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Abstract. Snow cover plays an essential role in climate change and the hydrological cycle of the Tibetan
Plateau. The widely used Moderate Resolution Imaging Spectroradiometer (MODIS) snow products have two
major issues: massive data gaps due to frequent clouds and relatively low estimate accuracy of snow cover
due to complex terrain in this region. Here we generate long-term daily gap-free snow cover products over
the Tibetan Plateau at 500 m resolution by applying a hidden Markov random field (HMRF) technique to the
original MODIS snow products over the past two decades. The data gaps of the original MODIS snow prod-
ucts were fully filled by optimally integrating spectral, spatiotemporal, and environmental information within
HMRF framework. The snow cover estimate accuracy was greatly increased by incorporating the spatiotemporal
variations of solar radiation due to surface topography and sun elevation angle as the environmental contex-
tual information in HMRF-based snow cover estimation. We evaluated our snow products, and the accuracy is
98.29 % in comparison with in situ observations, and 91.36 % in comparison with high-resolution snow maps de-
rived from Landsat images. Our evaluation also suggests that the incorporation of spatiotemporal solar radiation
as the environmental contextual information in HMRF modeling, instead of the simple use of surface elevation
as the environmental contextual information, results in the accuracy of the snow products increases by 2.71 %
and the omission error decreases by 3.59 %. The accuracy of our snow products is especially improved during
snow transitional period, and over complex terrains with high elevation and sunny slopes. The new products can
provide long-term and spatiotemporally continuous information of snow cover distribution, which is critical for
understanding the processes of snow accumulation and melting, analyzing its impact on climate change, and
facilitating water resource management in Tibetan Plateau. This dataset can be freely accessed from the National
Tibetan Plateau Data Center at https://doi.org/10.11888/Cryos.tpdc.272204 (Huang and Xu, 2022).
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1 Introduction

Snow cover has the characteristics of low thermal diffusivity,
high reflectivity, and strong water storage capacity, which has
a profound effect on climate change (Gao et al., 2012), radi-
ation budget (Yang et al., 2014; Huang et al., 2019), hydro-
logical cycle (Dong, 2018), and human activities (Cereceda-
Balic et al., 2020). The Tibetan Plateau (TP) has abundant
snow cover, with highest elevation and largest snow cover
area in the middle latitudes of the Northern Hemisphere (Qiu,
2008; Yao et al., 2019). Snow is highly sensitive to climate
change (Chen et al., 2018a), and snowmelt water quantity
is closely connected to the supply of soil moisture on the
plateau (Wang et al., 2018) and the runoff of numerous rivers
such as the Yangtze and Yellow rivers (Immerzeel et al.,
2010). Long-term and detailed snow cover information is
fundamental to investigating climate change and hydrolog-
ical cycle of the TP.

Remote sensing has allowed extraction of historical and
near-real-time snow cover extent over inaccessible areas
(Yang et al., 2015; Li et al., 2018). Snow products could be
acquired via remote sensing satellites, such as the Landsat
and Sentinel-2 series. Although these satellites have a high
spatial resolution, they have a relatively coarse (10 or 16 d)
temporal resolution, thereby rendering them insufficient to
monitor the temporal variations in snow cover (Huang et
al., 2022). Moderate Resolution Imaging Spectroradiometer
(MODIS) has commenced producing snow products at 500 m
resolution from 2000, which have been widely utilized as the
primary datasets for monitoring snow cover (Muhammad and
Thapa, 2020; Kilpys et al., 2020). The accuracy of MODIS
snow products is greater than 85 % at the global scale under
clear sky (e.g., Parajka et al., 2012; Yang et al., 2015). How-
ever, these products have many data gaps due to frequent
clouds, causing discontinuity in the time and space of the
products (Y. Liu et al., 2020). In addition, the complex terrain
of the TP makes it more challenging for accurate snow cover
detection. Previous studies (Dong and Menzel, 2016; Dari-
ane et al., 2017) have suggested the low accuracy of MODIS
snow products for mountainous areas.

Various data-gap-filling techniques have been proposed
to produce seamless MODIS snow cover products includ-
ing multi-source combination, temporal, spatial, and spa-
tiotemporal filters (Xiao et al., 2021; Hussainzada et al.,
2021; Richiardi et al., 2021). The multi-source combina-
tion method combines MODIS with passive microwave sen-
sor data (Y. Li et al., 2019; Li et al., 2020). Although this
method can be used to fill most data gaps, the accuracy of
the combined product depends more on the accuracy of the
microwave sensor data, and the spatial resolution (>1 km)
is not sufficient to meet the demands for accurately assessing
the snow cover variability (Wang et al., 2009). Many attempts
have been directed toward filling the gaps in MODIS optical
remote sensing data based on spatial and temporal informa-
tion. Temporal methods are used to reclassify the data-gap

pixels by inferring the land cover types of the current pixels
under clear sky within a few days before or after (e.g., the
previous or next day) (X. Li et al., 2019; Tran et al., 2019).
Spatial methods estimate data-gap pixels based on gap-free
pixels in the spatial neighborhood (Hou et al., 2019). Rele-
vant environmental information (e.g., snow lines and topog-
raphy) has been introduced into spatial methods (Wang et
al., 2019; Kilpys et al., 2020). Spatiotemporal methods have
been integrated to fill as many data gaps as possible (Para-
jka and Blöschl, 2008; Kilpys et al., 2020). These studies
integrated all information (i.e., spatiotemporal, and environ-
mental information) according to heuristic rules instead of
rigorous quantitative models. Huang et al. (2018) developed
a hidden Markov random field (HMRF) framework to opti-
mally combine all information. This technique not only fills
data gaps but also provides fine improvement in accuracy
compared to the original MODIS snow products.

The long-term series and high-precision products are the
basis for snow cover research on the TP, which enable the
monitoring and analysis of snow cover phenology and more
comprehensive understanding of the snow cover trend. How-
ever, the existing daily products for the TP have an earlier end
date (the latest version at 500 m resolution product ended in
2015), and some products still have a small number of data
gaps (Yu et al., 2016; Xu et al., 2017; Zheng and Cao, 2019).
Thus, long-term and high-precision daily snow cover prod-
ucts for the TP should be generated using reliable data-gap-
filling methods.

