividing
the study area into 4◦× 4◦ grids performed best. Therefore,
we split the world’s terrestrial area into 1507 4◦× 4◦ geo-
graphical grids. The entire framework was implemented in
all 4◦× 4◦ geographical grids on the GEE platform.

3.1 Definition of the classification system

In this study, we adopted the classification system with 10
LC classes, including cropland, forest, grassland, shrubland,
wetland, water bodies, tundra, impervious surfaces, bare
land, and permanent snow and ice (Chen et al., 2015), as
listed in Table 2. Due to the applications for different so-
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Figure 3. Spatial distribution and selected examples of the global patch-based samples. The locations of 5 km× 5 km patch-based samples
are shown as panel (a), and the locations of the four selected samples are shown by red dash circles. Panels (b) and (c) illustrate the production
of global patch-based samples on manual interpretation. The red lines in high-resolution images circa 2015 result from vectorization using
ArcGIS 10.5 software. Four corresponding patch-based samples are shown as panel (c).

cial needs, the existing GLC products and national-scale LC
products were produced with different classification systems
(Tables S2–S3). GlobeLand30 used a simple classification
system that only contained 10 first-level classes. Unlike Glo-
beLand30, FROM_GLC and GLC_FCS30 were classified
with a two-level classification scheme. Through analysis of
these systems, we found that the classification systems are
not the same, but they have some agreements. There are both
10 major classes in GlobeLand30 and FROM_GLC despite
the fact that the definitions of some classes differ. Addi-
tionally, in contrast to GlobeLand30 and FROM_GLC, the
level-0 classification system of GLC_FCS30 lacks tundra.
However, in the level-2 detailed LC classes of GLC_FCS30,
lichens and mosses have little distinction from tundra.

According to the LC translation tables (Tables S2–S3),
the original LC classes of FROM_GLC and GLC_FCS30,
CLUD for 2015, and NLCD 2016 for 2016 were converted
into the 10 target land cover classes based on the similarity of

LC definition. Note that cropland in our classification system
was defined as land areas for food production and animal
feed. Therefore, pasture in level-2 classes of FROM_GLC
was converted into cropland rather than grassland. In addi-
tion, lichens/mosses in the level-2 detailed classification sys-
tem of GLC_FCS30 were converted into tundra.

3.2 A multisource product fusion for the GLC-2015
mapping

The DSET is an effective method widely applied for the
fusion of multisource data. To generate a new high-quality
GLC map, a multisource product-fusion method using the
DSET was proposed. In the remainder of Sect. 3.2, we intro-
duced the overview of the theory and presented the applica-
tion of the DSET in our mapping process.
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Figure 4. The framework for generating the GLC-2015 map using a multisource product-fusion approach based on the DEST.

Table 2. Classification system adopted in this paper.

ID LC class Definition

10 Cropland Land areas used for food production and animal feed.
20 Forest Land areas dominated by trees with tree canopy cover over 30 %, and sparse trees with tree

canopy cover between 10 % and 30 %.
30 Grassland Land areas dominated by natural grass with a cover over 10 %.
40 Shrubland Land areas dominated by shrubs with a cover over 30 %, including mountain shrubs, deciduous

shrubs, evergreen shrubs, and desert shrubs with a cover over 10 %.
50 Wetland Land areas dominated by wetland plants and water bodies.
60 Water bodies Land areas covered with accumulated liquid water.
70 Tundra Land areas dominated by lichen, moss, hardly perennial herb, and shrubs in the polar regions.
80 Impervious surfaces Land areas covered with artificial structures.
90 Bare land Land areas with scarce vegetation with a cover lower than 10 %.
100 Permanent snow and ice Land areas dominated by permanent snow, glacier, and ice cap.
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3.2.1 Dempster–Shafer theory of evidence

The DSET is developed by Dempster and Shafer, which is an
extension of Bayesian probability theory. This theory treats
information from different data sources as independent evi-
dence and integrated this evidence with no requirements re-
garding prior knowledge. In the fusion, we assume a classifi-
cation process in which all the input data are to be classified
into mutually exclusive classes. Let the set � of these classes
be a frame of discrimination. 2� is the power set of � that
includes all the classes and their possible unions. We defined
the function m : 2�

→ [0,1] as the BPA function if and only
if it satisfies m (Ø)= 0 and

∑
A⊆2�

m (A)= 1 with Ø denoting

an empty set. For each class A⊆ 2�, m(A) is called the ba-
sic probability mass which can be computed from the BPA
function and represents the degree of support for class A or
confidence in class A.

The purpose of fusion is to evaluate and integrate informa-
tion from multiple sources. In the DSET, these multisource
data are regarded as different evidence and provide differ-
ent assessments. To generate all the evidence, the Dempster–
Shafer theory of evidence offers a rule. Suppose mi(Bj ) is
the basic probability mass computed from the BPA function
for each input datum i with 1≤ i ≤ n for all classes Bj ∈ 2�.
Dempster’s rule of combination is provided to calculate a
combined probability mass from different evidence. The fu-
sion rules are given in Eqs. (1) and (2).

m (C)=

∑
B1∩B2···∩Bn=C

∏
1≤i≤n

mi

(
Bj

)
1− k

, (1)

k =
∑

B1∩B2···∩Bn=Ø

∏
1≤i≤n

mi

(
Bj

)
, (2)

where k represents the basic probability mass associated with
conflicts among the sources of evidence. C is the intersection
of all classes Bj and carries the joint information from all the
input data. After the combination, we took a decision rule to
decide the class we finally accept. There are several ways of
deciding the final class by simply choosing the class with the
maximum belief, plausibility, support, or commonality.

3.2.2 Mapping based on the DSET

Here, we presented our implementation for the GLC-2015
mapping in the framework of the DSET. All the GLC prod-
ucts and national-scale products described in Sect. 2 were
selected as input maps to be combined. In the integration of
multisource products, since all the LC classes in our classi-
fication system are known, the frame of discrimination was
defined as our classification system.

�=
cropland, forest, grassland,
shrubland, wetland, water bodies,
tundra, impervious surfaces, bare land,
permanent snow and ice

 (3)

The definition of the BPA function is the critical point in ap-
plying the DSET (Rottensteiner et al., 2005). In the fusion,
we wanted to achieve a per-pixel classification into 1 of 10
LC classes: cropland, forest, grassland, shrubland, wetland,
water bodies, tundra, impervious surfaces, bare land, and per-
manent snow and ice. For each product, the accuracy for each
LC class was calculated and used as an evidential probabil-
ity to construct the BPA. Given that the local accuracy for
a 4◦× 4◦ grid was not able to adequately reflect the actual
land cover landscape, especially for the rare LC classes, the
global accuracy was incorporated into the construction of the
BPA to avoid uncertainties from a local point of view. Since
the assessment based on local samples plays a more critical
role in BPA construction for a local grid, a higher weight
should be assigned to the local accuracy. To identify the best
weight, we tested different weights of the local accuracy (see
Fig. S1 in the Supplement). The result shows that using 75 %
performed robustly and obtained a relatively higher overall
accuracy. Therefore, we chose 75 % as the weight for local
accuracy and 25 % for global accuracy. Here, we defined the
BPA function as follows:

mi

(
Tj

)
=

PAlocal(ij ) +UAlocal(ij )

2

× 75%+
PAglobal(ij ) +UAglobal(ij )

2
× 25%, (4)

where mi

(
Tj

)
represents the BPA function of evidence

source i for LC class Tj , PAlocal(ij ) and UAlocal(ij ) denote the
producer’s accuracy and user’s accuracy of evidence source
i for LC class Tj for each 4◦× 4◦ geographical grid, respec-
tively, and PAglobal(ij ) and UAglobal(ij ) denote the producer’s
accuracy and user’s accuracy of evidence source i for LC
class Tj at the global scale.

