Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-1189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-1189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition
Marzieh H. Derkani
CORRESPONDING AUTHOR
Department of Infrastructure Engineering, The University of Melbourne, 3010, Melbourne, Victoria, Australia
Alberto Alberello
Department of Physics, University of Turin, 10125, Turin, Italy
School of Mathematical Sciences, University of Adelaide, 5005, Adelaide, South Australia, Australia
Filippo Nelli
Department of Infrastructure Engineering, The University of Melbourne, 3010, Melbourne, Victoria, Australia
Luke G. Bennetts
School of Mathematical Sciences, University of Adelaide, 5005, Adelaide, South Australia, Australia
Katrin G. Hessner
OceanWaveS GmbH, 21339 Lüneburg, Germany
Keith MacHutchon
Department of Civil Engineering, University of Cape Town, 7701, Cape Town, South Africa
Konny Reichert
Independent Scholar, 6021 Wellington, New Zealand
Lotfi Aouf
Météo-France, 31100, Toulouse, France
Salman Khan
Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, 3195, Aspendale, Victoria, Australia
Alessandro Toffoli
CORRESPONDING AUTHOR
Department of Infrastructure Engineering, The University of Melbourne, 3010, Melbourne, Victoria, Australia
Related authors
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166, https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean waves play a previously-neglected role in the rapid annual melting of Antarctic sea ice by flooding and pulverising floes, removing the snow cover and reducing the albedo by an estimated 0.38–0.54 – to increase solar absorption and enhance the vertical melt rate by up to 5.2 cm/day. Ice algae further decrease the albedo, to increase the melt-rate enhancement to up to 6.1 cm/day. Melting is accelerated by four previously-unconsidered wave-driven positive feedbacks.
Rutger Marquart, Alberto Alberello, Alfred Bogaers, Francesca De Santi, and Marcello Vichi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2184, https://doi.org/10.5194/egusphere-2025-2184, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study developed a kilometre-scale sea-ice model in OpenFOAM that couples dynamic and thermodynamic processes for two types of ice, solid-like ice floes and fluid-like grease ice, under wave forcing. This model can help to improve data input for large-scale sea-ice models. Results show a linear relationship between the proportion of ice floes in the field and the overall viscosity. Additionally, we found that viscosity responds nonlinearly to the inclusion of thermodynamic sea-ice growth.
Xianghui Dong, Qingxiang Liu, Stefan Zieger, Alberto Alberello, Ali Abdolali, Jian Sun, Kejian Wu, and Alexander V. Babanin
EGUsphere, https://doi.org/10.5194/egusphere-2025-698, https://doi.org/10.5194/egusphere-2025-698, 2025
Short summary
Short summary
Ocean surface wave research is vital for coastal management, marine ecology, and ocean engineering. This study simulates waves along the Australian coast using advanced physical and numerical schemes. Model verification with altimeter and buoy data shows good performance. A two-step parameterization improves accuracy in the complex Great Barrier Reef. This study will help us better understand coastal wave climates and assess sea states, enabling us to better develop, protect, and use the sea.
Manuel García-León, José María García-Valdecasas, Lotfi Aouf, Alice Dalphinet, Juan Asensio, Stefania Angela Ciliberti, Breogán Gómez, Víctor Aquino, Roland Aznar, and Marcos Sotillo
EGUsphere, https://doi.org/10.5194/egusphere-2025-657, https://doi.org/10.5194/egusphere-2025-657, 2025
Short summary
Short summary
Accurate short-term wave forecasts are key for coastal activities. These forecasts rely on wind and currents as forcing, which in this work were both enhanced using neural networks (NNs) trained with satellite and radar data. Tested at three European sites, the NN-corrected winds were 35 % more accurate, and currents also improved. This led to improved IBI wave model predictions of wave height and period by 10 % and 17 %, respectively; even correcting under extreme events.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Sebastian Landwehr, Michele Volpi, F. Alexander Haumann, Charlotte M. Robinson, Iris Thurnherr, Valerio Ferracci, Andrea Baccarini, Jenny Thomas, Irina Gorodetskaya, Christian Tatzelt, Silvia Henning, Rob L. Modini, Heather J. Forrer, Yajuan Lin, Nicolas Cassar, Rafel Simó, Christel Hassler, Alireza Moallemi, Sarah E. Fawcett, Neil Harris, Ruth Airs, Marzieh H. Derkani, Alberto Alberello, Alessandro Toffoli, Gang Chen, Pablo Rodríguez-Ros, Marina Zamanillo, Pau Cortés-Greus, Lei Xue, Conor G. Bolas, Katherine C. Leonard, Fernando Perez-Cruz, David Walton, and Julia Schmale
Earth Syst. Dynam., 12, 1295–1369, https://doi.org/10.5194/esd-12-1295-2021, https://doi.org/10.5194/esd-12-1295-2021, 2021
Short summary
Short summary
The Antarctic Circumnavigation Expedition surveyed a large number of variables describing the dynamic state of ocean and atmosphere, freshwater cycle, atmospheric chemistry, ocean biogeochemistry, and microbiology in the Southern Ocean. To reduce the dimensionality of the dataset, we apply a sparse principal component analysis and identify temporal patterns from diurnal to seasonal cycles, as well as geographical gradients and
hotspotsof interaction. Code and data are open access.