Here we generate long-term daily snow cover products
over the TP by applying an HMRF technique (Huang et al.,
2018) to the original MODIS snow products from 2002 to
2021. In the previous HMRF modeling technique (Huang et
al., 2018), surface elevation was considered as a surrogate
for environmental information in mountainous regions. How-
ever, according to in situ photos from field survey in the TP,
we found that the distribution of snow cover differed from
the model results, even at the same elevation level (Fig. 1b
and c). The snow on the TP is strongly infected by complex
topography (e.g., slope, aspect, sunlight duration, and solar
incidence angle). Thus, while generating our new snow cover
product, we incorporated solar radiation as a comprehensive
indicator of topographical effects to correct the snow identi-
fication errors caused by the complex terrain of the TP.

Our study is outlined as follows: first, we present our study
area and datasets. Then, we present the HMRF framework
and data-processing flowchart. By employing this modeling
technique to the TP, we produced daily gap-free snow cover
products for the TP from 2002 to 2021. We also validated our
new snow products against in situ observations, snow cover
mapped from Landsat series data, and snow cover data esti-
mated from the initial MODIS and original HMRF modeling
technique.
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2 Study area and data

2.1 Study area

The TP is situated in western China, spanning 26◦00′–
39◦46′ N and 73◦18′–104◦46′ E (Fig. 1). It encompasses ap-
proximately 2.56×106 km2, with an average altitude exceed-
ing 4000 m, and is one of the most susceptible regions to cli-
mate change (Jing et al., 2019). The air temperature in the TP
increased from the northwest to southeast, with more precip-
itation in the southeast and less in the northwest (Wang et al.,
2018). Generally, the TP has comparatively low temperatures
and has largest distribution of glaciers and snow in China
(Liang et al., 2017). Seasonal snow cover on the TP has a
great potential to influence the hydrological cycle and heat
wave frequency in northern China (Wu et al., 2012). In addi-
tion, seasonal snow accumulation on the TP is an important
part of surface water accumulation in southwestern China
and surrounding countries. Several major rivers in China and
surrounding Asian countries, such as the Yangtze, Yellow,
Mekong, Salween, Brahmaputra, Ganges, and Indus rivers,
all originate from the TP.

The status of the snow in the TP changes rapidly as a re-
sult of multiple factors, such as temperature, precipitation,
synoptic forcing, and large-scale ocean–atmosphere oscilla-
tions (You et al., 2020), which may lead to sublimation and
snowfall (Li et al., 2020). Affected by the Indian Ocean mon-
soon and East Asian summer monsoon, the southeast TP has
plenty water vapor, which results in a large amount of cloud,
particularly in spring and summer (Yang et al., 2015).

2.2 Datasets

2.2.1 Daily MODIS snow cover products

We used version six MODIS daily snow products on Terra
(MOD10A1 v6) and Aqua (MYD10A1 v6) from 15 May
2002 to 31 December 2021 (Hall and Riggs, 2016a, b).
Google Earth Engine (GEE) (https://earthengine.google.
com, last access: 20 January 2022) platform was used for
pre-processing the MODIS snow product. We used MOD-
IS/006/MOD10A1 and MODIS/006/MYD10A1 datasets and
NDSI_Snow_Cover and NDSI_Snow_Cover_Class bands.
NDSI_Snow_Cover represents the value of the normalized
difference snow index (NDSI), ranging 0–100. The values
in the NDSI_Snow_Cover_Class band include 200, 201,
211, 237, 239, 250, 254, and 255, which represent “missing
data”, “no decision”, “night time”, “inland water”, “ocean”,
“clouds”, “detector saturated”, and “filled data”, respectively
(Riggs et al., 2019).

The original NDSI data were reclassified as snow, non-
snow, and data-gaps classes (Chen et al., 2020; Huang et al.,
2018, 2022). The pixels with an NDSI value of 40–100 in the
NDSI_Snow_Cover band were reclassified as snow (Riggs
et al., 2017). The pixels with an NDSI value of 0–40 in the
NDSI_Snow_Cover band and with corresponding values of

237 and 239 in the NDSI_Snow_Cover_Class band were re-
classified as non-snow. The remaining pixels were reclassi-
fied as data gaps. Then, we combined the MOD10A1 and
MYD10A1 reclassification results of the same day according
to the following rules: when a pixel included gap-free data
in both MOD10A1 and MYD10A1 products, value in the
MOD10A1 product was used; when a pixel included gap free
only in the one product, the gap-free data value was used. Fi-
nally, the combined Terra and Aqua results were re-projected
onto Universal Transverse Mercator (UTM zone 45) at 500 m
resolution, which was used as the initial snow cover products
for filling data gaps in this research.

We identified the data gaps in original composite MODIS
products, and found the annual average data gap propor-
tion of the TP was 33.63 %–38.75 %, with an average of
36.12 % (Fig. 2). The monthly average data gaps are also
shown in Fig. 2, and we found that the data gaps of the TP
were the largest in summer (June to August), with an av-
erage of 45.20 %. The data gaps declined rapidly starting
from September and were the smallest in November (with an
average of 28.00 %), and gradually increased in winter and
spring.

2.2.2 Digital Elevation Models (DEMs)

We used the Shuttle Radar Topography Mission (SRTM)
DEMs to calculate the topographical parameters (e.g., eleva-
tion, slope, and aspect). The SRTM DEM at 90 m resolution
in GeoTIFF format was from the United States Geological
Survey (USGS). We then pre-processed the DEM data, in-
cluding mosaicking, reprojection, resampling, and clipping.

2.2.3 In situ observations

We used snow depths from 137 in situ stations in the TP
(Fig. 1a) obtained from 1 October 2002 to 31 March 2021,
which were provided by the National Meteorological Cen-
tre of China. Figure 1a shows all stations over the TP, which
record coordinates, observation time, snow depth, and snow
pressure. The surface elevation of these stations ranges from
1187 to 5310 m, with an average of 3240 m. Overall, 72 %
stations are situated in the east (>95◦ E), and only 22 % are
situated in high-altitude areas (>4000 m). A 3 cm threshold
was utilized to evaluate the snow classes using in situ snow
depth (Huang et al., 2022). The snow depth was reclassified
as no-snow if it was less than 3 cm; if not, it was considered
as snow.