To estimate the exact values of PAlocal(ij ) , UAlocal(ij ) ,
PAglobal(ij ) , and UAglobal(ij ) , we used 80 % of the global point-
based samples, more than 160 000 points derived in Sect. 2.3.
As soon as we obtained the measurements of mi(Tj ), the
combined probability masses m(Tj ) were evaluated based on
Dempster’s rule of combination for each pixel classified as
LC class Tj by fusing BPA values of all the evidence sources:

m
(
Tj

)
=

∑
T1j∩T2j ···∩Tnj=Tj

∏
1≤i≤n

mi

(
Tj

)
1− k

, (5)

k =
∑

T1j∩T2j ···∩Tnj=∅

∏
1≤i≤n

mi

(
Tj

)
, (6)

where k represents the basic probability mass associated with
conflict, n represents the total number of input maps, and
mi(Tj ) represents the basic probability mass of a certain
pixel belonging to LC class Tj from the ith LC map.

Additionally, a belief measure (Bel) was given to measure
the degree of credibility of a pixel labeled as the finally ac-
cepted LC class when combining all the available evidence.
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The belief measure was determined by

Bel
(
Tj

)
=

∑
Tij⊆Tj

mi

(
Tj

)
. (7)

To determine the finally accepted LC class per pixel, we took
the rule of maximum combined probability mass as our de-
cision rule, and the LC class with the maximum combined
probability mass is assigned to the 30 m pixel. Pixels labeled
with the LC class were integrated to generate the GLC-2015
product.

3.3 Accuracy assessment

To assess the accuracy of the GLC-2015 map, we utilized two
validation methods: validation with the global point-based
samples and the global patch-based samples. Since the global
point-based sample set is distributed evenly across the world
and its sample size for each LC class is relatively sufficient
and balanced, even for the rare classes, it can provide a repre-
sentative and credible basis for estimation of the GLC-2015
map globally. Furthermore, we used the global patch-based
samples to conduct accuracy assessment from the local land-
scape scale. Although the global patch-based sample set pro-
vides an inadequate sample size for rare LC classes, it can
take advantage of the spatial context information and effi-
ciently reflect the actual pattern of the landscape.

The confusion matrix was produced to evaluate and ana-
lyze the GLC-2015 mapping result. The error matrix is com-
posed of entry Aij , which represents the number of samples
with reference LC class j being classified as LC class i. The
OA, kappa coefficient, producer’s accuracy (PA), and user’s
accuracy (UA) were generated from the confusion matrix to
describe the quality of the GLC-2015 map. They are defined
as follows:

OA=

∑
i

Aii∑
i

∑
j

Aij

, (8)

Po = OA, (9)

Pe =

∑
k

∑
i

Aik∑
i

∑
j

Aij

×

∑
j

Akj∑
i

∑
j

Aij

, (10)

kappa=
Po−Pe

1−Pe

, (11)

PAi
=

Aii∑
k

Aki

, (12)

UAi
=

Aii∑
k

Aik

, (13)

where UAi and PAi represent the UA and PA of LC i, respec-
tively, Po is the agreement between the reference and classi-

fied data, and Pe is the hypothetical probability of chance
agreement.

3.4 Data intercomparison

To better reflect the quality of the GLC-2015 map, we in-
tercompared the GLC-2015 map with the existing products
at multiple scales. In the accuracy assessment of different
products, two global validation sets described earlier were
employed.

To figure out whether the GLC-2015 map promotes ac-
curacy in the areas with high classification difficulty and
how much the improvement is compared to the other GLC
products, we conducted the spatial consistency analysis be-
tween GlobeLand30, FROM_GLC, and GLC_FCS30 and
compared the mapping performance of GLC-2015 with oth-
ers in the areas of low inconsistency, moderate inconsistency,
and high inconsistency. To visually present the spatial con-
sistency between three existing GLC maps, we employed the
spatial superposition method to obtain the spatial correspon-
dence pixel by pixel between different maps. Based on the
times of all the GLC products agreed on for the same LC
class, the degree of consistency for a pixel was identified as
three levels with the agreement value equal to 3, 2, or 1. The
areas of low inconsistency were regarded as pixels that were
classified as the same LC class in all three GLC maps (la-
beled as 3). The moderate inconsistency areas were regarded
as pixels that were consistent in only two GLC maps (labeled
as 2). The high-inconsistency areas were regarded as pixels
that were totally inconsistent in these three GLC maps (la-
beled as 1). For a visual comparison, all these GLC maps
were aggregated to 0.05◦, in which the LC class with the
largest proportion determined the class in each 0.05◦ grid.

3.5 Assessment of the mapping performance of the
DSET and other methods

In addition to intercomparison between the GLC-2015 map
and the existing products, we compared the DSET method
with two existing commonly used fusion methods, includ-
ing the majority voting (MV) and spatial correspondence
(SC) based on two global validation sets including 20 % of
the global point-based samples and the whole global patch-
based samples. MV is a fusion approach that combines in-
put maps and adopts the LC class favored by the majority of
the candidate maps. In the MV method, we compared Glo-
beLand30, FROM_GLC, and GLC_FCS30 at each pixel and
chose the class that two or three LC products agreed for. For
pixels where three LC products were different, the LC class
of the product with the highest accuracy was adopted. The SC
method produces an integrated land cover map by selecting
the LC class of the input map that has the highest spatial cor-
respondence to the reference data. In this study, 80 % of the
global point-based samples were used as the reference data
to obtain the SC map of each GLC product. If the class of a
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product agreed with that of the point-based sample, a value
equal to 1 was assigned to that sample. By contrast, a value
equal to 0 was assigned to the sample if the class of the prod-
uct differed from that of the sample. In each 4◦× 4◦ grid,
we used the kriging method to obtain spatial correspondence
maps which have the correspondence value ranging from 0 to
1 for three products. Then, the class of the product with the
highest spatial correspondence was chosen for each pixel.

