Articles | Volume 14, issue 3
https://doi.org/10.5194/essd-14-1193-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-1193-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Zhou Zang
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Department of Atmospheric and Oceanic Science and ESSIC, University of
Maryland, College Park, MD, 20740, USA
Nana Luo
School of Geomatics and Urban Spatial Informatics, Beijing University
of Civil Engineering and Architecture, Beijing 102612, China
Chen Zuo
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Yize Jiang
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Dan Li
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Yushan Guo
State Key Laboratory of Remote Sensing Science, College of Global
Change and Earth System Science, Beijing Normal University, Beijing, 100875,
China
Wenji Zhao
College of Resource Environment and Tourism, Capital Normal
University, Beijing, China
Wenzhong Shi
Department of Land Surveying and Geo-Informatics, The Hong Kong
Polytechnic University, Hong Kong, China
Maureen Cribb
Department of Atmospheric and Oceanic Science and ESSIC, University of
Maryland, College Park, MD, 20740, USA
Related authors
Jialu Xu, Yingjie Zhang, Yuying Wang, Xing Yan, Bin Zhu, Chunsong Lu, Yuanjian Yang, Yele Sun, Junhui Zhang, Xiaofan Zuo, Zhanghanshu Han, and Rui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3184, https://doi.org/10.5194/egusphere-2025-3184, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to explore how the height of the atmospheric boundary layer affects fine particle pollution. We found that low boundary layers in winter trap pollutants like nitrate and primary particles, while higher layers in summer help form secondary pollutants like sulfate and organic aerosols. These findings show that boundary layer dynamics are key to understanding and managing seasonal air pollution.
Junhui Zhang, Yuying Wang, Jialu Xu, Xiaofan Zuo, Chunsong Lu, Bin Zhu, Yuanjian Yang, Xing Yan, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3186, https://doi.org/10.5194/egusphere-2025-3186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to understand how tiny airborne particles take up water, which affects air quality and climate. We found that particle water uptake varies by season and size, with lower values in summer due to more organic materials. Local pollution mainly influences smaller particles, while larger ones are shaped by air mass transport. These findings help improve climate models and support better air pollution control in fast-growing cities.
Leyan Shi, Wenji Zhao, Yanhui Wang, and Xing Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 423–429, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024, 2024
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021, https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Short summary
New particle formation (NPF) can be a large source of CCN and affect weather and climate. Here we show that the NPF contributes largely to cloud droplet number concentration (Nd) but is suppressed at high particle number concentrations in Beijing due to water vapor competition. We also reveal a considerable impact of primary sources on the evaluation in the urban atmosphere. Our study has great significance for assessing NPF-associated effects on climate in polluted regions.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Jialu Xu, Yingjie Zhang, Yuying Wang, Xing Yan, Bin Zhu, Chunsong Lu, Yuanjian Yang, Yele Sun, Junhui Zhang, Xiaofan Zuo, Zhanghanshu Han, and Rui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3184, https://doi.org/10.5194/egusphere-2025-3184, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to explore how the height of the atmospheric boundary layer affects fine particle pollution. We found that low boundary layers in winter trap pollutants like nitrate and primary particles, while higher layers in summer help form secondary pollutants like sulfate and organic aerosols. These findings show that boundary layer dynamics are key to understanding and managing seasonal air pollution.
Junhui Zhang, Yuying Wang, Jialu Xu, Xiaofan Zuo, Chunsong Lu, Bin Zhu, Yuanjian Yang, Xing Yan, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3186, https://doi.org/10.5194/egusphere-2025-3186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to understand how tiny airborne particles take up water, which affects air quality and climate. We found that particle water uptake varies by season and size, with lower values in summer due to more organic materials. Local pollution mainly influences smaller particles, while larger ones are shaped by air mass transport. These findings help improve climate models and support better air pollution control in fast-growing cities.
Damao Zhang, Jennifer Comstock, Chitra Sivaraman, Kefei Mo, Raghavendra Krishnamurthy, Jingjing Tian, Tianning Su, Zhanqing Li, and Natalia Roldán-Henao
Atmos. Meas. Tech., 18, 3453–3475, https://doi.org/10.5194/amt-18-3453-2025, https://doi.org/10.5194/amt-18-3453-2025, 2025
Short summary
Short summary
Planetary boundary layer height (PBLHT) is an important parameter in atmospheric process studies and numerical model simulations. We use machine learning methods to produce a best-estimate planetary boundary layer height (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements. We demonstrated that PBLHT-BE-ML greatly improved the comparisons against sounding-derived PBLHT.