2.2.4 Landsat images

The snow cover mapped from Landsat images were used
to validate and evaluate our snow cover product. Using the
GEE cloud platform, we selected 81 Landsat series images
with less than 2 % cloud coverage under clear sky for ver-
ification, including Landsat-5 TM, Landsat-7 ETM+, and

https://doi.org/10.5194/essd-14-4445-2022 Earth Syst. Sci. Data, 14, 4445–4462, 2022

https://earthengine.google.com
https://earthengine.google.com


4448 Y. Huang et al.: HMRFS–TP

Figure 1. Topography, meteorological stations, and survey photos of the TP. (a) Surface elevation and distribution of meteorological stations
in the TP. Landsat images utilized for validation and sample area are also shown; (b) and (c) in situ photos from field survey in the TP.

Figure 2. Annual and monthly average proportion of data gaps of original composite MODIS snow products.
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Landsat-8 OLI images. The detailed Landsat images infor-
mation is shown in the supplementary material (Table A1).
The selected images were distributed throughout the study
area from 22 November 2002 to 16 December 2021. We used
the C topographic correction model to correct for the terrain
effect on Landsat series data (Teilet et al., 1982). Then, using
the SNOWMAP method proposed by Hall et al. (1995), we
generated a snow cover map using Landsat images for the TP.
The SNOWMAP algorithm classified the pixels with NDSI
values>0.4, green band>0.10, and shortwave infrared band
>0.11 as snow (Huang et al., 2011). To improve the accuracy
of resampling 30 to 500 m resolution, we adopted the fol-
lowing steps for resampling: first, for each MODIS pixel, we
calculated the amount of Landsat snow-covered pixels in the
current MODIS pixel. Second, we divided the snow-covered
Landsat pixels by the sum of the Landsat pixels contained
in each MODIS pixel (a 500 m MODIS pixel is close to 277
Landsat pixels) (Crawford, 2015; C. Liu et al., 2020). Finally,
we reclassified pixels whose results in the previous step were
less than 0.5 as no-snow; otherwise, they were reclassified as
snow. Hence, we obtained resampled 500 m resolution Land-
sat images for further verification.

3 HMRF modeling technique

The HMRF framework optimally combines MODIS spectral,
spatiotemporal, and environmental information to fill data
gaps, thereby increasing snow estimate accuracy (Huang et
al., 2018). This framework is expressed as a linear energy
function in which the total energy is modeled as the combina-
tion of all information (Eq. 1). Thus, the HMRF framework
requires to specify energy function for each information and
to determine the optimal parameters that minimize the total
energy.

UT
(
βn,xi,Nsp,Ntp,Iev

)
= λxiUxi (βn,xi)

+ λstUst
(
βn,Nsp,Ntp

)
+ λevUev (βn,Iev) , (1)

where λxi , λst, and λev are the spectral, spatiotemporal, and
environmental parameters, respectively; and Uxi , Ust, and
Uev are the spectral, spatiotemporal, and environmental en-
ergy functions, respectively.

In the original HMRF modeling technique, Huang et
al. (2018) used surface elevation to represent the environ-
mental association in mountainous areas (hereafter referred
to as HMRFele). However, because of the spatial heterogene-
ity of the TP, using only relative elevation cannot reflect the
influence of complex terrain on snow cover (Fig. 1b and
c). Therefore, the influence of additional topographic factors
(e.g., slope, aspect, sunlight duration, and solar incidence an-
gle) on snow cover must be considered. Based on the above
reasons, we incorporated solar radiation as a surrogate for
environmental information in HMRF framework (hereafter
referred to as HMRFsolar). Further details are provided in
Sect. 3.3.

The overall flowchart of the HMRFsolar modeling tech-
nique is shown in Fig. 3. We used daily composite MODIS
snow cover products as the initial dataset. First, we calculated
the optimal parameters of each information using the Ho-
Kashyap and DFBETAS algorithms (Bormann et al., 2012),
based on randomly divided training samples on the initial
snow cover product. Second, we determined the snow and
non-snow classes of each pixel in the initial snow cover
products using the optimal parameters and HMRFsolar al-
gorithm. In the first round of the HMRFsolar algorithm, we
employed a 3× 3× 3 spatiotemporal cubic neighborhood to
model spatiotemporal energy. If data gaps remained, we fur-
ther expanded the cubic neighborhood of these pixels. Fi-
nally, we validated and evaluated our HMRFsolar-based prod-
ucts against the in situ observations, snow mapped from
Landsat images, and snow cover data from the initial MODIS
and original HMRFele modeling technique.

3.1 Spectral information

The spectral energy is considered as the possibility of the
pixel pertaining to non-snow or snow according to its spec-
tral information. Fractional snow cover (FSC) represents the
proportion of snow in a pixel, which can be calculated us-
ing the NDSI value provided by the MODIS snow product
(Salomonson and Appel, 2004). The general linear relation-
ship between FSC and NDSI was derived over other regions,
which has limited accuracy in the TP. Therefore, we re-fitted
that empirical relationship of Terra and Aqua satellites in
the TP using Landsat data over 20 years with 972 884 and
952 221 sample points, respectively. The spectral probability
P (xi |β1) of snow class was re-fitted as follows:

P (xi |β1)Terra = (1.222×NDSI+ 0.038)/100 (2)
P (xi |β1)Aqua = (1.164×NDSI+ 0.058)/100. (3)

The correlation coefficients of the re-fitted equation of Terra
and Aqua satellites were 0.86 and 0.89, respectively. The
spectral energy Uxi (βn,xi) can be calculated as follows:

Uxi (βn,xi)
{
− [P (xi |β1)] , if n= 1
−[1− [P (xi |β1)] , if n= 2 , (4)

where if pixel i is classified as no-snow class, then n= 2; if
pixel i is the snow class, n= 1.

