Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-3869-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3869-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
EOT20: a global ocean tide model from multi-mission satellite altimetry
Michael G. Hart-Davis
CORRESPONDING AUTHOR
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
Gaia Piccioni
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
now at: Enel Global Trading S.p.A., Viale Regina Margherita 125, 00198 Rome, Italy
Denise Dettmering
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
Christian Schwatke
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
Marcello Passaro
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
Florian Seitz
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany
Related authors
No articles found.
Felix L. Müller, Florian Seitz, and Denise Dettmering
EGUsphere, https://doi.org/10.5194/egusphere-2025-3046, https://doi.org/10.5194/egusphere-2025-3046, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study evaluates SWOT’s wide-swath sea surface height observations across the Arctic by comparing them with ICESat-2 altimetry and Sentinel-1 SAR imagery. Using data from over 550 crossovers between March 2023 and April 2024, the analysis shows good agreement, with mean absolute water differences of around 5 cm, but also larger discrepancies during winter and early melt. These results illustrate both the potential but also arising problem areas of swath altimetry in the polar regions.
Marcello Passaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-809, https://doi.org/10.5194/egusphere-2025-809, 2025
Short summary
Short summary
This paper evaluates the capability of satellite altimetry to monitor coastally trapped waves in light of the latest advancements in daily gridded sea level data, including new interpolation schemes, an increased number of missions in orbit, and the incorporation of wide-swath altimetry measurements. The eastern Australian coast serves as a testbed, with validation provided by tide gauges and model data.
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Julius Oelsmann, Marcello Passaro, Denise Dettmering, Christian Schwatke, Laura Sánchez, and Florian Seitz
Ocean Sci., 17, 35–57, https://doi.org/10.5194/os-17-35-2021, https://doi.org/10.5194/os-17-35-2021, 2021
Short summary
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Cited articles
Andersen, O. B. and Scharroo, R.:
Range and geophysical corrections in coastal regions: and implications for mean sea surface determination,
in: Coastal altimetry,
edited by: Vignudelli, S., Kostianoy, A., Cipollini, P., and Benveniste, J.,
Springer, Berlin, Heidelberg, pp. 103–145, 2011. a
Andersen, O. B., Stenseng, L., Piccioni, G., and Knudsen, P.:
The DTU15 MSS (mean sea surface) and DTU15LAT (lowest astronomical tide) reference surface,
in: ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May,
2016. a
Brockley, D. J., Baker, S., Féménias, P., Martinez, B., Massmann, F.-H., Otten, M., Paul, F., Picard, B., Prandi, P., Roca, M., Rudenko, S., Scharroo, R., and Visser, P.:
REAPER: Reprocessing 12 years of ERS-1 and ERS-2 altimeters and microwave radiometer data,
IEEE T. Geosci. Remote,
55, 5506–5514, 2017. a, b
Cancet, M., Andersen, O., Abulaitijiang, A., Cotton, D., and Benveniste, J.:
Improvement of the Arctic Ocean Bathymetry and Regional Tide Atlas: First Result on Evaluating Existing Arctic Ocean Bathymetric Models,
in: Fiducial Reference Measurements for Altimetry,
edited by: Mertikas, S. and Pail, R.,
Springer, Cham, Switzerland, pp. 55–63, 2019. a