Debaditya Acharya, Ben Gorte, Min Zhang, Daping Yang, Wenzhong Shi, Sisi Zlatanova, and Monica Wachowicz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 23–30, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-23-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-23-2025, 2025
Debaditya Acharya, Daping Yang, Monica Wachowicz, Min Zhang, Wenzhong Shi, and Sisi Zlatanova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-G-2025, 31–38, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-31-2025, https://doi.org/10.5194/isprs-archives-XLVIII-G-2025-31-2025, 2025
Leyan Shi, Wenji Zhao, Yanhui Wang, and Xing Yan
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 423–429, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-423-2024, 2024
Y. Yu, W. Shi, Z. Liu, K. Tang, L. Chen, and R. Chen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 525–532, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-525-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-525-2023, 2023
Siyu Shan, Dale Allen, Zhanqing Li, Kenneth Pickering, and Jeff Lapierre
Atmos. Chem. Phys., 23, 14547–14560, https://doi.org/10.5194/acp-23-14547-2023, https://doi.org/10.5194/acp-23-14547-2023, 2023
Short summary
Short summary
Several machine learning models are applied to identify important variables affecting lightning occurrence in the vicinity of the Southern Great Plains ARM site during the summer months of 2012–2020. We find that the random forest model is the best predictor among common classifiers. We rank variables in terms of their effectiveness in nowcasting ENTLN lightning and identify geometric cloud thickness, rain rate and convective available potential energy (CAPE) as the most effective predictors.
Jing Wei, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb
Atmos. Chem. Phys., 23, 1511–1532, https://doi.org/10.5194/acp-23-1511-2023, https://doi.org/10.5194/acp-23-1511-2023, 2023
Short summary
Short summary
This study estimated the daily seamless 10 km ambient gaseous pollutants (NO2, SO2, and CO) across China using machine learning with extensive input variables measured on monitors, satellites, and models. Our dataset yields a high data quality via cross-validation at varying spatiotemporal scales and outperforms most previous related studies, making it most helpful to future (especially short-term) air pollution and environmental health-related studies.
Rui Zhang, Yuying Wang, Zhanqing Li, Zhibin Wang, Russell R. Dickerson, Xinrong Ren, Hao He, Fei Wang, Ying Gao, Xi Chen, Jialu Xu, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 14879–14891, https://doi.org/10.5194/acp-22-14879-2022, https://doi.org/10.5194/acp-22-14879-2022, 2022
Short summary
Short summary
Factors of cloud condensation nuclei number concentration (NCCN) profiles determined in the North China Plain include air mass sources, temperature structure, anthropogenic emissions, and terrain distribution. Cloud condensation nuclei (CCN) spectra suggest that the ability of aerosol activation into CCN is stronger in southeasterly than in northwesterly air masses and stronger in the free atmosphere than near the surface. A good method to parameterize NCCN from aerosol optical data is found.
Yuying Wang, Rong Hu, Qiuyan Wang, Zhanqing Li, Maureen Cribb, Yele Sun, Xiaorui Song, Yi Shang, Yixuan Wu, Xin Huang, and Yuxiang Wang
Atmos. Chem. Phys., 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, https://doi.org/10.5194/acp-22-14133-2022, 2022
Short summary
Short summary
The mixing state of size-resolved soot particles and their influencing factors were investigated. The results suggest anthropogenic emissions and aging processes have diverse impacts on the mixing state of soot particles in different modes. Considering that the mixing state of soot particles is crucial to model aerosol absorption, this finding is important to study particle growth and the warming effect of black carbon aerosols.
M. Chen, N. Luo, and M. Du
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-W1-2022, 7–12, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-7-2022, https://doi.org/10.5194/isprs-archives-XLVIII-3-W1-2022-7-2022, 2022
Katherine T. Junghenn Noyes, Ralph A. Kahn, James A. Limbacher, and Zhanqing Li
Atmos. Chem. Phys., 22, 10267–10290, https://doi.org/10.5194/acp-22-10267-2022, https://doi.org/10.5194/acp-22-10267-2022, 2022
Short summary
Short summary
We compare retrievals of wildfire smoke particle size, shape, and light absorption from the MISR satellite instrument to modeling and other satellite data on land cover type, drought conditions, meteorology, and estimates of fire intensity (fire radiative power – FRP). We find statistically significant differences in the particle properties based on burning conditions and land cover type, and we interpret how changes in these properties point to specific aerosol aging mechanisms.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Lu Chen, Fang Zhang, Don Collins, Jingye Ren, Jieyao Liu, Sihui Jiang, and Zhanqing Li
Atmos. Chem. Phys., 22, 2293–2307, https://doi.org/10.5194/acp-22-2293-2022, https://doi.org/10.5194/acp-22-2293-2022, 2022
Short summary
Short summary
Understanding the volatility and mixing state of atmospheric aerosols is important for elucidating their formation. Here, the size-resolved volatility of fine particles is characterized using field measurements. On average, the particles are more volatile in the summer. The retrieved mixing state shows that black carbon (BC)-containing particles dominate and contribute 67–77 % toward the total number concentration in the winter, while the non-BC particles accounted for 52–69 % in the summer.
Tianning Su, Youtong Zheng, and Zhanqing Li
Atmos. Chem. Phys., 22, 1453–1466, https://doi.org/10.5194/acp-22-1453-2022, https://doi.org/10.5194/acp-22-1453-2022, 2022
Short summary
Short summary
To enrich our understanding of coupling of continental clouds, we developed a novel methodology to determine cloud coupling state from a lidar and a suite of surface meteorological instruments. This method is built upon advancement in our understanding of fundamental boundary layer processes and clouds. As the first remote sensing method for determining the coupling state of low clouds over land, this methodology paves a solid ground for further investigating the coupled land–atmosphere system.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Sihui Jiang, Fang Zhang, Jingye Ren, Lu Chen, Xing Yan, Jieyao Liu, Yele Sun, and Zhanqing Li
Atmos. Chem. Phys., 21, 14293–14308, https://doi.org/10.5194/acp-21-14293-2021, https://doi.org/10.5194/acp-21-14293-2021, 2021
Short summary
Short summary
New particle formation (NPF) can be a large source of CCN and affect weather and climate. Here we show that the NPF contributes largely to cloud droplet number concentration (Nd) but is suppressed at high particle number concentrations in Beijing due to water vapor competition. We also reveal a considerable impact of primary sources on the evaluation in the urban atmosphere. Our study has great significance for assessing NPF-associated effects on climate in polluted regions.