Cited articles
Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest, P., Tison, J. L., Delille, B., Loose, B., Sedwick, P., DePace, L., Roach, L., and Parno, J.: Sea-ice
production and air/ice/ocean/biogeochemistry interactions in the Ross Sea
during the PIPERS 2017 autumn field campaign, Ann. Glaciology, 61,
181–195, https://doi.org/10.1017/aog.2020.31, 2020. a
Alberello, A., Onorato, M., Bennetts, L., Vichi, M., Eayrs, C., MacHutchon, K., and Toffoli, A.: Brief communication: Pancake ice floe size distribution during the winter expansion of the Antarctic marginal ice zone, The Cryosphere, 13, 41–48, https://doi.org/10.5194/tc-13-41-2019, 2019a. a
Alberello, A., Onorato, M., Frascoli, F., and Toffoli, A.: Observation of
turbulence and intermittency in wave-induced oscillatory flows, Wave Motion, 84, 81–89, 2019b. a
Alberello, A., Bennetts, L., Heil, P., Eayrs, C., Vichi, M., MacHutchon, K.,
Onorato, M., and Toffoli, A.: Drift of Pancake Ice Floes in the Winter
Antarctic Marginal Ice Zone During Polar Cyclones, J. Geophys.
Res.-Oceans, 125, e2019JC015418, https://doi.org/10.1029/2019JC015418,
2020a. a, b
Alberello, A., Bennetts, L., and Toffoli, A.: Antarctic Circumnavigation
Expedition 2017: Motion Sensor and GPS Data, Australian Antarctic Data Centre, https://doi.org/10.4225/15/5A178EF0E5156, 2020b. a
Alberello, A., Bennetts, L., Toffoli, A., and Derkani, M.: Antarctic
Circumnavigation Expedition 2017: WaMoS Data, Ver. 3, Australian Antarctic Data Centre, https://doi.org/10.26179/5ed0a30aaf764,
2020c. a, b, c
Aouf, L., Hauser, D., Chapron, B., Toffoli, A., Tourrain, C., and Peureux, C.: New directional wave satellite observations: Towards improved wave forecasts and climate description in Southern Ocean, Geophys. Res. Lett., 48,
e2020GL091187, https://doi.org/10.1029/2020GL091187, 2020. a
Babanin, A. V.: On a wave-induced turbulence and a wave-mixed upper ocean
layer, Geophys. Res. Lett., 33, L20605, https://doi.org/10.1029/2006GL027308, 2006. a
Babarit, A. and Delhommeau, G.: Theoretical and numerical aspects of the open
source BEM solver NEMOH, in: Proc. of the 11th European Wave and Tidal Energy Conference (EWTEC2015), September 2015, Nantes, France, ID: hal-01198800, 2015. a
Bennetts, L. G., Alberello, A., Meylan, M. H., Cavaliere, C., Babanin, A. V.,
and Toffoli, A.: An idealised experimental model of ocean surface wave
transmission by an ice floe, Ocean Model., 96, 85–92,
https://doi.org/10.1016/j.ocemod.2015.03.001, 2015. a
Bennetts, L. G., O'Farrell, S., and Uotila, P.: Brief communication: Impacts of ocean-wave-induced breakup of Antarctic sea ice via thermodynamics in a stand-alone version of the CICE sea-ice model, The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, 2017. a
Collard, F., Ardhuin, F., and Chapron, B.: Monitoring and analysis of ocean
swell fields from space: New methods for routine observations, J. Geophys.