3.2 Spatiotemporal information

To fully take advantage of spatiotemporal information, we
combined the temporal and spatial information to form a spa-
tiotemporal cubic neighborhood Nst (Huang et al., 2018). In
modeling, initial snow products are updated iteratively us-
ing classification results from the previous iteration. Con-
vergence ends when the proportion of pixels whose type
changes between two subsequent iterations is less than 0.1 %,
in which case the data gaps need to be calculated. If the data
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Figure 3. Overall flowchart of the HMRFsolar-based framework. (SCP stands for snow cover products.)

gaps still exist, the cubic neighborhood is temporally and
spatially expanded in the next round.

We primarily set a 3× 3× 3 cubic neighborhood; that is,
the current pixel and its neighboring pixels formed a cube
on day t , the day before (t − 1), and the day after (t + 1).
In this condition, the energy equation of the current pixel
is expressed as the weight of the proportion of snow and
non-snow in the spatiotemporal neighborhood of the current
pixel. The weight is reversely proportional to the distance
from the neighboring pixel to the center pixel:

Ust
(
βn,Nsp,Ntp

)
=


−
∑1
x=−1

∑1
y=−1

∑1
t=−1

S(x,y,t)
Dist(x,y,t)
V (x,y,t)

Dist(x,y,t)
,

if n= 1

−
∑1
x=−1

∑1
y=−1

∑1
t=−1

NS(x,y,t)
Dist(x,y,t)
V (x,y,t)

Dist(x,y,t)
,

if n= 2

, (5)

where (x,y, t) is the relative coordinates of the pixel in the
spatiotemporal cube; S(x,y, t), NS(x,y, t), V (x,y, t), and
Dist(x,y, t) are defined respectively as follows:

S (x,y, t)=
{

1, if (x,y, t) pertains to snow
0, if (x,y, t) pertains to non-snow (6)

NS(x,y, t)=
{

1, if (x,y, t) pertains to non-snow
0, if (x,y, t) pertains to snow (7)

V (x,y, t)=
{

1, if (x,y, t) pertains to valid class
0, if (x,y, t) pertains to data gaps (8)

Dist (x,y, t)=
√
x2+ y2+wt2, (9)

where Dist (x,y, t) is the distance from each neighborhood
pixel to the center pixel, which determines the weight of

each area pixel; w denotes the weight of the temporal dis-
tance related to the spatial distance. This value was calcu-
lated via semi-variogram analysis and was determined as 3
in this study.

If data gaps still remain in 3× 3× 3 spatiotemporal cubic
neighborhood, we further expanded spatiotemporal neigh-
borhood to 5×5×5. In this study, when we used a 5×5×5
cubic neighborhood, the data gaps were reduced to 0.0173 %,
which had little effect on snow cover estimate accuracy.
Hence, the temporal neighborhood remained at 5, whereas
the spatial neighborhood continued to expand. Finally, all
data gaps could all be filled by continuously expanding
the spatial neighborhood, which remarkably improved the
MODIS estimate accuracy.

3.3 Environmental contextual information

The geographic location and seasons can determine the total
solar radiation received on the TP, and the complex topog-
raphy of the TP determines the availability of solar radia-
tion at specific locations in the region, which further affects
accumulation and melting of snow cover and determines its
distribution (You et al., 2020). Here we use solar radiation to
include the influence of environmental factors on snow cover,
such as slope, aspect, sunlight duration, and solar incidence
angle.

Kumar et al. (1997) originally proposed the solar radia-
tion model, SHORTWAVE, to calculate the direct, reflected,
and diffuse solar energy received by the ground. Huang et
al. (2015) used a graphics processing unit (GPU) method-
ology to improve the speed and effectiveness for modeling.
In our study, we used the GPU-accelerated SHORTWAVE
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model as the environmental parameter in the HMRFsolar
model to calculate the daily solar radiation of the TP.

A general-purpose desktop computer was used to test the
parallel computational efficiency. The computer has an In-
tel Core™ i7-10700 CPU (16 cores and max clock rate
is at 2.90 GHz), an NVIDIA GeForce RTX 2070 SUPER
card with 2560 cores and 16 240 MB global memory, and
Windows 11 Ultimate 64 bit operation system. The GPU-
accelerated SHORTWAVE model uses latitude, slope, aspect,
date, and interval time as inputs. To calculate the overall so-
lar radiation in a day, we subdivided the day into subsequent
time intervals, and set 15 min as the suitable interval time in
this paper (Kumar et al., 1997; Antonic, 1998). The overall
solar radiation Ia at time t can be calculated using Eq. (10),

Ia = Ip+ Id+ Ir, (10)

where Ip, Id, and Ir are the direct, diffuse, and reflected solar
radiation, respectively, and can be estimated using the fol-
lowing equations:

Ip = I0 · τb · cosθ (11)

Id =
I0 · τd · cos2β

2sinα
(12)

Ir =
r · I0 · τr · sin2β

2sinα
, (13)

where I0 is the extra-atmospheric solar flux; τb denotes the
atmospheric transmittance; τd denotes the diffuse skylight
transmittance; τr is the reflectance transmissivity (Gul et al.,
1998); r is set to 0.2 in the current paper (Kumar et al., 1997);
α is the solar elevation angle, which varies in terms of the
latitude, season, and time; and θ is the solar incidence an-
gle, which is determined by solar elevation angle α, the solar
azimuth angle, surface slope (β), and aspect (Huang et al.,
2015). The effect of the geographic location and seasons on
the total solar radiation are represented by solar elevation an-
gle variable α, and the effect of the complex topography on
the total solar radiation is represented by surface slope (β)
and aspect variables.

We repeated the calculation for each time interval. Last,
we accumulated the solar radiation from sunrise to sunset to
acquire the daily values.