Rongmin Ren, Zhanqing Li, Peng Yan, Yuying Wang, Hao Wu, Maureen Cribb, Wei Wang, Xiao'ai Jin, Yanan Li, and Dongmei Zhang
Atmos. Chem. Phys., 21, 9977–9994, https://doi.org/10.5194/acp-21-9977-2021, https://doi.org/10.5194/acp-21-9977-2021, 2021
Short summary
Short summary
We analyzed the effect of the proportion of components making up the chemical composition of aerosols on f(RH) in southern Beijing in 2019. Nitrate played a more significant role in affecting f(RH) than sulfate. The ratio of the sulfate mass fraction to the nitrate mass fraction (mostly higher than ~ 4) was a sign of the deliquescence of aerosol. A piecewise parameterized scheme was proposed, which could better describe deliquescence and reduce uncertainties in simulating aerosol hygroscopicity.
Jing Wei, Zhanqing Li, Rachel T. Pinker, Jun Wang, Lin Sun, Wenhao Xue, Runze Li, and Maureen Cribb
Atmos. Chem. Phys., 21, 7863–7880, https://doi.org/10.5194/acp-21-7863-2021, https://doi.org/10.5194/acp-21-7863-2021, 2021
Short summary
Short summary
This study developed a space-time Light Gradient Boosting Machine (STLG) model to derive the high-temporal-resolution (1 h) and high-quality PM2.5 dataset in China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution from the Himawari-8 Advanced Himawari Imager aerosol products. Our model outperforms most previous related studies with a much lower computation burden in terms of speed and memory, making it most suitable for real-time air pollution monitoring in China.
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021, https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
Short summary
A convective cloud identification process is developed using geostationary satellite data from Himawari-8.
Convective cloud fraction is generally larger before noon and smaller in the afternoon under polluted conditions, but megacities and complex topography can influence the pattern.
A robust relationship between convective cloud and aerosol loading is found. This pattern varies with terrain height and is modulated by varying thermodynamic, dynamical, and humidity conditions during the day.
Xingchuan Yang, Chuanfeng Zhao, Yikun Yang, Xing Yan, and Hao Fan
Atmos. Chem. Phys., 21, 3833–3853, https://doi.org/10.5194/acp-21-3833-2021, https://doi.org/10.5194/acp-21-3833-2021, 2021
Short summary
Short summary
Using long-term multi-source data, this study shows significant impacts of fire events on aerosol properties over Australia. The contribution of carbonaceous aerosols to the total was 26 % of the annual average but larger (30–43 %) in September–December; smoke and dust are the two dominant aerosol types at different heights in southeastern Australia for the 2019 fire case. These findings are helpful for understanding aerosol climate effects and improving climate modeling in Australia in future.
Yuwei Zhang, Jiwen Fan, Zhanqing Li, and Daniel Rosenfeld
Atmos. Chem. Phys., 21, 2363–2381, https://doi.org/10.5194/acp-21-2363-2021, https://doi.org/10.5194/acp-21-2363-2021, 2021
Short summary
Short summary
Impacts of anthropogenic aerosols on deep convective clouds (DCCs) and precipitation are examined using both the Morrison bulk and spectral bin microphysics (SBM) schemes. With the SBM scheme, anthropogenic aerosols notably invigorate convective intensity and precipitation, causing better agreement between the simulated DCCs and observations; this effect is absent with the Morrison scheme, mainly due to limitations of the saturation adjustment approach for droplet condensation and evaporation.
Yuying Wang, Zhanqing Li, Qiuyan Wang, Xiaoai Jin, Peng Yan, Maureen Cribb, Yanan Li, Cheng Yuan, Hao Wu, Tong Wu, Rongmin Ren, and Zhaoxin Cai
Atmos. Chem. Phys., 21, 915–926, https://doi.org/10.5194/acp-21-915-2021, https://doi.org/10.5194/acp-21-915-2021, 2021
Short summary
Short summary
The unexpected increase in surface ozone concentration was found along with the reduced anthropogenic emissions during the 2019 Chinese Spring Festival in Beijing. The enhanced atmospheric oxidation capacity could promote the formation of secondary aerosols, especially sulfate, which offset the decrease in PM2.5 mass concentration. This phenomenon was likely to exist throughout the entire Beijing–Tianjin–Hebei (BTH) region to be a contributing factor to the haze during the COVID-19 lockdown.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Jiwen Fan, Yuwei Zhang, Zhanqing Li, Jiaxi Hu, and Daniel Rosenfeld
Atmos. Chem. Phys., 20, 14163–14182, https://doi.org/10.5194/acp-20-14163-2020, https://doi.org/10.5194/acp-20-14163-2020, 2020
Short summary
Short summary
We investigate the urbanization-induced land and aerosol impacts on convective clouds and precipitation over Houston. We find that Houston urbanization notably enhances storm intensity and precipitation, with the anthropogenic aerosol effect more significant. Urban land effect strengthens sea-breeze circulation, leading to a faster development of warm cloud into mixed-phase cloud and earlier rain. The anthropogenic aerosol effect accelerates the development of storms into deep convection.