Res., 114, C07023, https://doi.org/10.1029/2008JC005215, 2009. a, b
Csanady, G. T.: Air-sea interaction: laws and mechanisms, Cambridge University Press, Cambridge, 2001. a
Derkani, M., Alberello, A., and Toffoli, A.: Antarctic Circumnavigation
Expedition 2017: WaMoS Data Product, Ver. 1, Australian Antarctic Data Centre, https://doi.org/10.26179/5e9d038c396f2, 2020. a, b
Dong, S., Gille, S. T., and Sprintall, J.: An assessment of the Southern Ocean mixed layer heat budget, J. Climate, 20, 4425–4442, 2007. a
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean
mixed-layer depth from Argo float profiles, J. Geophys. Res., 113, C06013, https://doi.org/10.1029/2006JC004051, 2008. a
Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li, X.:
Understanding the Seasonal Cycle of Antarctic Sea Ice Extent in the Context
of Longer-Term Variability, Rev. Geophys., 1037–1064,
https://doi.org/10.1029/2018RG000631, 2019. a, b
Fadaeiazar, E., Leontini, J., Onorato, M., Waseda, T., Alberello, A., and
Toffoli, A.: Fourier amplitude distribution and intermittency in mechanically generated surface gravity waves, Phys. Rev. E, 102, 013106,
https://doi.org/10.1103/PhysRevE.102.013106, 2020. a
Hanson, J. L. and Phillips, O. M.: Automated analysis of ocean surface
directional wave spectra, J. Atmos. Ocean. Tech., 18, 277–293, 2001. a
Hasselmann, S., Brüning, C., Hasselmann, K., and Heimbach, P.: An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophys. Res.-Oceans, 101,
16615–16629, 1996. a
Hatten, H., Seemann, J., Horstmann, J., and Ziemer, F.: Azimuthal dependence of the radar cross section and the spectral background noise of a nautical radar at grazing incidence, Int. Geosci. Remote Se., 5, 2490–2492, 1998. a
Hauser, D., Tourain, C., Hermozo, L., Alraddawi, D., Aouf, L., Chapron, B., Dalphinet, A., Delaye, L., Dalila, M., Dormy, E., Gouillon, F., Gressani, V., Grouazel, A., Guitton, G., Husson, R., Mironov, A., Mouche, A., Ollivier, A., Oruba, L., Piras, F., Rodriguez Suquet, R., Schippers, P., Tison, C., and Tran, N.: New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment, IEEE T. Geosci. Remote, 59, 5–26, INSPEC Accession Number: 20266256, https://doi.org/10.1109/TGRS.2020.2994372, 2020. a
Hessner, K., Reichert, K., Dittmer, J., Borge, J. C. N., and Günther, H.:
Evaluation of WaMoS II wave data, in: Fourth International Symposium on Ocean Wave Measurement and Analysis, American Society of Civil Engineers (ASCE), https://doi.org/10.1061/40604(273)23, 221–230, 2002. a, b
Hessner, K. G., Nieto-Borge, J. C., and Bell, P. S.: Nautical radar
measurements in Europe: applications of WaMoS II as a sensor for sea state,
current and bathymetry, in: Remote Sensing of the European Seas, pp.
435–446, Springer, Dordrecht, the Netherlands, 2008. a
Hessner, K. G., El Naggar, S., von Appen, W.-J., and Strass, V. H.: On the
reliability of surface current measurements by X-Band marine radar, Remote
Sens., 11, 1030, https://doi.org/10.3390/rs11091030, 2019. a, b
Humphries, R. S., Klekociuk, A. R., Schofield, R., Keywood, M., Ward, J., and Wilson, S. R.: Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice, Atmos. Chem. Phys., 16, 2185–2206, https://doi.org/10.5194/acp-16-2185-2016, 2016. a
Khan, S., Echevarria, E., and Hemer, M.: Ocean swell comparisons between
Sentinel-1 and WAVEWATCH III around Australia, J. Geophys.