Furthermore, we compared the mapping performance of
the DSET with random forest (RF), which is considered one
of the most popular algorithms for land cover mapping. In
the land cover classification using the FR classifier, all avail-
able Level-2 Tier-1 surface reflectance (SR) data of Landsat 8
OLI sensors from the year 2015 and 2 adjacent years on GEE
were employed. All Landsat images have been atmospheri-
cally corrected. The following six bands were used as input
features: blue, green, red, near infrared (NIR), shortwave in-
frared 1 (SWIR1), and shortwave infrared 2 (SWIR2). To
improve the mapping performance, several important spec-
tral indices, including the normalized difference vegetation
index (NDVI), normalized difference water index (NDWI),
and normalized difference built-up index (NDBI), were also
used as auxiliary data to the RF classifier. The RF classi-
fier was trained on 80 % of the global point-based samples
since those samples were of high quality after manual visual
interpretation of high-resolution images. As the global land
cover mapping based on the RF classifier is a tough task, we
randomly selected a total of 300 grids with the size of 4◦

(Fig. S2) and applied corresponding local RF classifiers to
these grids. Then, the mapping results were validated by the
remaining 20 % of the point-based samples.

4 Results and discussion

4.1 Mapping result of the GLC-2015 map

Using a multisource product-fusion method based on the
DSET, we generated an improved 30 m global land cover
map in 2015 (GLC-2015). Figure 5 illustrates the GLC-2015
map. The GLC-2015 map can accurately describe the spatial
distribution of various LC classes. For example, cropland ar-
eas are mostly located in central America, the region from
the Hungarian plain to the Siberian plain, the eastern and
southern parts of China, and most of India. In addition, for-
est, which is one of the easily distinguishable classes from
the map, is concentrated in the eastern part of North Amer-
ica, the Amazon basin of South America, the northern part of
Eurasia, and the equatorial region of Africa.

4.2 Accuracy assessment of the GLC-2015 map

4.2.1 Accuracy assessment with the global point-based
samples

The accuracy of the GLC-2015 map was first tested via the
global point-based samples, and the results of the assessment
are listed in Table 3. The GLC-2015 map achieved an OA of
79.5 % and a kappa coefficient of 0.757 at the global scale,
demonstrating the good performance of our map. Among all
the LC classes, permanent snow and ice possessed the best
mapping performance, with PA and UA achieving 89.1 %
and 93.7 %. The accuracy of water bodies, forest, and im-
pervious surfaces was also high, where PA and UA exceeded
80.0 %. Grassland, shrubland, and wetland had relatively low
accuracy, with PA below 75.0 %. Among them, grassland and
shrubland were mainly confused with forest, which might
be because these classes are both vegetation, thus causing
difficulty in recognition by spectral information. Due to the
complex spectral characteristics, wetland is often mixed with
vegetation (Ludwig et al., 2019).

The regional accuracies are presented in Fig. 6. The OA of
GLC-2015 ranged from 66.4 % to 93.4 % and the kappa co-
efficient from 0.552 to 0.813. From the perspective of OA,
water regions lead, followed by tropical desert, temperate
continental forest, and polar. These are areas with homo-
geneous land cover and low difficulty in mapping. Boreal
tundra woodland, tropical dry forest, tropical shrubland, and
subtropical desert are the regions with low OA. The first one
may be related to the high latitudes. The following two may
be because they belong to areas with complicated and mixed
LC classes, which is not easily classified. The last one may
be the consequence of sparse vegetation in desert areas. For
the kappa coefficient, the ranking was similar to those for
OA.

4.2.2 Accuracy assessment with the global patch-based
samples

The accuracy assessment of the GLC-2015 map was also
conducted with the global patch-based samples. Table 4 sum-
marizes the results for the accuracy assessment of each LC
class in the GLC-2015 map. From the assessment results,
it can be found that the OA of the GLC-2015 map reached
83.6 %, which was higher than the 79.5 % tested with the
global point-based samples. The kappa coefficient of the
GLC-2015 map was 0.566, which was 0.191 lower than the
result calculated with the global point-based samples. In both
accuracy assessment results based on two different validation
data sets, water bodies, forest, and permanent snow and ice
were validated to have high accuracy, and grassland, shrub-
land, and wetland were validated to have low accuracy. Nev-
ertheless, the ranking of accuracy for each LC class had a
slight difference. For example, in assessment based on the
global point-based samples, impervious surfaces and perma-
nent snow and ice ranked higher than that based on the global
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Figure 5. Global land cover map in 2015 with 30 m resolution (GLC-2015).

Table 3. The confusion matrix for the GLC-2015 map based on the global point-based samples.

Cropland Forest Grassland Shrubland Wetland Water Tundra Impervious Bare Permanent Total PA
bodies surfaces land snow and ice

Cropland 3623 387 356 61 27 48 2 71 81 0 4656 0.778
Forest 155 8813 186 141 232 16 43 43 53 3 9685 0.910
Grassland 10 337 1920 19 24 13 47 36 184 9 2599 0.739
Shrubland 155 438 656 1469 39 29 70 78 442 4 3380 0.435
Wetland 47 287 82 14 1067 64 22 18 110 4 1715 0.622
Water bodies 27 90 15 1 73 1936 17 10 44 3 2216 0.874
Tundra 1 242 119 6 29 19 1411 2 269 17 2115 0.667
Impervious surfaces 74 41 11 3 8 11 1 1295 45 0 1489 0.870
Bare land 36 59 237 32 44 91 55 60 4909 38 5561 0.883
Permanent snow and ice 0 11 8 0 4 18 13 1 86 1154 1295 0.891

Total 4128 10 705 3590 1746 1547 2245 1681 1614 6223 1232 34 711

UA 0.878 0.823 0.535 0.841 0.690 0.862 0.839 0.802 0.789 0.937

OA 0.795
Kappa 0.757

patch-based samples. This may be because a LC map can
easily show where one LC class is distributed but can hardly
describe its actual shape. In addition to the accuracy assess-
ment on a pixel scale, validation on a patch scale is equally
important because it can reflect the shape consistency be-
tween the GLC-2015 map and the actual landscape, even
if the size of global patch-based samples is relatively small.
Overall, no matter the respective global point-based samples
or the global patch-based samples, the mapping accuracies of
the GLC-2015 map are satisfactory.

4.3 Intercomparison with existing GLC products

4.3.1 Intercomparison based on the global point-based
samples

Based on the global point-based samples, the intercompari-
son of the GLC-2015 map with GlobeLand30, FROM_GLC,
and GLC_FCS30 were conducted. The accuracy assess-

ment results for all the GLC maps are listed in Table 5. It
can be found that the GLC-2015 map achieved the high-
est OA of 79.5 % compared with GlobeLand30 of 65.3 %,
FROM_GLC of 61.7 %, and GLC_FCS30 of 65.5 %, respec-
tively. The accuracy gap between the GLC-2015 map and
other existing ones was 14.0 %–17.8 %. Also, the GLC-2015
map possessed a better kappa coefficient than other prod-
ucts. For all classes except tundra, the GLC-2015 map out-
performed the other three maps in terms of PA. For crop-
land, grassland, shrubland, wetland, and tundra, the GLC-
2015 map also exhibited better performance regarding UA
than GlobeLand30, FROM_GLC, and GLC_FCS30. Over-
all, for the PA or UA, the GLC-2015 map ranked first or
second in nearly all LC classes, which demonstrated that the
GLC-2015 map had smaller omission and commission errors
against the other three products.