Pengguo Zhao, Zhanqing Li, Hui Xiao, Fang Wu, Youtong Zheng, Maureen C. Cribb, Xiaoai Jin, and Yunjun Zhou
Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, https://doi.org/10.5194/acp-20-13379-2020, 2020
Short summary
Short summary
We discussed the different aerosol effects on lightning in plateau and basin regions of Sichuan, southwestern China. In the plateau area, the aerosol concentration is low, and aerosols (via microphysical effects) inhibit the process of warm rain and stimulate convection and lightning activity. In the basin region, however, aerosols tend to show a significant radiative effect (reducing the solar radiation reaching the surface by absorbing and scattering) and inhibit the lightning.
Cited articles
Andela, N., Morton, D. C., Giglio, L., Chen, Y., van der Werf, G. R.,
Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S.,
Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R.,
Yue, C., and Randerson, J. T.: A human-driven decline in global burned area,
Science, 356, 1356–1361, https://doi.org/10.1126/science.aal4108, 2017.
Anderson, T. L., Wu, Y. H., Chu, D. A., Schmid, B., Redemann, J., and
Dubovik, O.: Testing the MODIS satellite retrieval of aerosol fine-mode
fraction, J. Geophys. Res.-Atmos., 110, D18204, https://doi.org/10.1029/2005jd005978, 2005.
Augustine, J. A., DeLuisi, J. J., and Long, C. N.: SURFRAD – Anational
surface radiation budget network for atmospheric research, B.
Am. Meteorol. Soc., 81, 2341–2357, 2000.
Bellouin, N., Boucher, O., Haywood, J., and Reddy, M. S.: Global estimate of
aerosol direct radiative forcing from satellite measurements, Nature, 438,
1138–1141, https://doi.org/10.1038/nature04348, 2005.
Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A., Ducos, F., Derimian, Y., Herman, M., Tanré, D., Remer, L. A., Lyapustin, A., Sayer, A. M., Levy, R. C., Hsu, N. C., Descloitres, J., Li, L., Torres, B., Karol, Y., Herrera, M., Herreras, M., Aspetsberger, M., Wanzenboeck, M., Bindreiter, L., Marth, D., Hangler, A., and Federspiel, C.: Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, 2020.
Chen, X., de Leeuw, G., Arola, A., Liu, S., Liu, Y., Li, Z., and Zhang, K.:
Joint retrieval of the aerosol fine mode fraction and optical depth using
MODIS spectral reflectance over northern and eastern China: Artificial
neural network method, Remote Sens. Environ., 249, 112006, https://doi.org/10.1016/j.rse.2020.112006, 2020.
Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., Van Dingenen, R., and Granier, C.: Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chem. Phys., 16, 3825–3841, https://doi.org/10.5194/acp-16-3825-2016, 2016.
Deeter, M. N., Martinez-Alonso, S., Andreae, M. O., and Schlager, H.:
Satellite-Based Analysis of CO Seasonal and Interannual Variability Over the
Amazon Basin, J. Geophys. Res.-Atmos., 123, 5641–5656, https://doi.org/10.1029/2018jd028425, 2018.
Deuze, J. L., Breon, F. M., Devaux, C., Goloub, P., Herman, M., Lafrance,
B., Maignan, F., Marchand, A., Nadal, F., Perry, G., and Tanre, D.: Remote
sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized
measurements, J. Geophys. Res.-Atmos., 106, 4913–4926, https://doi.org/10.1029/2000jd900364, 2001.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A.
W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B.,
and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR) –
Instrument description and experiment overview, IEEE T.
Geosci. Remote, 36, 1072–1087, https://doi.org/10.1109/36.700992, 1998.
Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., Deuzé, J. L., Ducos, F., Sinyuk, A., and Lopatin, A.: Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations, Atmos. Meas. Tech., 4, 975–1018, https://doi.org/10.5194/amt-4-975-2011, 2011.
Dubovik, O., Lapyonok, T., Litvinov, P., Herman, M., Fuertes, D., Ducos, F.,
Lopatin, A., Chaikovsky, A., Torres, B., Derimian, Y., Huang, X.,
Aspetsberger, M., and Federspiel, C.: GRASP: a versatile algorithm for
characterizing the atmosphere, SPIE Newsroom, 25, 2.1201408,
https://doi.org/10.1117/2.1201408.005558, 2014.
Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bojkov,
B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P., Gu, X., Hasekamp,
O., Hong, J., Hou, W., Knobelspiesse, K. D., Landgraf, J., Li, L., Litvinov,
P., Liu, Y., Lopatin, A., Marbach, T., Maring, H., Martins, V., Meijer, Y.,
Milinevsky, G., Mukai, S., Parol, F., Qiao, Y., Remer, L., Rietjens, J.,
Sano, I., Stammes, P., Stamnes, S., Sun, X., Tabary, P., Travis, L. D.,
Waquet, F., Xu, F., Yan, C., and Yin, D.: Polarimetric remote sensing of
atmospheric aerosols: Instruments, methodologies, results, and perspectives,
J. Quant. Spectrosc. Ra., 224, 474–511,
https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019.
Garay, M. J., Witek, M. L., Kahn, R. A., Seidel, F. C., Limbacher, J. A., Bull, M. A., Diner, D. J., Hansen, E. G., Kalashnikova, O. V., Lee, H., Nastan, A. M., and Yu, Y.: Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020, 2020.
Gautam, R., Liu, Z., Singh, R. P., and Hsu, N. C.: Two contrasting
dust-dominant periods over India observed from MODIS and CALIPSO data,
Geophys. Res. Lett., 36, L06813, https://doi.org/10.1029/2008gl036967, 2009.
Generoso, S., Bréon, F.-M., Balkanski, Y., Boucher, O., and Schulz, M.: Improving the seasonal cycle and interannual variations of biomass burning aerosol sources, Atmos. Chem. Phys., 3, 1211–1222, https://doi.org/10.5194/acp-3-1211-2003, 2003.
Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng, Y., Sun,
T., and Zhang, X.: Satellite-derived PM2.5 concentration trends over Eastern
China from 1998 to 2016: relationships to emissions and meteorological
parameters, Environ. Pollut., 247, 1125–1133,
https://doi.org/10.1016/j.envpol.2019.01.056, 2019.
Guo, C.; Berkhahn, F.: Entity Embeddings of Categorical Variables, arXiv [preprint], arXiv:1604.06737, 2016.
Hand, J. L., Schichtel, B. A., Pitchford, M., Malm, W. C., and Frank, N. H.:
Seasonal composition of remote and urban fine particulate matter in the
United States, J. Geophys. Res.-Atmos., 117, D05209, https://doi.org/10.1029/2011jd017122, 2012.
Harrison, L., Michalsky, J., and Berndt, J.: Automated multifilter rotating
shadow-band radiometer: An instrument for optical depth and radiation
measurements, Appl. Optics, 33, 5118–5125, https://doi.org/10.1364/AO.33.005118, 1994.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ.,
66, 1–16, https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
Huebert, B. J., Bates, T., Russell, P. B., Shi, G. Y., Kim, Y. J., Kawamura,
K., Carmichael, G., and Nakajima, T.: An overview of ACE-Asia: Strategies
for quantifying the relationships between Asian aerosols and their climatic
impacts, J. Geophys. Res.-Atmos., 108, 8633, https://doi.org/10.1029/2003jd003550, 2003.
Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., and
Kayetha, V.: Connecting Crop Productivity, Residue Fires, and Air Quality
over Northern India, Sci. Rep.-UK, 9, 16594, https://doi.org/10.1038/s41598-019-52799-x,
2019.
Jiang, Z., McDonald, B. C., Worden, H., Worden, J. R., Miyazaki, K., Qu, Z.,
Henze, D. K., Jones, D. B. A., Arellano, A. F., Fischer, E. V., Zhu, L., and
Boersma, K. F.: Unexpected slowdown of US pollutant emission reduction in
the past decade, P. Natl. Acad. Sci.
USA, 115, 5099–5104, https://doi.org/10.1073/pnas.1801191115, 2018.
Kahn, R. A. and Gaitley, B. J.: An analysis of global aerosol type as
retrieved by MISR, J. Geophys. Res.-Atmos., 120,
4248–4281, https://doi.org/10.1002/2015jd023322, 2015.
Kalapureddy, M. C. R. and Devara, P. C. S.: Characterization of aerosols
over oceanic regions around India during pre-monsoon 2006, Atmos.
Environ., 42, 6816–6827, https://doi.org/10.1016/j.atmosenv.2008.05.022, 2008.
Kang, P., Feng, N., Wang, Z., Guo, Y., Wang, Z., Chen, Y., Zhan, J., Zhan,
F. B., and Hong, S.: Statistical properties of aerosols and meteorological
factors in Southwest China, J. Geophys. Res.-Atmos.,
119, 9914–9930, https://doi.org/10.1002/2014JD022083, 2014.
Kolmonen, P., Sogacheva, L., Virtanen, T. H., de Leeuw, G., and Kulmala, M.:
The ADV/ASV AATSR aerosol retrieval algorithm: current status and
presentation of a full-mission AOD dataset, Int. J. Digit.
Earth, 9, 545–561, https://doi.org/10.1080/17538947.2015.1111450, 2016.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second-generation operational algorithm: Retrieval of aerosol properties
over land from inversion of Moderate Resolution Imaging Spectroradiometer
spectral reflectance, J. Geophys. Res.-Atmos., 112, D13211, https://doi.org/10.1029/2006jd007811, 2007.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Li, Z., Lau, W. K.-M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu,
J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y.,
Huang, J., Wang, B., Xu, X., Lee, S.-S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929, https://doi.org/10.1002/2015RG000500, 2016a.