Areas that receive more solar radiation generally experi-
ence later snow accumulation and earlier snowmelt than ar-
eas that receive less solar radiation. Therefore, if pixels in a
spatial neighborhood have higher solar radiation and the clas-
sification result is snow, the probability that the center pixel
is also snow increases. The environmental energy equation is
defined as follows:

Uev
(
βn,Ntp,Nsp

)
=


−
∑1
x=−1

∑1
y=−1

SE(x,y)
SE(x,y)+NSE(x,y) ,

if n= 1
−
∑1
x=−1

∑1
y=−1

NSE(x,y)
SE(x,y)+NSE(x,y) ,

if n= 2

, (14)

Table 1. Confusion matrix comparing snow cover products with
observation value.

Observation value Snow cover products

Snow Non-snow

Snow a b

Non-snow c d

where (x,y) are coordinates of the pixel in the spatial neigh-
borhood Nsp; and SE(xy) and NSE(x,y) are defined as fol-
lows:

SE(x,y)=

 1, if (x,y) belongs to snow
and solar (x,y)≥ solar(i)

0, others
(15)

NSE(x,y)=

 1, if (x,y) belongs to non-snow
and solar (x,y)≤ solar(i)

0, others
, (16)

where solar (x,y) and solar(i) represent the solar radiation
received by the neighboring pixels and the central pixel, re-
spectively.

4 Results

4.1 Accuracy assessment based on in situ observations

Using HMRFsolar-based method, we produced gap-free snow
cover products over the TP with a daily 500 m resolution
from 15 May 2002 to 31 December 2021. We applied the
validation indices based on the confusion matrix (Table 1),
which is widely recommended by previous studies (Li et al.,
2020).

The three validation indices are defined as follows:

OA=
(

a+ d

a+ b+ c+ d

)
× 100% (17)

OE=
(

b

a+ b

)
× 100% (18)

CE=
(

c

c+ d

)
× 100%. (19)

Overall accuracy (OA) is the probability a pixel that is
correctly classified; and omission error (OE) and commis-
sion error (CE) represent the underestimated and overes-
timated snow pixels, respectively. We first compared our
daily HMRFsolar-based and original MODIS snow products
with snow depth observed from 137 in situ stations from
2002–2021 (Table 2). The OA of all gap-free pixels in orig-
inal MODIS products was 97.96 %. After employing the
HMRFsolar-based method, the OA of these gap-free pixels
was increased to 98.29 %. The OE was reduced by 0.57 %.
Since the in situ stations in the TP are primarily distributed
in low-altitude areas (Fig. 1a), only using in situ observations
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Figure 4. Temporal variations in OA (overall accuracy) (a), OE (omission error) (b), and CE (commission error) (c) of HMRFele- and
HMRFsolar-based snow products from 2002–2021.

may not be representative and lead to biases in the accuracy
assessment. Therefore, we also conducted evaluation in com-
parison with snow cover mapped from Landsat data obtained
from 2002–2021, and regarded it as the true verification value
in the following accuracy evaluation.

4.2 Accuracy assessment based on Landsat data

A total of 81 Landsat-8 images (Fig. 1a, Table A1) with
less than 2 % cloud coverage were selected for this accu-
racy assessment. We constructed the confusion matrices for
the HMRFsolar-based snow cover products, HMRFele-based
snow products, and original MODIS snow cover products
against snow cover mapped from Landsat series data prod-
ucts (Table 3). The OA for gap-free pixels in original MODIS
products was 89.31 %. When we used surface elevation to
represent the environmental association in HMRF modeling
technique, the OA of these gap-free pixels was increased
to 90.47 %. Since using surface elevation only cannot well-
represent the influence of complex topography on snow cover
distribution over the TP, this improvement is still limited. Af-
ter incorporating the solar radiation to model the comprehen-
sive influence of multiple topographic factors on snow cover,
the OA of our HMRFsolar-based snow products was increased
by 2.06 % compared with the OA of original MODIS prod-
ucts. C. Liu et al. (2020) indicated that the classification er-
rors in original MODIS snow products were strongly affected
by OE. Our snow cover product provided a considerable im-

provement in this respect. The OE of our HMRFsolar-based
snow products was 3.24 % lower than that of original MODIS
products (Table 3).

Particularly, our HMRF method is able to fill data gaps in
original MODIS products in which spectral information is
unavailable caused by cloud, by integrating spatiotemporal
and environmental information together. Table 4 shows that
the OA of the HMRFsolar- and HMRFele-based snow cover
products for those data-gap pixels in original MODIS prod-
ucts was 83.86 % and 81.15 %, which is 7.50 % and 9.32 %
lower than that of gap-free pixels. It is also showed that the
OA of HMRFsolar-based snow cover product is 2.71 % higher
than that of HMRFele-based snow cover product. Both Ta-
bles 3 and 4 confirmed that using solar radiation as the envi-
ronmental information in the HMRF framework can develop
more reliable snow cover products.

4.3 Accuracy improvement in different times of a snow
season

To explore the details of snow cover variation, we define the
snow season from September of the previous year to Au-
gust of the following year, for example, the time range of
the 2002 snow season is 1 September 2002–31 August 2003
(Chen et al., 2018b). Previous studies (Huang et al., 2018;
Klein, 2003; X. Li et al., 2019) have suggested that the snow
cover estimation accuracy was generally low during snow
transitional period (i.e., the beginning and end of a snow sea-
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Table 2. Confusion matrices between HMRFsolar-based, original MODIS snow products and in situ observation for gap-free pixels in original
MODIS snow products during 2002–2021.