Further quantitative accuracy assessments of different
GLC products were performed in 4◦× 4◦ grids using the
global point-based samples, and box plots were produced
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Figure 6. Regional accuracy of the GLC-2015 map according to ecoregions. (a) Overall accuracy and (b) kappa coefficient. The ecoregion
boundaries are obtained from the Food and Agriculture Organization of the United Nations (FAO).

Table 4. Mapping accuracy via the global patch-based samples for the GLC-2015 map.

Cropland Forest Grassland Shrubland Wetland Water Tundra Impervious Bare Permanent
bodies surfaces land snow and ice

PA 0.887 0.895 0.629 0.589 0.301 0.939 0.701 0.757 0.682 0.825
UA 0.916 0.844 0.617 0.714 0.511 0.917 0.872 0.713 0.599 0.767

OA 0.836
Kappa 0.566

for each product for all grids within different ecoregions, as
shown in Fig. 7. It can be found that the GLC-2015 map
outperformed other existing products with the best OA and
kappa coefficient across different ecoregions. Also, the mean
overall accuracy of the GLC-2015 map exceeded 65.0 % in
all ecoregions, showing the high quality of our mapping re-
sults. It is worth noting that the GLC-2015 map showed
shorter boxes except in subtropical dry forest and subtropi-
cal desert, which means the GLC-2015 map had a relatively
smaller fluctuation than other ones. In subtropical desert,
tropical dry forest, and boreal tundra woodland, the OA and
kappa coefficient of the four products were relatively low.
However, the GLC-2015 map exceeded the highest of others
and greatly improved the mean OA in these regions.

4.3.2 Intercomparison based on the global patch-based
samples

Although the global point-based samples are adequate and
even across the globe, the distribution of points in each
4◦× 4◦ geographical grid is too sparse to reflect the actual
spatial pattern of the landscape. Focusing on the LC pat-
tern at the local scale, we also used the global patch-based
samples which can provide spatial context information to
conduct the accuracy assessment of the GLC-2015 map and
compare different GLC products. Table 6 lists the accura-
cies of the GLC-2015 map and the other three GLC prod-
ucts. Obviously, the GLC-2015 map achieved the best OA
and kappa coefficient among these four GLC maps. The over-
all accuracy gap between the GLC-2015 product and oth-
ers was 5.9 %–24.5 %, which presented a more significant
variation compared with the result based on the global point-
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Table 5. Mapping accuracy of the GLC products with the global point-based samples.

Cropland Forest Grassland Shrubland Wetland Water Tundra Impervious Bare Permanent OA (kappa
bodies surfaces land snow and ice coefficient)

GLC-2015 PA 0.778 0.910 0.739 0.435 0.622 0.874 0.667 0.870 0.883 0.891 0.795
UA 0.878 0.823 0.535 0.841 0.690 0.862 0.839 0.802 0.789 0.937 (0.757)

Globeland30 PA 0.752 0.719 0.713 0.245 0.540 0.680 0.769 0.688 0.609 0.821 0.653
UA 0.786 0.818 0.255 0.428 0.573 0.869 0.577 0.809 0.868 0.905 (0.598)

FROM_GLC PA 0.389 0.694 0.707 0.411 0.307 0.607 0.712 0.732 0.731 0.881 0.617
UA 0.671 0.859 0.278 0.422 0.289 0.742 0.686 0.661 0.761 0.773 (0.558)

GLC_FCS30 PA 0.757 0.775 0.452 0.399 0.455 0.604 0.228 0.777 0.809 0.726 0.655
UA 0.616 0.816 0.384 0.405 0.515 0.808 0.688 0.774 0.645 0.947 (0.591)

Figure 7. The box plot of the accuracy for 21 ecoregion zones. (a) Overall accuracy and (b) kappa coefficient. Ecoregion abbreviation and
corresponding ecoregion are described in Table S4.

based samples. In terms of PA and UA, the GLC-2015 map
was higher than the other three ones in most LC classes.
Specifically, all the products had lower accuracy for grass-
land, shrubland, and wetland, similar to that in the accuracy
assessment based on the global point-based samples. It is ev-
ident that FROM_GLC had the lowest mapping accuracy for
grassland, shrubland, and wetland, implying that the classi-
fication method of FROM_GLC is not robust for these three
LC classes.

Accuracy assessment was calculated in each patch-based
sample, and box plots were produced for each GLC product
at the continental scale, as shown in Fig. 8. The GLC-2015
map showed a robust performance in each continent, with the
highest OA and kappa coefficient among all the maps. Also,
in all the continents, the GLC-2015 map had the shortest
boxes in terms of OA, which denoted that it had a more mi-
nor variation in accuracy at the continental scale. Among the
four products, GLC_FCS30 and Globeland30 achieved sim-
ilar accuracies in most continents. Obviously, FROM_GLC
showed the lowest accuracy across different continents, espe-
cially in Oceania, where the OA of most patch-based samples
was below 40.0 %; i.e., most of the pixels in Oceania were
incorrectly classified. We further compared mapping accura-
cies for each LC class in different continents (Figs. S3 and
S4). Since tundra and permanent snow and ice are rare and

only existent in certain regions, they were not included in
the comparison. As for PA across different continents, the
GLC-2015 map outperformed other maps in forest, water
bodies, and bare land. As for UA across different continents,
the GLC-2015 map outperformed other maps in cropland,
grassland, shrubland, and wetland and achieved similar ac-
curacies to GLC_FCS30 and Globeland30 in forest. Overall,
the GLC-2015 map outperformed others regarding mapping
accuracy at the continental scale. In addition, all the GLC
products showed significant variation and low mean accuracy
in grassland, shrubland, and wetland over most continents.

Furthermore, to compare the OA of the GLC-2015 map
with other GLC products, scatter plots were used to describe
the relationship between the overall accuracy of the GLC-
2015 map and one other product in each patch-based sample,
as displayed in Fig. 9. Most of the points were above the
1 : 1 line, implying that the GLC-2015 map surpassed other
GLC products in terms of OA. The distribution of points was
more dispersed from the 1 : 1 line in the plot of the GLC-
2015 map against FROM_GLC compared to other plots. This
indicated that these two products had a more significant dif-
ference, which was also proven in Table 6.
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Table 6. Mapping accuracy of the GLC products with the global patch-based samples.

Cropland Forest Grassland Shrubland Wetland Water Tundra Impervious Bare Permanent OA
bodies surfaces land snow and ice

GLC-2015 PA 0.887 0.895 0.629 0.589 0.301 0.939 0.701 0.757 0.682 0.825 0.836
UA 0.916 0.844 0.617 0.714 0.511 0.917 0.872 0.713 0.599 0.767 (0.566)

Globeland30 PA 0.896 0.698 0.765 0.539 0.455 0.824 0.752 0.643 0.492 0.831 0.777
UA 0.891 0.906 0.444 0.527 0.157 0.893 0.500 0.703 0.829 0.705 (0.437)

FROM_GLC PA 0.485 0.714 0.640 0.254 0.032 0.904 0.760 0.506 0.681 0.501 0.591
UA 0.872 0.809 0.193 0.139 0.186 0.884 0.696 0.808 0.496 0.703 (0.360)

GLC_FCS30 PA 0.865 0.779 0.398 0.565 0.363 0.869 0.051 0.648 0.658 0.742 0.748
UA 0.857 0.832 0.509 0.330 0.132 0.942 0.573 0.643 0.462 0.752 (0.418)

Figure 8. The box plot of the accuracy for different continents. (a) Overall accuracy and (b) kappa coefficient.