Li, Z., Zhang, Y., Shao, J., Li, B., Hong, J., Liu, D., Li, D., Wei, P., Li,
W., Li, L., Zhang, F., Guo, J., Deng, Q., Wang, B., Cui, C., Zhang, W.,
Wang, Z., Lv, Y., Xu, H., Chen, X., Li, L., and Qie, L.: Remote sensing of
atmospheric particulate mass of dry PM2.5 near the ground: Method validation
using ground-based measurements, Remote Sens. Environ., 173, 59–68, https://doi.org/10.1016/j.rse.2015.11.019, 2016b.
Liang, C., Zang, Z., Li, Z., and Yan, X.: An Improved Global Land
Anthropogenic Aerosol Product Based on Satellite Retrievals From 2008 to
2016, IEEE Geosci. Remote Sens. Lett., 18, 944–948, https://doi.org/10.1109/lgrs.2020.2991730, 2021.
Liang, X., Li, S., Zhang, S., Huang, H., and Chen, S. X.: PM2.5 data
reliability, consistency, and air quality assessment in five Chinese cities,
J. Geophys. Res.-Atmos., 121, 10220–10236,
https://doi.org/10.1002/2016JD024877, 2016.
Lipponen, A., Mielonen, T., Pitkänen, M. R. A., Levy, R. C., Sawyer, V. R., Romakkaniemi, S., Kolehmainen, V., and Arola, A.: Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land, Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, 2018.
Liu, T., Mickley, L. J., and McCarty, J. L.: Global search for temporal
shifts in fire activity: potential human influence on southwest Russia and
north Australia fire seasons, Environ. Res. Lett., 16, https://doi.org/10.1088/1748-9326/abe328, 2021.
Luo, N., An, L., Nara, A., Yan, X., and Zhao, W.: GIS-based multielement
source analysis of dustfall in Beijing: a study of 40 major and trace
elements, Chemosphere, 152, 123–131, 2016.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., and Babu, S.
S.: Decreasing Trend in Black Carbon Aerosols Over the Indian Region,
Geophys. Res. Lett., 46, 2903–2910, https://doi.org/10.1029/2018gl081666, 2019.
Mhawish, A., Sorek-Hamer, M., Chatfield, R., Banerjee, T., Bilal, M., Kumar,
M., Sarangi, C., Franklin, M., Chau, K., Garay, M., and Kalashnikova, O.:
Aerosol characteristics from earth observation systems: A comprehensive
investigation over South Asia (2000–2019), Remote Sens. Environ.,
259, 112410, https://doi.org/10.1016/j.rse.2021.112410, 2021.
O'Dell, K., Ford, B., Fischer, E. V., and Pierce, J. R.: Contribution of
Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent Trends,
Environ. Sci. Technol., 53, 1797–1804, https://doi.org/10.1021/acs.est.8b05430, 2019.
O’Neill, N., Eck, T., Smirnov, A., and Holben, B.: Spectral deconvolution algorithm (SDA) technical memo, NASA Tech. Memo., 39 pp., 2008.
O'Neill, N. T., Dubovik, O., and Eck, T. F.: Modified angstrom ngstrom
exponent for the characterization of submicrometer aerosols, Appl. Optics,
40, 2368–2375, https://doi.org/10.1364/ao.40.002368, 2001a.
O'Neill, N. T., Eck, T. F., Holben, B. N., Smirnov, A., Dubovik, O., and
Royer, A.: Bimodal size distribution influences on the variation of Angstrom
derivatives in spectral and optical depth space, J. Geophys.
Res.-Atmos., 106, 9787–9806, https://doi.org/10.1029/2000jd900245, 2001b.
O'Neill, N. T., Eck, T. F., Smirnov, A., Holben, B. N., and Thulasiraman,
S.: Spectral discrimination of coarse and fine mode optical depth, J. Geophys. Res.-Atmos., 108, 4559, https://doi.org/10.1029/2002jd002975, 2003.
O'Neill, N. T.: Comment on “Classification of aerosol properties derived from AERONET direct sun data” by Gobbi et al. (2007), Atmos. Chem. Phys., 10, 10017–10019, https://doi.org/10.5194/acp-10-10017-2010, 2010.
Ong, B. T., Sugiura, K., and Zettsu, K.: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5, Neural Comput. Appl., 27, 1553–1566, https://doi.org/10.1007/s00521-015-1955-3, 2016.
Parks, S. A. and Abatzoglou, J. T.: Warmer and Drier Fire Seasons Contribute
to Increases in Area Burned at High Severity in Western US Forests From 1985
to 2017, Geophys. Res. Lett., 47, e2020GL089858, https://doi.org/10.1029/2020gl089858, 2020.
Perez-Ramirez, D., Andrade-Flores, M., Eck, T. F., Stein, A. F., O'Neill, N.
T., Lyamani, H., Gasso, S., Whiteman, D. N., Veselovskii, I., Velarde, F.,
and Alados-Arboledas, L.: Multi year aerosol characterization in the
tropical Andes and in adjacent Amazonia using AERONET measurements,
Atmos. Environ., 166, 412–432, https://doi.org/10.1016/j.atmosenv.2017.07.037, 2017.
Petrenko, M. and Ichoku, C.: Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors, Atmos. Chem. Phys., 13, 6777–6805, https://doi.org/10.5194/acp-13-6777-2013, 2013.