Carrère, L., Faugère, Y., Bronner, E., and Benveniste, J.:
Improving the dynamic atmospheric correction for mean sea level and operational applications of atimetry,
in: Proceedings of the Ocean Surface Topography Science Team (OSTST) Meeting, San Diego, CA, USA, 16–21 October 2011,
19–21, 2011. a
Carrere, L., Faugère, Y., and Ablain, M.: Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis, Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, 2016. a
Carrere, L., Arbic, B. K., Dushaw, B., Egbert, G., Erofeeva, S., Lyard, F., Ray, R. D., Ubelmann, C., Zaron, E., Zhao, Z., Shriver, J. F., Buijsman, M. C., and Picot, N.: Accuracy assessment of global internal-tide models using satellite altimetry, Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, 2021. a
Cartwright, D. E. and Ray, R. D.:
Energetics of global ocean tides from Geosat altimetry,
J. Geophys. Res.-Oceans,
96, 16897–16912, 1991. a
Chambers, D., Hayes, S., Ries, J., and Urban, T.:
New TOPEX sea state bias models and their effect on global mean sea level,
J. Geophys. Res.-Oceans,
108, 3305, https://doi.org/10.1029/2003JC001839, 2003. a, b
Cheng, Y. and Andersen, O. B.:
Towards further improving DTU global ocean tide model in shallow waters and Polar Seas,
OSTST, in: Proceedings of the
Ocean Surface Topography Science Team (OSTST) Meeting, Miami, FL, USA, 23–27 October 2017. a
Cipollini, P., Benveniste, J., Birol, F., Fernandes, M. J., Obligis, E., Passaro, M., Strub, P. T., Valladeau, G., Vignudelli, S., and Wilkin, J.:
Satellite altimetry in coastal regions,
in: Satellite altimetry over oceans and land surfaces,
edited by: Stammer, D. and Cazenave, A.,
CRC Press, Florida, USA, pp. 343–380, 2017. a
Eicker, A.:
Gravity field refinement by radial basis functions from in-situ satellite data,
Inst. für Geodäsie und Geoinformation, Univ. Bonn, 2008. a
Farrell, W.:
Deformation of the Earth by surface loads,
Rev. Geophys.,
10, 761–797, 1972. a
Fernandes, M. J. and Lázaro, C.:
GPD+ wet tropospheric corrections for CryoSat-2 and GFO altimetry missions,
Remote Sens.-Basel,
8, 851, https://doi.org/10.3390/rs8100851, , 2016. a
Fok, H. S.:
Ocean tides modeling using satellite altimetry,
PhD thesis,
The Ohio State University, Ohio, USA, 2012. a
Francis, O. and Mazzega, P.:
Global charts of ocean tide loading effects,
J. Geophys. Res.-Oceans,
95, 11411–11424, 1990. a
Hart-Davis, M., Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., and Seitz, F.:
EOT20 – A global Empirical Ocean Tide model from multi-mission satellite altimetry,
SEANOE [data set],
https://doi.org/10.17882/79489, 2021. a, b, c
Koop, R. and Rummel, R.:
The Future of Satellite Gravimetry: Report from the Workshop on The Future of Satellite Gravimetry,
ESTEC, Noordwijk, the Netherlands, 2007. a
Landskron, D. and Böhm, J.:
VMF3/GPT3: refined discrete and empirical troposphere mapping functions,
J. Geodesy,
92, 349–360, 2018. a
Le Provost, C.:
Chapter 6 Ocean Tides,
in: Satellite Altimetry and Earth Sciences,
edited by: Fu, L.-L. and Cazenave, A.,
vol. 69 of International Geophysics,
Academic Press, San Diego, https://doi.org/10.1016/S0074-6142(01)80151-0, pp. 267–303, 2001. a
Pail, R., Hauk, M., Daras, I., Murböck, M., and Purkhauser, A.:
Reduction of ocean tide aliasing in the context of a next generation gravity field mission, EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016, EPSC2016-5491, 2016. a
Passaro, M., Müller, F. L., Oelsmann, J., Rautiainen, L., Dettmering, D., Hart-Davis, M. G., Abulaitijiang, A., Andersen, O. B., Høyer, J. L., Madsen, K. S., Ringgaard, I. M., Särkkä, J., Scarrott, R., Schwatke, C., Seitz, F., Tuomi, L., Restano, M., and Benveniste, J. Absolute Baltic Sea Level Trends in the Satellite Altimetry Era: A Revisit, Front. Mar. Sci., 8, 647607, https://doi.org/10.3389/fmars.2021.647607, 2021. a
