Data description paper 26 Feb 2020
Data description paper | 26 Feb 2020
PROTEVS-MED field experiments: very high resolution hydrographic surveys in the Western Mediterranean Sea
Pierre Garreau et al.
Related authors
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Léo Berline, Andrea Michelangelo Doglioli, Anne Petrenko, Stéphanie Barrillon, Boris Espinasse, Frederic A. C. Le Moigne, François Simon-Bot, Melilotus Thyssen, and François Carlotti
Biogeosciences, 18, 6377–6392, https://doi.org/10.5194/bg-18-6377-2021, https://doi.org/10.5194/bg-18-6377-2021, 2021
Short summary
Short summary
While the Ionian Sea is considered a nutrient-depleted and low-phytoplankton biomass area, it is a crossroad for water mass circulation. In the central Ionian Sea, we observed a strong contrast in particle distribution across a ~100 km long transect. Using remote sensing and Lagrangian simulations, we suggest that this contrast finds its origin in the long-distance transport of particles from the north, west and east of the Ionian Sea, where phytoplankton production was more intense.
Elvira Pulido-Villena, Karine Desboeufs, Kahina Djaoudi, France Van Wambeke, Stéphanie Barrillon, Andrea Doglioli, Anne Petrenko, Vincent Taillandier, Franck Fu, Tiphanie Gaillard, Sophie Guasco, Sandra Nunige, Sylvain Triquet, and Cécile Guieu
Biogeosciences, 18, 5871–5889, https://doi.org/10.5194/bg-18-5871-2021, https://doi.org/10.5194/bg-18-5871-2021, 2021
Short summary
Short summary
We report on phosphorus dynamics in the surface layer of the Mediterranean Sea. Highly sensitive phosphate measurements revealed vertical gradients above the phosphacline. The relative contribution of diapycnal fluxes to total external supply of phosphate to the mixed layer decreased towards the east, where atmospheric deposition dominated. Taken together, external sources of phosphate contributed little to total supply, which was mainly sustained by enzymatic hydrolysis of organic phosphorus.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Cécile Guieu, Fabrizio D'Ortenzio, François Dulac, Vincent Taillandier, Andrea Doglioli, Anne Petrenko, Stéphanie Barrillon, Marc Mallet, Pierre Nabat, and Karine Desboeufs
Biogeosciences, 17, 5563–5585, https://doi.org/10.5194/bg-17-5563-2020, https://doi.org/10.5194/bg-17-5563-2020, 2020
Short summary
Short summary
We describe here the objectives and strategy of the PEACETIME project and cruise, dedicated to dust deposition and its impacts in the Mediterranean Sea. Our strategy to go a step further forward than in previous approaches in understanding these impacts by catching a real deposition event at sea is detailed. We summarize the work performed at sea, the type of data acquired and their valorization in the papers published in the special issue.
Paul Poli, Marc Lucas, Anne O'Carroll, Marc Le Menn, Arnaud David, Gary K. Corlett, Pierre Blouch, David Meldrum, Christopher J. Merchant, Mathieu Belbeoch, and Kai Herklotz
Ocean Sci., 15, 199–214, https://doi.org/10.5194/os-15-199-2019, https://doi.org/10.5194/os-15-199-2019, 2019
Short summary
Short summary
Earth observation satellites routinely monitor sea-surface temperature. However, they require in situ references for calibration and validation. To support this step, drifting buoys carrying sensors with improved calibration were deployed. This paper finds that sea state and immersion depth are important to better understand the buoy measurements. A new drifting buoy was designed as a result, in the framework of the European Union Copernicus program, with an accuracy found to be within 0.01 °C.
Camille Richon, Jean-Claude Dutay, Laurent Bopp, Briac Le Vu, James C. Orr, Samuel Somot, and François Dulac
Biogeosciences, 16, 135–165, https://doi.org/10.5194/bg-16-135-2019, https://doi.org/10.5194/bg-16-135-2019, 2019
Short summary
Short summary
We evaluate the effects of climate change and biogeochemical forcing evolution on the nutrient and plankton cycles of the Mediterranean Sea for the first time. We use a high-resolution coupled physical and biogeochemical model and perform 120-year transient simulations. The results indicate that changes in external nutrient fluxes and climate change may have synergistic or antagonistic effects on nutrient concentrations, depending on the region and the scenario.
Pascale Bouruet-Aubertot, Yannis Cuypers, Andrea Doglioli, Mathieu Caffin, Christophe Yohia, Alain de Verneil, Anne Petrenko, Dominique Lefèvre, Hervé Le Goff, Gilles Rougier, Marc Picheral, and Thierry Moutin
Biogeosciences, 15, 7485–7504, https://doi.org/10.5194/bg-15-7485-2018, https://doi.org/10.5194/bg-15-7485-2018, 2018
Short summary
Short summary
The OUTPACE cruise took place between New Caledonia and French Polynesia. The main purpose was to understand how micro-organisms can survive in a very poor environment. One main source of nutrients is at depth, below the euphotic layer where micro-organisms live. The purpose of the turbulence measurements was to determine to which extent turbulence may
upliftnutrients into the euphotic layer. The origin of the turbulence that was found contrasted along the transect was also determined.