Ramachandran, S.: Aerosol optical depth and fine mode fraction variations
deduced from Moderate Resolution Imaging Spectroradiometer (MODIS) over four
urban areas in India, J. Geophys. Res.-Atmos., 112, D16207, https://doi.org/10.1029/2007jd008500, 2007.
Sawyer, V., Levy, R. C., Mattoo, S., Cureton, G., Shi, Y., and Remer, L. A.: Continuing the MODIS Dark Target Aerosol Time Series with VIIRS, Remote Sensing, 12, 308, https://doi.org/10.3390/rs12020308, 2020.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M. J.: MODIS Collection 6 aerosol products: Comparison between Aqua's
e-Deep Blue, Dark Target, and “merged” data sets, and usage
recommendations, J. Geophys. Res.-Atmos., 119,
13965–913989, https://doi.org/10.1002/2014JD022453, 2014.
Shen, H., Li, T., Yuan, Q., and Zhang, L.: Estimating regional ground-level
PM2.5 directly from satellite top-of-atmosphere reflectance using deep
belief networks, J. Geophys. Res.-Atmos., 123, 13875–13886, https://doi.org/10.1029/2018JD028759, 2018.
Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H., and Burrows, M.: Rapid
warming has resulted in more wildfires in northeastern Australia, Sci. Total Environ., 771, 144888, https://doi.org/10.1016/j.scitotenv.2020.144888, 2021.
Tai, A. P. K., Mickley, L. J., and Jacob, D. J.: Correlations between fine
particulate matter (PM2.5) and meteorological variables in the United
States: Implications for the sensitivity of PM2.5 to climate change,
Atmos. Environ., 44, 3976–3984, https://doi.org/10.1016/j.atmosenv.2010.06.060,
2010.
Tan, C., Zhao, T., Xu, X., Liu, J., Zhang, L., and Tang, L.: Climatic
analysis of satellite aerosol data on variations of submicron aerosols over
East China, Atmos. Environ., 123, 392–398, https://doi.org/10.1016/j.atmosenv.2015.03.054, 2015.
Tetens, V. O.: Über einige meteorologische Begriffe, Zeitschrift für
Geophysik, 6, 297–309, 1930.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
Vinoj, V., Rasch, P. J., Wang, H., Yoon, J.-H., Ma, P.-L., Landu, K., and
Singh, B.: Short-term modulation of Indian summer monsoon rainfall by West
Asian dust, Nat. Geosci., 7, 308–313, https://doi.org/10.1038/ngeo2107, 2014.
Wei, Y., Li, Z., Zhang, Y., Chen, C., Dubovik, O., Zhang, Y., Xu, H., Li,
K., Chen, J., Wang, H., Ge, B., and Fan, C.: Validation of POLDER GRASP
aerosol optical retrieval over China using SONET observations, J.
Quant. Spectrosc. Ra., 246, 106931, https://doi.org/10.1016/j.jqsrt.2020.106931, 2020.
Xiang, Y., Zhang, T., Liu, J., Lv, L., Dong, Y., and Chen, Z.: Atmosphere
boundary layer height and its effect on air pollutants in Beijing during
winter heavy pollution, Atmos. Res., 215, 305–316,
https://doi.org/10.1016/j.atmosres.2018.09.014, 2019.
Yan, G., Jiang, H., Luo, J., Mu, X., Li, F., Qi, J., Hu, R., Xie, D., and
Zhou, G.: Quantitative Evaluation of Leaf Inclination Angle Distribution on
Leaf Area Index Retrieval of Coniferous Canopies, J. Remote Sens.,
2021, 2708904, https://doi.org/10.34133/2021/2708904, 2021.
Yan, K., Zou, D., Yan, G., Fang, H., Weiss, M., Rautiainen, M., Knyazikhin,
Y., and Myneni, R. B.: A Bibliometric Visualization Review of the MODIS
LAI/FPAR Products from 1995 to 2020, J. Remote Sens., 2021,
7410921, https://doi.org/10.34133/2021/7410921, 2021.
Yan, X.: Physical and deep learning retrieved fine mode fraction (Phy-DL
FMF), Zenodo [data set], https://doi.org/10.5281/zenodo.5105617, 2021.
Yan, X., Li, Z., Shi, W., Luo, N., Wu, T., and Zhao, W.: An improved
algorithm for retrieving the fine-mode fraction of aerosol optical
thickness, part 1: Algorithm development, Remote Sens. Environ.,
192, 87–97, https://doi.org/10.1016/j.rse.2017.02.005, 2017.
Yan, X., Li, Z., Luo, N., Shi, W., Zhao, W., Yang, X., Liang, C., Zhang, F.,
and Cribb, M.: An improved algorithm for retrieving the fine-mode fraction
of aerosol optical thickness. Part 2: Application and validation in Asia,
Remote Sens. Environ., 222, 90–103, https://doi.org/10.1016/j.rse.2018.12.012, 2019.
Yan, X., Zang, Z., Luo, N., Jiang, Y., and Li, Z.: New interpretable deep
learning model to monitor real-time PM2.5 concentrations from satellite
data, Environ. Int., 144, 106060, https://doi.org/10.1016/j.envint.2020.106060, 2020.