Res.-Oceans, 126, e2020JC016265, https://doi.org/10.1029/2020JC016265, 2020a. a
Khan, S., Hemer, M., Echevarria, E., and King, E.: Australian Ocean Surface
Waves Dataset from SAR, Australian Ocean Data Network, https://doi.org/10.26198/5e14142d01539, 2020b. a
Landwehr, S., Thurnherr, I., Cassar, N., Gysel-Beer, M., and Schmale, J.: Using global reanalysis data to quantify and correct airflow distortion bias in shipborne wind speed measurements, Atmos. Meas. Tech., 13, 3487–3506, https://doi.org/10.5194/amt-13-3487-2020, 2020a. a
Landwehr, S., Volpi, M., Derkani, M. H., Nelli, F., Alberello, A., Toffoli, A., Gysel-Beer, M., Modini, R. L., and Schmale, J.: Sea State and Boundary Layer Stability Limit Sea Spray Aerosol Lifetime over the Southern Ocean, Earth Space Sci. Open Arch., 15, https://doi.org/10.1002/essoar.10504508.1, in review,
2021. a, b
Li, M., Liu, J., Wang, Z., Wang, H., Zhang, Z., Zhang, L., and Yang, Q.:
Assessment of sea surface wind from NWP reanalyses and satellites in the
Southern Ocean, J. Atmos. Ocean. Tech., 30, 1842–1853, 2013. a
Lund, B., Graber, H. C., Hessner, K., and Williams, N. J.: On shipboard marine X-band radar near-surface current ‘‘calibration’’, J.
Atmos. Ocean. Tech., 32, 1928–1944, 2015a. a
Lund, B., Graber, H. C., Tamura, H., Collins III, C., and Varlamov, S.: A new
technique for the retrieval of near-surface vertical current shear from
marine X-band radar images, J. Geophys. Res.-Oceans, 120,
8466–8486, 2015b. a
Lundy, D.: Godforsaken sea: racing the world's most dangerous waters, Vintage
Canada, 2010. a
Martinson, D. G. and Wamser, C.: Ice drift and momentum exchange in winter
Antarctic pack ice, J. Geophys. Res.-Oceans, 95,
1741–1755, https://doi.org/10.1029/JC095iC02p01741, 1990. a
Massom, R. A. and Stammerjohn, S. E.: Antarctic sea ice change and variability – Physical and ecological implications, Polar Science, 4, 149–186, https://doi.org/10.1016/j.polar.2010.05.001, 2010. a
Meiners, K. M., Golden, K. M., Heil, P., Lieser, J. L., Massom, R., Meyer, B., and Williams, G. D.: SIPEX-2: A study of sea-ice physical, biochemical and ecosystem processes off East Antarctica during spring 2012, Deep-Sea Res.
Pt. II, 131, 1–6, https://doi.org/10.1016/j.dsr2.2016.06.010, 2016. a
Melville, W. K.: The role of surface-wave breaking in air-sea interaction,
Annu. Rev. Fluid Mech., 28, 279–321, 1996. a
Meylan, M. H., Bennetts, L. G., and Kohout, A. L.: In situ measurements and
analysis of ocean waves in the Antarctic marginal ice zone, Geophys. Res.
Lett., 41, 5046–5051, 2014. a
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and
Rikiishi, K.: Observations of the directional spectrum of ocean WavesUsing a cloverleaf buoy, J. Phys. Oceanogr., 5, 750–760, 1975. a
Montiel, F., Squire, V. A., and Bennetts, L. G.: Attenuation and directional
spreading of ocean wave spectra in the marginal ice zone, J. Fluid
Mech., 790, 492–522, https://doi.org/10.1017/jfm.2016.21, 2016. a
Nielsen, U. D.: A concise account of techniques available for shipboard sea
state estimation, Ocean Eng., 129, 352–362, 2017. a
Notz, D.: Challenges in simulating sea ice in Earth System Models, WIRES Clim. Change, 3, 509–526, https://doi.org/10.1002/wcc.189, 2012. a
Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P.