In situ observation HMRFsolar-based snow products Original MODIS snow products

Snow Non-snow Total Snow Non-snow Total

Snow 4782 (66.61 %) 2373 (33.39 %) 7155 4725 (66.04 %) 2430 (33.96 %) 7155
Non-snow 3420 (1.01 %) 328 040 (98.99 %) 331 460 4493 (1.36 %) 326 927 (98.64 %) 331 460

Total 8202 330 413 338 615 9218 329 397 338 615

Overall accuracy 98.29 % 97.96 %

Figure 5. Effect of elevation on OA (a), OE (b), and CE (c) of HMRFele- and HMRFsolar-based snow products from 2002–2021.

son). We plotted the temporal variations in the OA, OE, and
CE of the HMRFsolar- and HMRFele-based snow cover prod-
ucts (Fig. 4). Except November, December, and February, the
OAs of the new snow products were more than 90 % in all
months. The accuracy was relatively low during snow transi-
tional period (November, December, and February to April),
whereas the accuracy was higher in snow stable period. The
trend of the CE was almost the same as that of snow cover;
that is, the months with more snow cover had a larger CE.
However, the CE was generally low in all months. By com-
parison with the HMRFele-based products, the accuracy of
our new products was higher in almost all months. In addi-
tion to the stable snow period, the improvement for transition
period was also notable, which increased by an average of
2.18 %. In transition period, with rapid temperature changes,
the snow status changed rapidly, and the snow mapped by
MOD10A1 (crossing at 10:30) and MYD10A1 (crossing at
13:30) were different because of the different temperatures
and solar radiation. The original MODIS snow cover prod-
ucts have relatively high error during snow transitional pe-
riod (Y. Li et al., 2019). After incorporating solar radiation as
an environmental contextual information in HMRF, the accu-
racy of snow cover products has been improved effectively.

4.4 Accuracy improvement for different surface
topography

We divided the elevation of the study area into four cat-
egories: <3000, 3000–4000, 4001–5000, and >5000 m, to
explore the effect of elevation on snow cover. We then cal-
culated the snow cover products accuracy in each category.
Figure 5 indicates that the OA of the products decreased with
increasing elevation. The accuracy of our products was high-
est in the <3000 m category (94.26 %). With increasing el-
evation, the OE first decreased and then increased; that is,
the OE value was the lowest in the 4001–5000 m category,
whereas the CE was the highest in the 4001–5000 m cate-
gory. Li et al. (2020) established the effect of elevation on
snow cover and also demonstrated the accuracy of original
MODIS snow products generally decreased with increasing
elevation. Areas at higher elevation generally receive more
solar radiation; hence, the snow status changes more rapidly
at higher elevations, resulting in decreased snow cover esti-
mation accuracy.

By comparison with the HMRFele-based products, the ac-
curacy of our new products was higher in almost all elevation
categories, and as the elevation increased, the accuracy im-
provement was more remarkable (reaching an improvement
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Table 3. Confusion matrices between HMRFsolar-based snow products, HMRFele-based snow products, original MODIS snow products,
and snow cover mapped from Landsat series data products for gap-free pixels during 2002–2021.

Landsat series data HMRFsolar-based snow products HMRFele-based snow products Original MODIS snow products

Snow Non-snow Total Snow Non-snow Total Snow Non-snow Total

Snow 916 593 160 936 1 077 529 901 202 176 327 1 077 529 881 646 195 883 1 077 529
(85.06 %) (14.94 %) (83.64 %) (16.36 %) (81.82 %) (18.18 %)

Non-snow 108 214 1 931 065 2 039 279 120 590 1 918 689 2 039 279 137 391 1 901 888 2 039 279
(5.31 %) (94.69 %) (5.91 %) (94.09 %) (6.74 %) (93.26 %)

Total 1 024 807 2 092 001 3 116 808 1 021 792 2 095 016 3 116 808 1 019 037 2 097 771 3 116 808

Overall accuracy 91.36 % 90.47 % 89.31 %

Table 4. Confusion matrices between HMRFsolar-based snow cover products, HMRFele-based snow cover products, and snow cover mapped
from Landsat series data products for data-gap pixels during 2002–2021.

Landsat series data HMRFsolar-based snow cover product HMRFele-based snow cover product

Snow Non-snow Total Snow Non-snow Total

Snow 87 921 (77.80 %) 25 093 (22.20 %) 113 014 83 868 (74.21 %) 29 146 (25.79 %) 113 014
Non-snow 13 795 (10.78 %) 114 148 (89.22 %) 127 943 16 269 (12.72 %) 111 674 (87.28 %) 12 7943

Total 101 716 139 241 240 957 100 137 140 820 240 957

Overall accuracy 83.86 % 81.15 %

of 3.16 % in the >5000 m category). The improvements in
OE first decreased and then increased; that is, the accuracy
improvement of the OE value was the smallest in the 4001–
5000 m category, with an improvement of 3.47 %. The CE
exhibited the opposite trend; that is, the accuracy improve-
ment in the CE value was the largest in the 4001–5000 m
category, at 2.33 %. The accuracy improvement provided by
our new snow cover product was substantially increased with
the increase in elevation, indicating its effectiveness in high-
altitude areas.

To explore the effect of slope on snow cover, we divided
the slope of the study area into five categories: <10, 10–20,
21–30, 31–40, and>40◦. The OA of the snow cover products
decreased with increasing slope, which is consistent with the
trend of the changes in accuracy with increasing elevation
(Fig. 6). The accuracy of our new products was highest in
the 0–10◦ category, with a value of 93.78 %. The OE was
high for relatively low-slope areas (<30◦), and the CE was
high for high-slope areas (≥ 30◦).

By comparison with the HMRFele-based products, the ac-
curacy of our new products was higher in almost all slope
categories, and the accuracy improvement was remarkable in
the 10–20◦ category (reaching an improvement of 2.90 %).
This means topography of 10–20◦ slopes had the strongest
impact on snow cover on the TP. The accuracy improvements
in OE decreased with increasing slope, whereas the accuracy
improvements in CE increased with increasing slope. In the
<10◦ category, the improvement in CE was the smallest, at

0.56 %, whereas the improvement in OE was the largest, at
6.83 %. In the >40◦ category, the improvement in CE was
the largest, at 2.20 %, whereas the improvement in OE was
the smallest, at 0.81 %.

Finally, we explored the effect of aspect on snow cover
(Fig. 7). The OA of the snow cover products was higher
on shaded slopes than on sunny slopes. The OAs of our
new products on sunny and shaded slopes were 88.37 % and
90.07 %, respectively. By comparison with the HMRFele-
based products, the accuracy improvement provided by our
new products was remarkable on sunny slopes (improvement
of 3.16 %) than on shaded slopes (improvement of 1.75 %),
corresponding with the actual situation. The improvement in
the OE on sunny slopes was also remarkable (improvement
of 3.63 %).