4.3.3 Areal comparison for individual classes

To assess the similarities and discrepancies between GLC-
2015 and other GLC products, we compared the areas of var-
ious LC classes at multiple scales, including global, conti-
nental, national, and ecoregional scales.

The areal comparison for various classes of different GLC
products over the globe is shown in Fig. 10. Generally, the
areas of water bodies and permanent snow and ice of four
GLC products were very similar, which may be related to
the similar LC definitions. In contrast, the areas of crop-
land, forest, grassland, and shrubland in GLC-2015 differed
significantly from those in other GLC products. The area
of forest in GLC-2015 is much higher than in other prod-
ucts. This may be because FROM_GLC and GLC_FCS30
defined forest with tree cover over 15 %, while GLC-2015
used a threshold of over 10 %. The cropland areas in GLC-
2015 and Globeland30 were close, higher than FROM_GLC
but lower than GLC_FCS30. Moreover, FROM_GLC under-
estimated the cropland area, as it had a low producer’s ac-
curacy for cropland (see Table 5), which was also demon-

strated in previous studies (Liu and Xu, 2021; Zhang et al.,
2021). FROM_GLC and Globeland30 shared similar grass-
land areas since a similar accuracy for grassland was found
in these two products (see Table 5). However, FROM_GLC
and Globeland30 significantly overestimated grassland ex-
tent, with much bare land misclassified as grassland (Hu et
al., 2014). GLC_FCS30 showed the smallest area for grass-
land, which might be related to its higher threshold in vege-
tation cover for grassland. For shrubland, the area difference
between GLC-2015 and Globeland30 was minimal, and the
areas in FROM_GLC and GLC_FCS30 were similar. Fur-
thermore, the wetland area in FROM_GLC was the lowest
among all the products, with a total area of 0.168×106 km2.
In contrast, Globeland30 and GLC_FCS30 exhibited greater
wetland extent than GLC-2015 since these two products clas-
sified non-wetlands sensitive to water as wetlands (Zhang
et al., 2023). In particular, the tundra area in GLC_FCS30
was much smaller than other products. This is mainly be-
cause only lichens/mosses in the original classification sys-
tem of GLC_FCS30 were converted into tundra in the clas-
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Figure 9. Scatter plots between the GLC-2015 map and other products obtained using the global patch-based samples.

Figure 10. Areal comparison of various land cover classes among
GLC products at the global scale. Class IDs 10, 20, 30, 40, 50, 60,
70, 80, 90, and 100 denote cropland, forest, grassland, shrubland,
wetland, water bodies, tundra, impervious surfaces, bare land, and
permanent snow and sea ice, respectively.

sification system we used, which leads to the omission of
tundra. The areas of impervious surfaces in GLC-2015, Glo-
beland30, and GLC_FCS30 were very close and higher than
FROM_GLC. For bare land, there was a large difference
between Globeland30 and other products, while the area in
GLC-2015 and GLC_FCS30 was very close.

The area similarity and difference for various classes of
different GLC products were also compared over six con-
tinents, the top 40 countries ranked by area, and 21 ecore-
gions (Figs. S5–S7). Overall, the four products showed a
similar distribution trend of different classes. For most LC
classes, the continental, national, and ecoregional rankings
of the four products agreed with their ranking at the global
scale, whereas, for grassland and shrubland, the area ranking
of the four products varied at three different regional scales.

4.3.4 Visual intercomparison for individual classes

The visual comparison of cropland in GLC-2015, Glo-
beland30, FROM_GLC, GLC_FCS30, Global Food
Security-Support Analysis Data (GFSAD30) (Xiong et al.,
2017; Teluguntla et al., 2018), and other national-scale
maps was conducted in three local regions (Fig. S8). In the
Egyptian agricultural area, GLC-2015, FROM_GLC, and

GLC-FCS30 shared a similar delineation of the cropland
and had a good representation of cropland with fine spatial
details. Since the date time of the Google Earth image is
2015, Globeland30 missed the newly cultivated cropland.
GFSAD30 had the largest cropland area among five products
but misclassified bare land as cropland. In the agricultural
area of southeastern China, GLC-2015 had agreement with
GFSAD30 and CLCD. Globeland30 and GLC_FCS30
overestimated the area of cropland. As for FROM_GLC, it
failed to depict the spatial distribution of cropland and had
many omissions. In cropland-dominated areas of the United
States, FROM_GLC significantly underestimated the extent
of cropland. The other five products exhibited a similar
delineation of cropland, but there were little differences in
some small areas. For example, Globeland30 misclassified
some grassland into cropland, and NLCD 2016 had a good
ability to distinguish the farm track.

We also compared the performance in the forest of dif-
ferent products in three forest-prevalent regions of Congo,
China, and the United States (Fig. S9). Overall, GLC-2015
and Globeland30 showed accurate delineation in three re-
gions. FROM_GLC also had good performance for the forest
in Congo and the USA but overestimated the forest in China,
mislabeling shrubland and grassland as forest. Furthermore,
GFC tended to miss sparse trees in China, and GLC_FCS30
underestimated the extent of forest in all three regions. As for
national-scale products, CLCD and NLCD 2016 had a good
ability to identify the details of forest, while CLUD dramati-
cally missed both dense and sparse woodlands.

Furthermore, to compare the performance in the wetland
of GLC-2015 with other global- and national-scale products,
three wetland regions in southern–central Canada, coastal
America, and Sundarbans were selected. It can be found
that GLC-2015 and Globeland30 had similar representation
and performed well in identifying the wetland over three
regions (Fig. S10). Unexpectedly, FROM_GLC performed
poorly in each region, with almost no wetlands captured.
GLC_FCS30 also showed unstable quality in three regions.
For example, it highly underestimated the wetland area in
coastal America and completely mislabeled the mangroves
as cropland in Sundarbans. NLCD 2016 and GMW accu-
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rately demonstrated the spatial pattern of the wetland, while
the CA_wetlands map underestimated the wetland extent be-
cause it defined wetlands by a wetland frequency of no less
than 80 % from 2000 to 2016 (Wulder et al., 2018).

To understand the spatial distribution of impervious sur-
faces in different products, a comparison of mapping results
for three megacities, including Tokyo, Shanghai, and New
York, is shown in Fig. S11. In Tokyo, a high consistency
was found between GLC-2015, FROM_GLC, and GAUD,
and both successfully captured the impervious surfaces in
peri-urban areas. GLC_FCS30 showed the largest area for
impervious surfaces because it misclassified many croplands
as impervious surfaces. In Shanghai, GLC_FCS30 underesti-
mated the central city, and CLUD lost the details of impervi-
ous surfaces because it was developed using the visual inter-
pretation method. Other products generally had a similar rep-
resentation and accurately demonstrated the spatial distribu-
tion of the city. For New York, FROM_GLC, GLC_FCS30,
and GAUD agreed well with GLC-2015, while Globeland30
and NLCD 2016 had higher impervious areas than others.

