Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-4445-2022
https://doi.org/10.5194/essd-14-4445-2022
Data description paper
 | 
29 Sep 2022
Data description paper |  | 29 Sep 2022

HMRFS–TP: long-term daily gap-free snow cover products over the Tibetan Plateau from 2002 to 2021 based on hidden Markov random field model

Yan Huang, Jiahui Xu, Jingyi Xu, Yelei Zhao, Bailang Yu, Hongxing Liu, Shujie Wang, Wanjia Xu, Jianping Wu, and Zhaojun Zheng

Related authors

Using deep learning and multi-source remote sensing images to map landlocked lakes in Antarctica
Anyao Jiang, Xin Meng, Yan Huang, and Guitao Shi
The Cryosphere, 18, 5347–5364, https://doi.org/10.5194/tc-18-5347-2024,https://doi.org/10.5194/tc-18-5347-2024, 2024
Short summary
Duration of vegetation green-up response to snowmelt on the Tibetan Plateau
Jingwen Ni, Jin Chen, Yao Tang, Jingyi Xu, Jiahui Xu, Linxin Dong, Qingyu Gu, Bailang Yu, Jianping Wu, and Yan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2885,https://doi.org/10.5194/egusphere-2024-2885, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022
Jiahui Xu, Yao Tang, Linxin Dong, Shujie Wang, Bailang Yu, Jianping Wu, Zhaojun Zheng, and Yan Huang
The Cryosphere, 18, 1817–1834, https://doi.org/10.5194/tc-18-1817-2024,https://doi.org/10.5194/tc-18-1817-2024, 2024
Short summary
Brief communication: Identification of 140 000-year-old blue ice in the Grove Mountains, East Antarctica, by krypton-81 dating
Zhengyi Hu, Wei Jiang, Yuzhen Yan, Yan Huang, Xueyuan Tang, Lin Li, Florian Ritterbusch, Guo-Min Yang, Zheng-Tian Lu, and Guitao Shi
The Cryosphere, 18, 1647–1652, https://doi.org/10.5194/tc-18-1647-2024,https://doi.org/10.5194/tc-18-1647-2024, 2024
Short summary
Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records
Song Shu, Hongxing Liu, Richard A. Beck, Frédéric Frappart, Johanna Korhonen, Minxuan Lan, Min Xu, Bo Yang, and Yan Huang
Hydrol. Earth Syst. Sci., 25, 1643–1670, https://doi.org/10.5194/hess-25-1643-2021,https://doi.org/10.5194/hess-25-1643-2021, 2021
Short summary

Related subject area

Domain: ESSD – Ice | Subject: Snow and Sea Ice
Time series of alpine snow surface radiative-temperature maps from high-precision thermal-infrared imaging
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024,https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Operational and experimental snow observation systems in the upper Rofental: data from 2017 to 2023
Michael Warscher, Thomas Marke, Erwin Rottler, and Ulrich Strasser
Earth Syst. Sci. Data, 16, 3579–3599, https://doi.org/10.5194/essd-16-3579-2024,https://doi.org/10.5194/essd-16-3579-2024, 2024
Short summary
A sea ice deformation and rotation rates dataset (2017–2023) from the Environment and Climate Change Canada Automated Sea Ice Tracking System (ECCC-ASITS)
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, and Lekima Yakuden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-227,https://doi.org/10.5194/essd-2024-227, 2024
Revised manuscript accepted for ESSD
Short summary
An Arctic sea ice concentration data record on a 6.25 km polar stereographic grid from three-years’ Landsat-8 imagery
Hee-Sung Jung, Sang-Moo Lee, Joo-Hong Kim, and Kyungsoo Lee
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-264,https://doi.org/10.5194/essd-2024-264, 2024
Revised manuscript accepted for ESSD
Short summary
SMOS-derived Antarctic thin sea ice thickness: data description and validation in the Weddell Sea
Lars Kaleschke, Xiangshan Tian-Kunze, Stefan Hendricks, and Robert Ricker
Earth Syst. Sci. Data, 16, 3149–3170, https://doi.org/10.5194/essd-16-3149-2024,https://doi.org/10.5194/essd-16-3149-2024, 2024
Short summary

Cited articles

Antonic, O.: Modelling daily topographic solar radiation without site-specific hourly radiation data, Ecol. Model., 113, 31–40, https://doi.org/10.1016/S0304-3800(98)00132-X, 1998. 
Azizi, A. H. and Akhtar, F.: Analysis of spatiotemporal variation in the snow cover in Western Hindukush-Himalaya region, Geocarto Int., 1–23​​​​​​​, https://doi.org/10.1080/10106049.2021.1939442, 2021. 
Bormann, K. J., McCabe, M. F., and Evans, J. P.: Satellite based observations for seasonal snow cover detection and characterisation in Australia, Remote Sens. Environ., 123, 57–71, https://doi.org/10.1016/j.rse.2012.03.003, 2012. 
Cereceda-Balic, F., Vidal, V., Ruggeri, M. F., and Gonzalez, H. E.: Black carbon pollution in snow and its impact on albedo near the Chilean stations on the Antarctic peninsula: First results, Sci. Total Environ., 743, 140801, https://doi.org/10.1016/j.scitotenv.2020.140801, 2020. 
Chen, S., Wang, X., Guo, H., Xie, P., Wang, J., and Hao, X.: A conditional probability interpolation method based on a space-time cube for MODIS snow cover products gap filling, Remote Sensing, 12, 3577, https://doi.org/10.3390/rs12213577, 2020. 
Download
Short summary
Reliable snow cover information is important for understating climate change and hydrological cycling. We generate long-term daily gap-free snow products over the Tibetan Plateau (TP) at 500 m resolution from 2002 to 2021 based on the hidden Markov random field model. The accuracy is 91.36 %, and is especially improved during snow transitional period and over complex terrains. This dataset has great potential to study climate change and to facilitate water resource management in the TP.
Altmetrics
Final-revised paper
Preprint