A. E. M., Kinoshita, T., Monbaliu, J., Mori, N., Osborne, A. R., Serio, M.,
Stansberg, C., Tamura, H., and Trulsen, K.: Statistical properties of
directional ocean waves: the role of the modulational instability in the
formation of extreme events, Phys. Rev. Lett., 102,
https://doi.org/10.1103/PhysRevLett.102.114502, 2009. a, b
Park, Y.-H., Park, T., Kim, T.-W., Lee, S.-H., Hong, C.-S., Lee, J.-H., Rio,
M.-H., Pujol, M.-I., Ballarotta, M., Durand, I., and Provost, C.:
Observations of the Antarctic Circumpolar Current over the Udintsev Fracture Zone, the narrowest choke point in the Southern Ocean, J. Geophys. Res., 124, 4511–4528, 2019. a
Perovich, D. K., Richter-Menge, J. A., Jones, K. F., and Light, B.: Sunlight,
water, and ice: Extreme Arctic sea ice melt during the summer of 2007,
Geophys. Res. Lett., 35, 2008. a
Qiao, F., Yuan, Y., Deng, J., Dai, D., and Song, Z.: Wave–turbulence
interaction-induced vertical mixing and its effects in ocean and climate
models, Philos. T. Roy. Soc. A, 374, 20150201, 2016. a
Reichert, K., Hessner, K., Nieto Borge, J. C., and Dittmer, J.: WaMoS-II: A
radar based wave and current monitoring system, in: The Ninth International
Offshore and Polar Engineering Conference (ISOPE), International Society of
Offshore and Polar Engineers, Brest, France, May 1999, ID: ISOPE-I-99-246, 1999. a
Rodríguez-Ros, P., Cortés, P., Robinson, C. M., Nunes, S., Hassler,
C., Royer, S.-J., Estrada, M., Sala, M. M., and Simó, R.: Distribution
and Drivers of Marine Isoprene Concentration across the Southern Ocean,
Atmosphere-Basel, 11, 556, https://doi.org/10.3390/atmos11060556, 2020. a, b
Schmale, J., Baccarini, A., Thurnherr, I., Henning, S., Efraim, A., Regayre,
L., Bolas, C., Hartmann, M., Welti, A., Lehtipalo, K., Aemisegger, F.,
Tatzelt, C., Landwehr, S., Modini, R. L., Tummon, F., Johnson, J. S., Harris,
N., Schnaiter, M., Toffoli, A., Derkani, M., Bukowiecki, N., Stratmann, F.,
Dommen, J., Baltensperger, U., Wernli, H., Rosenfeld, D., Gysel-Beer, M., and
Carslaw, K. S.: Overview of the Antarctic Circumnavigation Expedition: Study
of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE), B.
Am. Meteorol. Soc., 100, 2260–2283, https://doi.org/10.1175/BAMS-D-18-0187.1, 2019. a, b, c, d, e, f
Schulz, E., Grosenbaugh, M. A., Pender, L., Greenslade, D., and Trull, T. W.:
Mooring design using wave-state estimate from the Southern Ocean, J.
Atmos. Ocean. Tech., 28, 1351–1360, 2011. a
Schulz, E., Josey, S., and Verein, R.: First air-sea flux mooring measurements in the Southern Ocean, Geophys. Res. Lett., 39, L16606, https://doi.org/10.1029/2012GL052290, 2012. a
Smart, S. M., Fawcett, S. E., Ren, H., Schiebel, R., Tompkins, E. M.,
Martínez-García, A., Stirnimann, L., Roychoudhury, A., Haug, G. H., and Sigman, D. M.: The Nitrogen Isotopic Composition of Tissue and
Shell-Bound Organic Matter of Planktic Foraminifera in Southern Ocean Surface Waters, Geochem. Geophys., 21, e2019GC008440, https://doi.org/10.1029/2019GC008440, 2020. a, b
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008. a
Suaria, G., Achtypi, A., Perold, V., Lee, J. R., Pierucci, A., Bornman, T. G., Aliani, S., and Ryan, P. G.: Microfibers in oceanic surface waters: A global characterization, Sci. Adv., 6, eaay8493, https://doi.org/10.1126/sciadv.aay8493, 2020. a
Thomas, S., Babanin, A. V., Walsh, K. J. E., Stoney, L., and Heil, P.: Effect
of wave-induced mixing on Antarctic sea ice in a high-resolution ocean model, Ocean Dyn., 69, 737–746, 2019. a
Thurnherr, I., Kozachek, A., Graf, P., Weng, Y., Bolshiyanov, D., Landwehr, S., Pfahl, S., Schmale, J., Sodemann, H., Steen-Larsen, H. C., Toffoli, A., Wernli, H., and Aemisegger, F.: Meridional and vertical variations of the water vapour isotopic composition in the marine boundary layer over the Atlantic and Southern Ocean, Atmos. Chem. Phys., 20, 5811–5835, https://doi.org/10.5194/acp-20-5811-2020, 2020. a, b, c, d, e, f
Toffoli, A., Babanin, A., Onorato, M., and Waseda, T.: Maximum Steepness of
Oceanic Waves: Field and Laboratory Experiments, Geophys. Res.