Yan, X., Zang, Z., Zhao, C., and Husi, L.: Understanding global changes in
fine-mode aerosols during 2008–2017 using statistical methods and deep
learning approach, Environ. Int., 149, 106392, https://doi.org/10.1016/j.envint.2021.106392, 2021a.
Yan, X., Zang, Z., Liang, C., Luo, N., Ren, R., Cribb, M., and Li, Z.: New
global aerosol fine-mode fraction data over land derived from MODIS
satellite retrievals, Environ. Pollut., 276, 116707, https://doi.org/10.1016/j.envpol.2021.116707, 2021b.
Yan, X., Zang, Z., Jiang, Y., Shi, W., Guo, Y., Li, D., Zhao, C., and Husi,
L.: A Spatial-Temporal Interpretable Deep Learning Model for improving
interpretability and predictive accuracy of satellite-based PM2.5,
Environ. Pollut., 273, 116459, https://doi.org/10.1016/j.envpol.2021.116459, 2021c.
Yang, X., Jiang, L., Zhao, W., Xiong, Q., Zhao, W., & Yan, X.: Comparison
of ground-based PM2.5 and PM10 concentrations in China, India, and the
US, Int. J. Environ. Res. Pu., 15, 1382, https://doi.org/10.3390/ijerph15071382, 2018.
Yang, X., Zhao, C., Luo, N., Zhao, W., Shi, W., and Yan, X.: Evaluation and
Comparison of Himawari-8 L2 V1. 0, V2. 1 and MODIS C6. 1 aerosol products
over Asia and the oceania regions, Atmos. Environ., 220, 117068,
https://doi.org/10.1016/j.atmosenv.2019.117068, 2020.
Yin, S., Wang, X., Zhang, X., Guo, M., Miura, M., and Xiao, Y.: Influence of
biomass burning on local air pollution in mainland Southeast Asia from 2001
to 2016, Environ. Pollut., 254, 112949,
https://doi.org/10.1016/j.envpol.2019.07.117, 2019.
Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W.,
Yang, Q., Wang, J., Gao, J., and Zhang, L.: Deep learning in environmental
remote sensing: Achievements and challenges, Remote Sens. Environ.,
241, 111716, https://doi.org/10.1016/j.rse.2020.111716, 2020.
Zang, Z., Guo, Y., Jiang, Y., Chen, Z., Li, D., Shi, W., and Yan, X.:
Tree-Based Ensemble Deep Learning Model for Spatiotemporal Surface Ozone
(O3) Prediction and Interpretation, Int. J. Applied Earth
Obs., 103, 102516, https://doi.org/10.1016/j.jag.2021.102516,
2021a.
Zang, Z., Li, D., Guo, Y., Shi, W., and Yan, X.: Superior PM2.5 Estimation
by Integrating Aerosol Fine Mode Data from the Himawari-8 Satellite in Deep
and Classical Machine Learning Models, Remote Sensing, 13, 2779, https://doi.org/10.3390/rs13142779, 2021b.
Zhang, L., Lau, W., Tao, W., and Li, Z.: Large wildfires in the western
United States exacerbated by tropospheric drying linked to a multi-decadal
trend in the expansion of the Hadley circulation, Geophys. Res.
Lett., 47, e2020GL087911, https://doi.org/10.1029/2020GL087911, 2020.
Zhang, Y. and Li, Z.: Remote sensing of atmospheric fine particulate matter
(PM2.5) mass concentration near the ground from satellite observation,
Remote Sens. Environ., 160, 252–262, https://doi.org/10.1016/j.rse.2015.02.005,
2015.
Zhang, Y., Li, Z., Qie, L., Zhang, Y., Liu, Z., Chen, X., Hou, W., Li, K.,
Li, D., and Xu, H.: Retrieval of Aerosol Fine-Mode Fraction from Intensity
and Polarization Measurements by PARASOL over East Asia, Remote Sensing, 8, 417, https://doi.org/10.3390/rs8050417, 2016.
Zhang, Y., Li, Z., Liu, Z., Wang, Y., Qie, L., Xie, Y., Hou, W., and Leng, L.: Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison, Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, 2021.
Zheng, B., Chevallier, F., Yin, Y., Ciais, P., Fortems-Cheiney, A., Deeter, M. N., Parker, R. J., Wang, Y., Worden, H. M., and Zhao, Y.: Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions, Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, 2019.
Zheng, X., Zhao, W., Yan, X., Shu, T., Xiong, Q., and Chen, F.: Pollution
characteristics and health risk assessment of airborne heavy metals
collected from Beijing bus stations, Int. J. Environ.
Res. Pu., 12, 9658–9671, https://doi.org/10.3390/ijerph120809658,
2015.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(9450 KB) - Full-text XML
- Corrigendum
-
Supplement
(2871 KB) - BibTeX
- EndNote
Short summary
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of physical and deep learning methods at a 1° spatial resolution by covering the period from 2001 to 2020. The Phy-DL FMF was extensively evaluated against ground-truth AERONET data and tested on a global scale against conventional satellite-based FMF products to demonstrate its superiority in accuracy.
This study developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by...
Altmetrics
Final-revised paper
Preprint