4.3.5 Visual intercomparison at the local scale

We selected six typical geographical tiles covering six
continents and different landscape environments to further
present the mapping performance of the GLC-2015 map,
Globeland30, FROM_GLC, and GLC_FCS30, as shown in
Fig. 11. Overall, from a local point of view, the GLC-2015
map tended to be more diverse in LC classes and had bet-
ter identification performance in various classes. In flattened
cropland areas (Fig. 11a and b), the GLC-2015 map re-
vealed diverse LC classes and accurately distinguished im-
pervious surfaces; however, Globeland30 exaggerated the ex-
tent of impervious surfaces, and FROM_GLC failed to de-
lineate impervious surfaces with small sizes. In addition,
FROM_GLC misclassified some cropland pixels as grass-
land (Fig. 11a) and had an abnormal “stamp” (Fig. 11b). As
for mountain areas (Fig. 11c and d), the GLC-2015 map un-
covered the spatial pattern of natural and planted forest, crop-
land, and grassland. There were large confusions between
cropland and grassland in the results of FROM_GLC and
GLC_FCS30, and some impervious surfaces and cropland
areas were wrongly labeled as bare land by FROM_GLC.
The areas (Fig. 11c), which were classified as forest, were
misidentified as cropland and grassland in three other prod-
ucts. For the rainforest areas where a large number of trees
were reclaimed for cropland (Fig. 11e), the GLC-2015 map,
Globeland30, and GLC_FCS30 had similarities in cropland
areas, but FROM_GLC recognized some reclaimed areas as
grassland. Additionally, the GLC-2015 map accurately pre-
sented the spatial distribution of impervious surfaces, while
other products had omission or commission errors. In the
cropland-dominated areas (Fig. 11f), the GLC-2015 map and
Globeland30 showed a higher agreement, and both of them
mapped the undulating areas as grassland. Unlike the afore-

mentioned two products, FROM_GLC misclassified large
tracts of croplands as grasslands, and GLC_FCS30 did not
capture the grassland in undulating areas. Figure 11 also
shows the belief measure of the fused result in different ge-
ographical tiles. Although it does not directly evaluate the
mapping accuracy, it serves as a degree of support for the hy-
pothesis of an accepted LC class being true and it can still
reflect the quality of the GLC-2015 map. Overall, Bel of the
GLC-2015 map exceeded 80 % in most areas of each tile,
demonstrating the credibility and high quality of our map-
ping result.

4.4 Intercomparison with national-scale products

Except for comparison with the existing GLC prod-
ucts, GLC-2015 was also compared with three national-
scale products (CLCD, CLUD, and NLCD 2016 over the
CONUS). We first compared the accuracy of GLC-2015 with
NLCD 2016, CLCD, and CLUD using the point-based sam-
ples (Tables S5–S6). It can be found that GLC-2015 ob-
tained an overall accuracy of 88.8 % in China, higher than
CLCD (78.3 %) and CLUD (70.2 %). Specifically, GLC-
2015 achieved the highest PA and UA in all LC classes ex-
cept wetland and impervious surfaces. In the CONUS, GLC-
2015 outperformed NLCD 2016, with an OA improvement
of 13.2 %. Additionally, GLC-2015 exhibited better mapping
performance in nearly all LC classes.

An accuracy comparison between GLC-2015 and three
national-scale products was also performed using patch-
based samples (Tables S7–S8). Overall, GLC-2015 achieved
a better OA of 85.7 % in China with respect to CLCD
(83.6 %) and CLUD (75.4 %). In terms of PA and UA, GLC-
2015 ranked first and second in most LC classes. In the
CONUS, GLC-2015 possessed an OA of 84.5 % and a kappa
coefficient of 0.787, outperforming NLCD 2016. Although
GLC-2015 had lower PA or UA in cropland, forest, and im-
pervious surfaces compared to NLCD 2016, GLC-2015 out-
performed NLCD 2016 in other LC classes.

We further performed an areal comparison for each
LC class of GLC-2015 and three national-scale products
(Figs. S12 and S13). Generally, GLC-2015, CLCD, and
CLUD exhibited similar areas in most classes. Notably, the
areas of cropland, shrubland, and wetland in GLC-2015
were very close to CLCD but different from CLUD. In the
CONUS, the areas of cropland, water bodies, and bare land
in GLC-2015 and NLCD 2016 were close. In contrast, the ar-
eas of the remaining LC classes in GLC-2015 showed a large
difference from NLCD 2016. The area differences in for-
est, grassland, and shrubland between GLC-2015 and NLCD
2016 were mainly related to different LC definitions. For ex-
ample, the minimum fraction of tree cover in the forest is
10 % in GLC-2015, whereas NLCD 2016 used a minimum
fraction of 20 %. NLCD 2016 had higher areas of impervi-
ous surfaces than GLC-2015 because “open urban” in NLCD
2016 includes too much vegetation.
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Figure 11. Visual comparison between the GLC-2015 map and three other products for different continents. Panels (a) to (f) are examples
for Europe, Asia, Africa, North America, South America, and Oceania, respectively.

4.5 Improvement of the GLC-2015 map compared to
existing GLC products

The spatial distribution of inconsistency between three GLC
products at the global scale is illustrated in Fig. 12. From
the inconsistency map, we found that areas of low incon-
sistency mainly corresponded to homogeneous regions with
simple LC classes. For example, the northern part of Africa
was mainly classified as bare land, the northern part of South
America was mainly classified as forest, and Greenland was
classified as permanent snow and ice. By contrast, areas of
high inconsistency were located in regions with complicated
LC classes, especially in mixed-vegetation regions or sparse-
vegetation regions, such as northern Asia, southern Africa,
the Sahel region, Australia, northern and southern North
America, and eastern and southern South America.

Based on the global point-based samples, we as-
sessed the accuracies of the GLC-2015 map, Globeland30,
FROM_GLC, and GLC_FCS30 in the aforementioned ar-
eas of low inconsistency, moderate inconsistency, and high
inconsistency, as shown in Table 7. Overall, the GLC-2015
map had the highest accuracies against the other three ones
in three areas. For each product, areas of low inconsistency
obtained the highest accuracies, followed by areas of moder-
ate inconsistency and then high inconsistency, which demon-
strated that inconsistency of the existing products could indi-
cate the quality of maps. In areas of low inconsistency, the
overall accuracy gap between the GLC-2015 map and previ-
ous ones was as small as 0.1 %–0.6 %. However, for areas of
moderate and high inconsistency, the comparison accuracy
gap expanded to 19.3 %–28.0 % and 27.5 %–29.7 %, respec-
tively. It proved the outperformance of the GLC-2015 map
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Figure 12. Distribution of inconsistency between Globeland30, FROM_GLC, and GLC_FCS30. The blue rectangles are high-inconsistency
grids where the areas of pixels with a value equal to 1 account for more than 20 % of the total area.

over the other three products in the areas of high identifica-
tion difficulty.