Lett., 37, L05603, https://doi.org/10.1029/2009GL041771, 2010. a, b
Toffoli, A., McConochie, J., Ghantous, M., Loffredo, L., and Babanin, A. V.:
The effect of wave-induced turbulence on the ocean mixed layer during
tropical cyclones: Field observations on the Australian North-West Shelf, J. Geophys. Res., 117, C00J24, https://doi.org/10.1029/2011JC007780, 2012. a
Toffoli, A., Bennetts, L. G., Meylan, M. H., Cavaliere, C., Alberello, A.,
Elsnab, J., and Monty, J. P.: Sea ice floes dissipate the energy of steep
ocean waves, Geophys. Res. Lett., 42, 8547–8554,
https://doi.org/10.1002/2015GL065937, 2015. a
Toffoli, A., Proment, D., Salman, H., Monbaliu, J., Frascoli, F., Dafilis, M., Stramignoni, E., Forza, R., Manfrin, M., and Onorato, M.: Wind Generated
Rogue Waves in an Annular Wave Flume, Phys. Rev. Lett., 118, 144503,
https://doi.org/10.1103/PhysRevLett.118.144503, 2017. a, b
Trowbridge, J., Weller, R., Kelley, D., Dever, E., Plueddemann, A., Barth,
J. A., and Kawka, O.: The Ocean Observatories Initiative, Front. Mar. Sci.,
6, 74, https://doi.org/10.3389/fmars.2019.00074, 2019. a
Veron, F.: Ocean spray, Annu. Rev. Fluid Mech., 47, 507–538, 2015. a
Vichi, M., Eayrs, C., Alberello, A., Bekker, A., Bennetts, L., Holland, D.,
de Jong, E., Joubert, W., MacHutchon, K., Messori, G., Mojica, J. F.,
Onorato, M., Saunders, C., Skatulla, S., and Toffoli, A.: Effects of an
explosive polar cyclone crossing the Antarctic marginal ice zone, Geophys.
Res. Lett., 46, 5948–5958, 2019. a, b, c
Wadhams, P.: The Seasonal Ice Zone, Springer US, Boston, MA,
https://doi.org/10.1007/978-1-4899-5352-0_15, 825–991, 1986. a
Walton, D, W. H. and Thomas, J.: Cruise Report – Antarctic Circumnavigation
Expedition (ACE) 20th December 2016–19th March 2017, Zenodo,
https://doi.org/10.5281/zenodo.1443511, 2018. a, b
Young, I. R. and Ribal, A.: Multiplatform evaluation of global trends in wind
speed and wave height, Science, 364, 548–552, 2019. a
Young, I. R. and Verhagen, L.: The growth of fetch limited waves in water of
finite depth. Part 2. Spectral evolution, Coastal Eng., 29, 79–99,
1996. a
Young, I. R., Rosenthal, W., and Ziemer, F.: A three-dimensional analysis of
marine radar images for the determination of ocean wave directionality and
surface currents, J. Geophys. Res.-Oceans, 90, 1049–1059,
1985. a
Yuan, X.: High-wind-speed evaluation in the Southern Ocean, J. Geophys. Res.,
109, D13101, https://doi.org/10.1029/2003JD004179, 2004.
a
Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R.: Observation-based source terms in the third-generation wave model WAVEWATCH, Ocean Model., 96, 2–25, 2015. a
Short summary
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface. The scarcity of observations in this remote region hampers the comprehension of fundamental physics, the accuracy of satellite sensors, and the capabilities of prediction models. To fill this gap, a unique data set of simultaneous observations of winds, surface currents, and ocean waves in the Southern Ocean is presented.
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds,...
Altmetrics
Final-revised paper
Preprint