5 Discussion

5.1 Effect of the HMRFsolar-based snow cover products
over complex terrain

Long-term and high-precision snow cover products are key
to the snow hydrology research in the TP. Compared to the
heterogeneous land cover, complex terrain has more severe
effects on MODIS snow products in the TP (C. Liu et al.,
2020; Azizi and Akhtar, 2021). To enhance snow detection
accuracy in mountainous areas, we used solar radiation as
the environmental contextual information rather than surface
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Figure 6. Effect of slope on OA (a), OE (b), and CE (c) of HMRFele- and HMRFsolar-based snow products from 2002–2021.

Figure 7. Effect of aspect on OA (a), OE (b), and CE (c) of HMRFele- and HMRFsolar-based snow products from 2002–2021.

elevation used in the original HMRFele modeling technique
(Huang et al., 2018). The calculated optimal parameters used
in Eq. (1) could reflect the importance of each energy to a cer-
tain extent. The optimal parameters of the HMRFsolar-based
products for spectral, spatial–temporal, and environmental
information were 0.117, 1.294, and 0.532, respectively, while
that of the original HMRFele-based products were 0.338,
1.419, and 0.576, respectively. The proportion of environ-
mental information of HMRFsolar-based products (27.37 %)
were higher than that of HMRFele-based products (24.70 %),
which shows the improvement of HMRFsolar-based prod-
ucts over complex terrain. Moreover, Fig. 8a shows a true-
color Sentinel-2B image. Figure 8b, c, and d show the orig-
inal MODIS, HMRFele- and HMRFsolar-based snow cover
products, respectively, on 31 October 2018. The examples in

Fig. 8 (where the topography has a dominant effect on snow
cover) show that the original HMRFele-based snow cover
products mapped all data gaps in the shaded and sunny slopes
at the same elevation as snow-covered pixels; however, af-
ter incorporating solar radiation, our new products accurately
identified them as non-snow-covered pixels. In general, since
sunny slopes receive relatively more solar radiation, the area
of snow cover on sunny slopes is smaller than that on shaded
slopes. The new HMRFsolar-based snow products more effec-
tively filled the data gaps on sunny slopes, producing more
realistic results. Solar radiation was particularly effective as
an environmental contextual factor to correct the snow detec-
tion errors in mountainous areas.
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Figure 8. Comparison between true-color Sentinel-2B imagery (a), original MODIS snow products (b), HMRFele-based snow products (c),
and HMRFsolar-based snow products.

5.2 Potential applications of the HMRFsolar-based snow
cover products

Compared with in situ observations, the overall accuracy of
snow cover products on the TP reported by other studies is
in the range of 90.74 %–96.6 %, and the OE is greater than
the CE (Yu et al., 2016; Xu et al., 2017; Zheng and Cao,
2019). The overall accuracy of our new snow products is
98.29 % in comparison with in situ observations, and the
new product has a considerable improvement in OE. The
new snow cover products provide spatiotemporally contin-
uous snow cover distribution at 500 m resolution over the
past two decades, thus having a great application potential
for analyzing the processes of snow accumulation and melt-
ing. Figure 9 shows the snow cover trends over a sample
area (location shown in Fig. 1) from our daily gap-free snow
products and 8 d composite MODIS snow products on Terra
(MOD10A2 v6.1) (Hall and Riggs, 2021) during the 2017
snow season. We chose this sample region because it cov-
ers more mountainous areas including Hengduan Mountain
and Bayankala Mountain, and has seasonal snow for multiple
years. The MOD10A2 v6.1 products composite 8 d MODIS
data to reduce the data gaps in the original daily MODIS
snow products, and represent the maximum snow cover ex-
tent in 8 d, which means once snow is identified on any day in
the 8 d time window, the pixel is mapped as snow. Although
the overall variation trends of snow cover are similar between
these two products, the snow cover percentage obtained from

the MOD10A2 v6.1 data was 19.60 % higher than that of
daily products during the 2017 snow season. The status of
the snow in the TP changes rapidly. Compared with the
8 d composite MODIS snow products (MOD10A2 v6.1), the
HMRFsolar-based snow cover products can get more detailed
and accurate information on snow accumulation and melting
processes, particularly during the snow transitional periods
(February to April and November to December) when short-
term snowfall events occur frequently (Fig. 9). In addition,
owing to its high temporal resolution (daily) and long-term
spatiotemporal continuity, the generated snow cover products
also provide important baseline information for monitoring
climate change, calibrating hydrological models, and simu-
lating snowmelt runoff in the TP.

5.3 Limitations of the HMRFsolar-based snow cover
products

The accuracy evaluation for the new snow cover products had
some limitations. The majority of in situ observations in the
TP are distributed in the low-altitude areas in the east, with
only 22 % located in high-altitude areas (Fig. 1a). The num-
ber of in situ observations in the snow category was con-
siderably smaller than that in the non-snow category, which
created challenges in verifying snow category classification
(Zhang et al., 2021). C. Liu et al. (2020) demonstrated that
compared to in situ observations, snow cover mapped from
Landsat series images is more related to MODIS snow cover
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Figure 9. Snow cover percentage for daily HMRFsolar-based snow
cover products and 8 d composite MODIS snow products in a sam-
ple area during the 2017 snow season of the TP. (SCP stands for
snow cover products.)

products owing to the closer spatial match. Therefore, the
conclusions about the new snow products were based on the
accuracy evaluation against Landsat images, which may still
contain some bias. Additionally, the solar radiation indicated
used only imitates the solar radiation under clear-sky con-
ditions. In a follow-up study, we will simulate the solar ra-
diation throughout the year according to the weather condi-
tions (e.g., the effect of cloud cover), and use parallel calcu-
lations to enhance calculation efficiency and further improve
the snow cover product accuracy.