We further provided a comparative analysis of three previ-
ous GLC products and the GLC-2015 map in areas of high
inconsistency. We calculated the area of pixels with a value
equal to 1 in 4◦× 4◦ grids. The grids where the areas of pix-
els with a value equal to 1 account for more than 20 % of the
total area were selected as grids of high inconsistency. Fi-
nally, a total number of 147 grids were selected (Fig. 12). To
compare the accuracy of the GLC-2015 map and other ones,
we utilized scatter plots to represent the relationship between
the overall accuracy of one previous product and the GLC-
2015 map in each grid of high inconsistency based on the
global point-based samples (Fig. 13). Most of the points were
above the 1 : 1 line; i.e., the values of y axes corresponding
to those points were larger than the values of x axes, which
demonstrated that the GLC-2015 map performed better than
other GLC products in most grids of high inconsistency. It
can be found that the fitting line in each scatter plot had an
intercept exceeding 0.40, a slope less than 0.55, and R2 less
than 0.35, showing that the GLC-2015 map had a large dif-
ference from other ones.

To intuitively compare the mapping result of the GLC-
2015 map and three existing ones in areas of high incon-
sistency, we focused on visual inspection in various areas
based on four 5 km× 5 km patch-based samples and con-
ducted accuracy statistics as shown in Fig. 14. In the de-
tailed display, it is apparent that three previous products had
a large difference in four areas. As can be seen from the four
visual cases, the typical confusions between LC classes in
areas of high inconsistency were as follows. (1) Shrubland
was easily misclassified as forest and grassland. (2) Crop-
land, grassland, and shrubland were heavily confused with
each other. (3) Bare land was likely to be mixed with shrub-
land and grassland. Overall, the GLC-2015 map surpassed
other products in the local accuracy assessment. In western
Australian mulga shrublands (Fig. 14a), the GLC-2015 map

and GLC_FCS30 showed a similar spatial distribution and
shape of bare land and forest, which was consistent with
the real landscape, while Globeland30 classified bare land
as grassland and FROM_GLC underclassified bare land. As
for Zambezian and mopane woodlands (Fig. 14b), the GLC-
2015 map performed best, with OA reaching 82.6 %, fol-
lowed by FROM_GLC. In contrast, other products mixed
shrubland with forest or grassland. In agricultural land of
the western United States (Fig. 14c), GLC-2015 and Glo-
beland30 exhibited similar mapping results to the ground
truth, while FROM_GLC had a large difference from other
products. When it comes to the Guinean forest–savanna mo-
saic (Fig. 14d), the GLC-2015 map and Globeland30 showed
high spatial consistency, and both had an accurate classifi-
cation profile for cropland, forest, and impervious surfaces,
while other products misidentified cropland as other LC
classes.

4.6 Comparison between DSET and other methods

4.6.1 Intercomparison with other data-fusion methods

The accuracy assessments of GLC-2015 obtained by the
DSET and global mapping results from two other data-fusion
methods were conducted based on two global validation sam-
ple sets. The confusion matrices with the global point-based
samples are shown in Tables S9 and S10. The OA of the
global land cover classification obtained by the MV and SC
was 72.1 % and 71.8 %, respectively. As shown in Table 3,
the OA of the GLC-2015 map obtained by the DSET method
was 79.5 %, which had an improvement of 7.4 % and 7.7 %
compared to mapping results from the MV and SC. In ad-
dition, the GLC-2015 map obtained higher PA and UA for
most LC classes.

When evaluating GLC maps obtained by different data-
fusion approaches using the global patch-based samples, the
DSET method obtained the highest OA of 83.6 % and a
kappa coefficient of 0.566, compared with 80.1 % and 0.497
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Table 7. Accuracy assessments of the GLC products in three areas.

GLC-2015 Globeland30 FROM_GLC GLC_FCS30

OA Kappa OA Kappa OA Kappa OA Kappa

Areas of low inconsistency 0.951 0.938 0.945 0.929 0.950 0.936 0.951 0.937
Areas of moderate inconsistency 0.760 0.723 0.561 0.498 0.480 0.411 0.567 0.495
Areas of high inconsistency 0.567 0.498 0.292 0.204 0.286 0.198 0.270 0.160

Figure 13. Overall accuracy relationship between the GLC-2015 map and other products in grids of high inconsistency.

for MV and 71.8 % and 0.391 for SC (Table S11). Here, the
DSET method achieved an accuracy improvement of 3.5 %
and 11.8 %. Compared to the other two methods, the DSET
improved the accuracy for nearly all the LC classes, espe-
cially for grassland, shrubland, and wetland. We also com-
pared the overall accuracy relationship between the DSET
and other methods. From the scatter plots (Fig. 15), we found
that the majority of points were above the 1 : 1 line, implying
that the DSET had better mapping performance than others
in most regions across the globe.

Land cover mapping results from the DSET and other
methods were also visually illustrated in six tiles with a
size of 0.25◦ covering different continents, as displayed in
Fig. S14. Despite mapping results from the DSET and MV
depicting similar spatial distributions of LC classes in all
tiles except the tile in North America, the DSET more ac-
curately delineated the impervious surfaces of small sizes
which scattered in cropland-dominated (Fig. S14a) or arid
(Fig. S14c) areas. Notably, the mapping results from the SC
method presented significant differences from those obtained
by the DSET and MV. For example, the SC method failed
to capture scattered rural residential areas (Fig. S14b) and
misclassified grassland as cropland (Fig. S14d). Overall, the
DSET method possessed better recognition performance in
various LC classes than the other two methods.

4.6.2 Intercomparison with the random forest

Based on the validation data from 20 % of the global point-
based samples, we evaluated the quality of the GLC-2015
map obtained by the DSET method and mapping results clas-

sified by the RF classifier for a total of 300 grids. The DSET
method obtained a mean OA of 80.9 % across six continents,
while the RF achieved a lower accuracy of 69.9 %. From the
scatter plots which compared the OA and kappa coefficient
between the DSET and RF grid by grid, it was found that the
DSET possessed higher accuracy in most grids (Fig. S15). In
particular, the points were clustered in the upper-right corner
of the plot (Fig. S15a), which indicated that the RF classi-
fier trained with the global point-based samples performed
well in those selected grids, though it was inferior to the
DSET method. Figure S16 shows the OA of the DSET and
RF across six continents. We found that the DSET method
outperformed the RF classifier for each continent. In particu-
lar, the mapping results of both methods presented the lowest
accuracy in Oceania. This may be because the selected grids
are located in regions with a heterogeneous landscape. As
for the box plot for the RF classifier, the low hinge exceeded
60.00 % in all continents except Oceania, demonstrating the
reliability of the RF classifier trained by the global point-
based samples. Nevertheless, the performance of the RF clas-
sifier was worse than the DSET method. This highlights the
feasibility of the DSET method in integrating the existing
maps for a better one.

4.7 Advancement and limitations

To address the problem where current 30 m GLC products
have great inconsistency in heterogeneous areas and low
mapping accuracy for spectral similar LC classes, this study
adopted a multisource product-fusion approach based on the
DSET to create an improved global land cover map (GLC-
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Figure 14. Visual comparison between the GLC-2015 map and three other products based on 5 km× 5 km patch-based samples and Google
Earth images for four areas of high inconsistency (a–d). The OA for each product was calculated by the corresponding patch-based sample.

