Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1193-2022
https://doi.org/10.5194/essd-14-1193-2022
Data description paper
 | 
16 Mar 2022
Data description paper |  | 16 Mar 2022

A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches

Xing Yan, Zhou Zang, Zhanqing Li, Nana Luo, Chen Zuo, Yize Jiang, Dan Li, Yushan Guo, Wenji Zhao, Wenzhong Shi, and Maureen Cribb

Related authors

High-precision 3D Modeling of Construction Waste Pile Bodies by Integrating Multi-source Data
Leyan Shi, Wenji Zhao, Yanhui Wang, and Xing Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 423–429, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024,https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024, 2024
Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021,https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Statistical aerosol properties associated with fire events from 2002 to 2019 and a case analysis in 2019 over Australia
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021,https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China
Jun Chen, Zhanqing Li, Min Lv, Yuying Wang, Wei Wang, Yingjie Zhang, Haofei Wang, Xing Yan, Yele Sun, and Maureen Cribb
Atmos. Chem. Phys., 19, 1327–1342, https://doi.org/10.5194/acp-19-1327-2019,https://doi.org/10.5194/acp-19-1327-2019, 2019
Short summary
HOW WELL DOES SATELLITE FINE MODE AEROSOL PRODUCT VALIDATE WITH GROUND-BASED MEASUREMENTS FOR MODIS AND HIMAWARI-8?
J. Jin, X. Yang, C. Liang, W. Zhao, Z. Li, and X. Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 699–701, https://doi.org/10.5194/isprs-archives-XLII-3-699-2018,https://doi.org/10.5194/isprs-archives-XLII-3-699-2018, 2018

Related subject area

Atmospheric chemistry and physics
A 10 km daily-level ultraviolet-radiation-predicting dataset based on machine learning models in China from 2005 to 2020
Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, and Xia Meng
Earth Syst. Sci. Data, 16, 4655–4672, https://doi.org/10.5194/essd-16-4655-2024,https://doi.org/10.5194/essd-16-4655-2024, 2024
Short summary
GHOST: a globally harmonised dataset of surface atmospheric composition measurements
Dene Bowdalo, Sara Basart, Marc Guevara, Oriol Jorba, Carlos Pérez García-Pando, Monica Jaimes Palomera, Olivia Rivera Hernandez, Melissa Puchalski, David Gay, Jörg Klausen, Sergio Moreno, Stoyka Netcheva, and Oksana Tarasova
Earth Syst. Sci. Data, 16, 4417–4495, https://doi.org/10.5194/essd-16-4417-2024,https://doi.org/10.5194/essd-16-4417-2024, 2024
Short summary
Changes in air pollutant emissions in China during two clean-air action periods derived from the newly developed Inversed Emission Inventory for Chinese Air Quality (CAQIEI)
Lei Kong, Xiao Tang, Zifa Wang, Jiang Zhu, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Jie Li, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data, 16, 4351–4387, https://doi.org/10.5194/essd-16-4351-2024,https://doi.org/10.5194/essd-16-4351-2024, 2024
Short summary
Version 1 NOAA-20/OMPS Nadir Mapper total column SO2 product: continuation of NASA long-term global data record
Can Li, Nickolay A. Krotkov, Joanna Joiner, Vitali Fioletov, Chris McLinden, Debora Griffin, Peter J. T. Leonard, Simon Carn, Colin Seftor, and Alexander Vasilkov
Earth Syst. Sci. Data, 16, 4291–4309, https://doi.org/10.5194/essd-16-4291-2024,https://doi.org/10.5194/essd-16-4291-2024, 2024
Short summary
GERB Obs4MIPs: a dataset for evaluating diurnal and monthly variations in top-of-atmosphere radiative fluxes in climate models
Jacqueline E. Russell, Richard J. Bantges, Helen E. Brindley, and Alejandro Bodas-Salcedo
Earth Syst. Sci. Data, 16, 4243–4266, https://doi.org/10.5194/essd-16-4243-2024,https://doi.org/10.5194/essd-16-4243-2024, 2024
Short summary

Cited articles

Anderson, T. L., Wu, Y. H., Chu, D. A., Schmid, B., Redemann, J., and Dubovik, O.: Testing the MODIS satellite retrieval of aerosol fine-mode fraction, J. Geophys. Res.-Atmos., 110, D18204, https://doi.org/10.1029/2005jd005978, 2005. 
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – Anational surface radiation budget network for atmospheric research, B. Am. Meteorol. Soc., 81, 2341–2357, 2000. 
Bellouin, N., Boucher, O., Haywood, J., and Reddy, M. S.: Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138–1141, https://doi.org/10.1038/nature04348, 2005. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF was extensively evaluated against ground-truth AERONET data and tested on a global scale against conventional satellite-based FMF products to demonstrate its superiority in accuracy.
Altmetrics
Final-revised paper
Preprint