Petit, G. and Luzum, B.:
IERS conventions (2010), Tech. rep., Bureau International des Poids et mesures sevres (France), 2010. a
Piccioni, G., Dettmering, D., Bosch, W., and Seitz, F.: TICON: Tidal Constants based on GESLA sea-level records from globally distributed tide gauges [data set], PANGAEA, https://doi.org/10.1594/PANGAEA.896587, 2018a. a, b
Piccioni, G., Dettmering, D., Passaro, M., Schwatke, C., Bosch, W., and Seitz, F.:
Coastal improvements for tide models: the impact of ALES retracker,
Remote Sens.-Basel,
10, 700, https://doi.org/10.3390/rs10050700, 2018b. a, b
Piccioni, G., Dettmering, D., Bosch, W., and Seitz, F.:
TICON: TIdal CONstants based on GESLA sea-level records from globally located tide gauges,
Geosci. Data J.,
6, 97–104, 2019. a
Ray, R., Egbert, G., and Erofeeva, S.:
Tide predictions in shelf and coastal waters: Status and prospects,
in: Coastal altimetry,
edited by: Vignudelli, S., Kostianoy, A., Cipollini, P., and Benveniste, J., Springer, Berlin, Heidelberg, 191–216, 2011. a
Ray, R., Loomis, B., Luthcke, S. B., and Rachlin, K. E.:
Tests of ocean-tide models by analysis of satellite-to-satellite range measurements: an update,
Geophys. J. Int.,
217, 1174–1178, 2019. a
Ray, R. D.:
Daily harmonics of ionospheric total electron content from satellite altimetry,
J. Atmos. Sol.-Terr. Phy.,
209, 105423, https://doi.org/10.1016/j.jastp.2020.105423, 2020. a
Ray, R. D. and Egbert, G. D.:
The global S1 tide,
J. Phys. Oceanogr.,
34, 1922–1935, 2004. a
Rudenko, S., Schöne, T., Neumayer, K., Esselborn, S., Raimondo, J.-C., and Dettmering, D.:
GFZ VER11 SLCCI precise orbits of altimetry satellites ERS-1, ERS-2, Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 in the ITRF2008,
in: Proceedings of the Ocean Surface Topography Science Team (OSTST) Meeting, Reston, Virginia, USA, 20–23, 20–23 October 2015, 2018. a
Scharroo, R. and Smith, W. H.:
A global positioning system–based climatology for the total electron content in the ionosphere,
J. Geophys. Res.-Space,
115, A10318, https://doi.org/10.1029/2009JA014719, 2010. a
Shum, C., Woodworth, P., Andersen, O., Egbert, G. D., Francis, O., King, C., Klosko, S., Le Provost, C., Li, X., Molines, J.-M., Parke, M. E., Ray, R. D., Schlax, M. G., Stammer, D., Tierney, C. C., Vincent, P., and Wunsch, C. I.:
Accuracy assessment of recent ocean tide models,
J. Geophys. Res.-Oceans,
102, 25173–25194, 1997. a
Stammer, D., Ray, R., Andersen, O. B., Arbic, B., Bosch, W., Carrère, L., Cheng, Y., Chinn, D., Dushaw, B., Egbert, G., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.:
Accuracy assessment of global barotropic ocean tide models,
Rev. Geophys.,
52, 243–282, 2014. a, b, c, d, e, f, g
Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.:
GRACE measurements of mass variability in the Earth system,
Science,
305, 503–505, 2004. a
Teunissen, P. J. and Amiri-Simkooei, A.:
Least-squares variance component estimation,
J. Geodesy,
82, 65–82, 2008. a
Walters, R. A., Goring, D. G., and Bell, R. G.:
Ocean tides around New Zealand,
New Zeal. J. Mar. Fresh.,
35, 567–579, 2001. a
Wessel, P. and Smith, W. H.:
A global, self-consistent, hierarchical, high-resolution shoreline database,
J. Geophys. Res.-Sol. Ea.,
101, 8741–8743, 1996. a
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Ocean tides are an extremely important process for a variety of oceanographic applications,...
Altmetrics
Final-revised paper
Preprint