Figure 15. Scatter plots between the DSET and other data-fusion methods based on the global patch-based samples.

2015). The results show that GLC-2015 had good mapping
performance, with OA reaching 79.5 % and 83.6 % based
on two different validation sets. Compared with those ex-
isting products, GLC-2015 greatly improved the accuracy
across the globe, especially in areas of high inconsistency
with a significant improvement of 27.5 %–29.7 %. Compared
with other commonly used data-fusion methods, the adopted
DSET approach provided a higher OA and kappa coefficient
which showed the benefit of the DEST in integrating vari-
ous land cover data. No matter the respective global point-

based samples or the global patch-based samples, GLC-2015
showed relatively low accuracy for grassland, shrubland, and
wetland compared to other LC classes. Those LC classes are
challenging to map at the global scale due to their spectral
similarity to other classes, ambiguous definitions, or vari-
ety with regions. However, compared to other existing 30 m
GLC products, the GLC-2015 map performed better with
the PA and OA ranking first or second for grassland, shrub-
land, and wetland, which indicated the improvement of GLC-
2015 in poorly mapped LC classes. It was found that the
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GLC-2015 map had worse performance in areas with more
disagreements (Table 7). However, the GLC-2015 map sur-
passed other products, particularly in highly inconsistent ar-
eas. Moreover, the accuracy gap between the GLC-2015 map
and other ones in areas of high inconsistency was larger than
that in areas with fewer disagreements, implying that the
GLC-2015 map provides a more accurate characterization of
land cover in poorly mapped areas. Although the GLC-2015
map was not capable of avoiding all the wrong mapping re-
sults caused by the disagreements from the candidate GLC
products, it outperformed the existing products from the as-
pects of mapping accuracy for the easily misclassified classes
and areas with great inconsistency.

Although the GLC-2015 map can evidently improve map-
ping accuracy in inconsistent areas, there are still some un-
certainties. First, we used three multiple-class GLC maps
and four single-class GLC maps as the source data for in-
tegration. Since those products provided information on land
cover at the global scale, classification errors inevitably ex-
ist in some specific regions. The multisource product-fusion
method based on the DEST depends highly on the quality of
those candidate maps, such that the inconsistency between
those source maps might lead to incorrect classification. Sec-
ond, the date time of GlobeLand30 is different from that of
other maps. Because of the 5-year time interval, there are
changes in land cover, which inevitably distort the fusion re-
sults. However, the changed areas are tiny compared to the
world’s terrestrial area. The uncertainties caused by the LC
changes are minor compared with those from classification
errors. In addition, the global point-based samples were used
to evaluate the reliability of each product. The accuracy of
GlobeLand30 was lower than the other products for areas
with LC changes. In this case, the fusion depended more
on other maps to avoid the errors caused by LC changes.
Third, due to the different LC definitions, uncertainties in
classification system conversion are inevitable (Zhang et al.,
2017), which might cause problems for the fusion based on
the DSET method. However, we conducted a reliability eval-
uation of the candidate maps to reduce the influence of un-
certainties in classification system conversion on the fusion.
The point-based samples used for reliability evaluation were
labeled referring to the LC definitions in our classification
system, so that all the maps were evaluated under the crite-
rion of the classification system we used. By the reliability
evaluation, the candidate maps were assessed to have lower
accuracy for areas with mismatched information. When inte-
grating all the maps grid by grid, the mismatched information
would contribute less to the fusion. Lastly, most candidate
LC products used a simple classification system without a
level-2 classification system, so they made no contributions
to a more detailed classification system when they served as
source data for data fusion. Although some maps provided
detailed LC classification results, such as GLC_FCS30 and
FROM_GLC for 2015, there might be several challenges in
the standardization and uniformity of level-2 classification

systems due to the large discrepancies in the definition and
criteria. Therefore, GLC-2015 adopted a simple classifica-
tion system containing 10 major LC classes. In future work,
measures will be taken to meet the expectation of a more de-
tailed classification system for GLC mapping. An improved
GLC product with a detailed classification system rather than
a simple one-level classification system can be further de-
veloped based on the highly applicable and general DSET
method whenever more products with diverse LC classes are
available. Additionally, a feasible framework for the conver-
sion of different level-2 classification systems into a uniform
system should be developed.

5 Data availability

The improved global land cover map in
2015 with 30 m resolution is available at
https://doi.org/10.6084/m9.figshare.22358143.v2 (Li et
al., 2023). The GLC-2015 product is organized by a total of
1507 4◦× 4◦ geographical grids in GeoTIFF format across
the world’s terrestrial area. Each image of the GLC-2015
product is named “GLC-2015_long_lat” (long and lat
represent the longitude and latitude of the grid’s lower-left
corner, respectively).

6 Conclusions

GLC information at fine spatial resolution is vital for the
global environment and climate studies which can capture
the footprint of human activity. Resulting from the differ-
ences in the classification scheme, satellite sensor data, clas-
sification algorithms, and sampling strategies, the existing
GLC products have high inconsistency in some parts of the
world, especially in fragmented areas and transition zones.
More accurate and reliable data with accuracy improved in
areas of high mapping inconsistency are very desirable. In
this study, with the help of the GEE platform, we devel-
oped the GLC-2015 map by integrating multiple existing
GLC maps based on the DSET. The GLC-2015 map can sig-
nificantly increase the mapping accuracy and possess good
recognition performance in various LC classes.

The GLC-2015 map was validated by both the global
point-based samples and the global patch-based samples. Ac-
curacy assessments show that the GLC-2015 map achieved
an OA of 79.5 %, a kappa coefficient of 0.757 using a to-
tal of 34 711 global point-based samples, an OA of 83.6 %,
and a kappa coefficient of 0.566 using a total of 201 global
patch-based samples. Data intercomparison indicated that the
GLC-2015 map surpassed three other products both visually
and quantitatively by OA improvement of 14.0 %–17.8 %
validated with the global point-based samples and 5.9 %–
24.5 % with the global patch-based samples. Compared to
other products, there are fewer misclassifications in the GLC-
2015 map for most LC classes, such as forest, cropland,
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shrubland, and water bodies. Meanwhile, the GLC-2015 map
outperformed others in terms of OA and kappa coefficient
across different ecoregions and different continents. Notably,
the GLC-2015 map showed better performance than others
by an increment of 0.1 %–0.6 % in overall accuracy for ar-
eas of low inconsistency, 19.3 %–28.0 % for areas of mod-
erate inconsistency, and 27.5 %–29.7 % for areas of high in-
consistency. In addition, the mapping results obtained by the
DSET surpassed other data-fusion methods, with OA im-
provement of 7.4 %–7.7 % via the global point-based sam-
ples and 3.5 %–11.8 % via the global patch-based samples.
Therefore, it can be concluded that the GLC-2015 map is a
robust and reliable map that can significantly improve map-
ping accuracy compared to previous GLC products and map-
ping results from other common data-fusion methods.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-15-2347-2023-supplement.
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