6 Data availability

The long-term daily snow cover products produced here are
gap-free at 500 m resolution under the Universal Transverse
Mercator (UTM zone 45) projection, and can be freely ac-
cessed from the National Tibetan Plateau Data Center at
https://doi.org/10.11888/Cryos.tpdc.272204 (Huang and Xu,
2022), which is stored as a zip file (∼ 1.61 GB) for each
year. By uncompressing the zip file, the daily snow cover
data are provided in GeoTIFF format, and the values in the
snow cover products are classified as snow (1) and non-snow
(2). The name of each file is “HMRFSTP_yyyyddd.tif”, in
which HMRFSTP is the abbreviation of “hidden Markov ran-
dom field-based snow cover products for Tibetan Plateau”,
yyyy stands for year, and DDD stands for Julian day, such as
2002135.tif describes the snow cover on Tibet Plateau on the
135th day of 2002.

7 Conclusions

In this study, we generated long-term daily gap-free snow
cover products at 500 m resolution from original MODIS
snow products in the TP over the past two decades. The
snow cover estimate accuracy was greatly improved by in-
corporating solar radiation as a surrogate for environmental
contextual information in HMRF framework in mountain-

ous areas. We validated and evaluated our snow cover prod-
ucts through comparison with in situ observations and high-
resolution snow cover mapped from Landsat images, with ac-
curacy estimates of 98.29 % and 91.36 %, respectively. Our
evaluation also suggests that incorporating solar radiation,
instead of the simple use of surface elevation as the environ-
mental contextual information in HMRF framework, results
in the accuracy of the snow products increases by 2.71 %
and the OE decreases by 3.59 %. Specifically, the accuracy of
the new snow products is particularly improved during snow
transitional period and over complex terrains with high ele-
vation and sunny slopes.

We believe that the long-term and spatiotemporally contin-
uous snow cover products generated in this study have great
potential to analyze the processes of snow accumulation and
melting, to monitor climate change, and to understand hydro-
logical cycling in the TP.
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Appendix A

Table A1. Landsat series images used for assessment of the HMRF-based snow cover products in this study.

Image pair no. Sensor Tile path/row Date of acquisition Cloud cover (%)
(yyyy-mm-dd)

1 ETM+ 131/38 2002-11-22 1 %
2 ETM+ 136/38 2003-1-28 0 %
3 ETM+ 132/41 2003-2-17 1 %
4 TM 136/33 2003-8-16 0 %
5 TM 141/35 2003-9-20 0 %
6 TM 135/33 2004-8-27 0 %
7 TM 137/39 2004-12-15 1 %
8 TM 132/38 2005-1-13 1 %
9 TM 136/39 2005-3-14 1 %
10 TM 132/34 2005-4-3 1 %
11 TM 142/34 2005-6-28 0 %
12 TM 136/36 2005-10-24 1 %
13 TM 133/38 2005-11-4 1 %
14 TM 135/39 2006-2-6 1 %
15 TM 135/33 2006-8-1 0 %
16 TM 141/39 2006-9-28 1 %
17 TM 132/34 2006-10-31 2 %
18 TM 134/37 2006-11-30 1 %
19 TM 136/39 2006-12-14 1 %
20 TM 134/33 2007-3-6 1 %
21 TM 141/34 2007-7-13 1 %
22 TM 139/35 2007-9-17 1 %
23 TM 132/37 2008-2-23 1 %
24 TM 132/42 2008-3-10 1 %
25 TM 134/36 2008-5-11 1 %
26 TM 145/35 2008-6-25 1 %
27 TM 142/34 2008-8-7 1 %
28 TM 150/33 2008-10-2 1 %
29 TM 130/37 2008-11-7 1 %
30 TM 133/37 2008-12-14 1 %
31 TM 132/38 2009-3-13 0 %
32 TM 132/37 2009-4-14 1 %
33 TM 147/35 2009-8-13 1 %
34 TM 151/33 2009-9-10 1 %
35 TM 138/37 2009-10-17 1 %
36 TM 134/36 2009-11-22 1 %
37 TM 133/38 2010-2-19 0 %
38 TM 135/39 2010-3-21 1 %
39 TM 150/32 2010-11-9 1 %
40 TM 134/39 2011-3-1 1 %
41 TM 141/35 2011-8-25 0 %
42 TM 132/37 2011-10-29 0 %
43 OLI 147/37 2013-4-18 2 %
44 OLI 149/34 2013-5-18 2 %
45 OLI 146/36 2013-8-1 1 %
46 OLI 145/36 2013-9-27 2 %
47 OLI 141/35 2013-11-18 1 %
48 OLI 133/40 2014-1-13 1 %
49 OLI 136/38 2014-2-19 1 %
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Table A1. Continued.

Image pair no. Sensor Tile path/row Date of acquisition Cloud cover (%)
(yyyy-mm-dd)

50 OLI 136/33 2014-7-13 0 %
51 OLI 144/35 2014-8-22 1 %
52 OLI 139/38 2015-1-10 1 %
53 OLI 143/39 2015-3-11 1 %
54 OLI 151/33 2015-10-13 1 %
55 OLI 136/38 2015-12-23 1 %
56 OLI 132/34 2016-5-3 2 %
57 OLI 151/33 2016-6-25 2 %
58 OLI 143/34 2016-9-21 1 %
59 OLI 133/37 2016-11-18 2 %
60 OLI 146/38 2017-2-1 1 %
61 OLI 151/33 2017-4-9 0 %
62 OLI 144/35 2017-7-29 1 %
63 OLI 133/37 2017-11-5 1 %
64 OLI 131/36 2018-4-16 1 %
65 OLI 133/38 2018-11-8 0 %
66 OLI 137/40 2018-12-22 0 %
67 OLI 131/38 2019-3-18 1 %
68 OLI 136/33 2019-8-28 0 %
69 OLI 151/33 2019-9-22 0 %
70 OLI 134/36 2019-11-2 1 %
71 OLI 132/38 2019-12-6 1 %
72 OLI 135/39 2020-1-12 1 %
73 OLI 136/38 2020-2-4 1 %
74 OLI 151/33 2020-8-23 1 %
75 OLI 149/35 2020-12-31 1 %
76 OLI 132/34 2021-1-25 1 %
77 OLI 143/34 2021-7-17 1 %
78 OLI 151/33 2021-9-27 0 %
79 OLI 135/36 2021-10-29 1 %
80 OLI 143/36 2021-11-22 0 %
81 OLI 151/33 2021-12-16 1 %
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