Mathieu Caffin, Thierry Moutin, Rachel Ann Foster, Pascale Bouruet-Aubertot, Andrea Michelangelo Doglioli, Hugo Berthelot, Cécile Guieu, Olivier Grosso, Sandra Helias-Nunige, Nathalie Leblond, Audrey Gimenez, Anne Alexandra Petrenko, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 15, 2565–2585, https://doi.org/10.5194/bg-15-2565-2018, https://doi.org/10.5194/bg-15-2565-2018, 2018
Short summary
Short summary
We performed N budgets to assess the role of N2 fixation on production and export in the western tropical South Pacific Ocean. We deployed a combination of techniques including high-sensitivity measurements of N input and sediment traps deployment. We demonstrated that N2 fixation was the major source of new N before atmospheric deposition and upward nitrate fluxes. It contributed significantly to organic matter export, indicating a high efficiency of this region to export carbon.
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, Christophe Maes, Pascale Bouruet-Aubertot, and Thierry Moutin
Biogeosciences, 15, 2125–2147, https://doi.org/10.5194/bg-15-2125-2018, https://doi.org/10.5194/bg-15-2125-2018, 2018
Short summary
Short summary
Oceanographic campaigns to measure biogeochemical processes popularly deploy drifters with onboard incubations to stay in a single body of water. Here, we aggregate physical data taken during such a cruise, OUTPACE, to independently test in a new approach whether the drifter really stayed in what can be considered a single biological or chemical environment. This study concludes that future campaigns would benefit from similar data collection and analysis to validate their sampling strategy.
Pierre Marrec, Gérald Grégori, Andrea M. Doglioli, Mathilde Dugenne, Alice Della Penna, Nagib Bhairy, Thierry Cariou, Sandra Hélias Nunige, Soumaya Lahbib, Gilles Rougier, Thibaut Wagener, and Melilotus Thyssen
Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, https://doi.org/10.5194/bg-15-1579-2018, 2018
Short summary
Short summary
The objective of this study was to better understand the variability of the phytoplankton community structure in small physical structures at the surface of the ocean. After identifying such a structure in the Mediterranean Sea, we deployed cutting-edge physical and biological sensors in order to observe at a high frequency the dynamics of this structure. From these observations we described the variations of the phytoplankton community structure and how the physics controls this variability.
Aurore Voldoire, Bertrand Decharme, Joris Pianezze, Cindy Lebeaupin Brossier, Florence Sevault, Léo Seyfried, Valérie Garnier, Soline Bielli, Sophie Valcke, Antoinette Alias, Mickael Accensi, Fabrice Ardhuin, Marie-Noëlle Bouin, Véronique Ducrocq, Stéphanie Faroux, Hervé Giordani, Fabien Léger, Patrick Marsaleix, Romain Rainaud, Jean-Luc Redelsperger, Evelyne Richard, and Sébastien Riette
Geosci. Model Dev., 10, 4207–4227, https://doi.org/10.5194/gmd-10-4207-2017, https://doi.org/10.5194/gmd-10-4207-2017, 2017
Short summary
Short summary
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications. The objective of this development is to build and share a common structure for the atmosphere–surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models.
Laura Cimoli, Alexandre Stegner, and Guillaume Roullet
Ocean Sci., 13, 905–923, https://doi.org/10.5194/os-13-905-2017, https://doi.org/10.5194/os-13-905-2017, 2017
Short summary
Short summary
The dispersion of coastal waters offshore strongly depends on the dynamical regime of the current that characterizes the local coastal circulation. By using an idealized model configuration, we identify some key parameters – which can be calculated from observations – that describe when a coastal current flowing over a sloping topography acts as a source of meanders or eddies or as a dynamical barrier to the cross-shore transport.
Alain de Verneil, Louise Rousselet, Andrea M. Doglioli, Anne A. Petrenko, and Thierry Moutin
Biogeosciences, 14, 3471–3486, https://doi.org/10.5194/bg-14-3471-2017, https://doi.org/10.5194/bg-14-3471-2017, 2017
Short summary
Short summary
A surface summer plankton bloom in the western tropical South Pacific was sampled during the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise. We characterize the bloom's properties and the circulation responsible for its evolution. Nitrogen fixation helped sustain the bloom, and larger-scale flows, rather than the smaller ones, explain its movements. Future studies of blooms in this region can make use of these findings to track the horizontal export of plankton production.
Thierry Moutin, Andrea Michelangelo Doglioli, Alain de Verneil, and Sophie Bonnet
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-3207-2017, https://doi.org/10.5194/bg-14-3207-2017, 2017
Short summary
Short summary
The overall goal of OUTPACE was to obtain a successful representation of the interactions between planktonic organisms and the cycle of biogenic elements in the western tropical South Pacific Ocean across trophic and N2 fixation gradients. The international OUTPACE cruise took place between 18 February and 3 April 2015 aboard the RV L’Atalante and involved 60 scientists. The transect covered ~4 000 km from the western part of the Melanesian archipelago to the western boundary of the gyre.
Related subject area
Oceanography – Physical
Water masses distribution offshore the Sabrina Coast (East Antarctica)
Next generation of Bluelink ocean reanalysis with multiscale data assimilation: BRAN2020
Arctic sea surface height maps from multi-altimeter combination
Laboratory data on wave propagation through vegetation with following and opposing currents
Improved BEC SMOS Arctic Sea Surface Salinity product v3.1
Minute Sea-Level Analysis (MISELA): a high-frequency sea-level analysis global dataset
EOT20: a global ocean tide model from multi-mission satellite altimetry
North SEAL: a new dataset of sea level changes in the North Sea from satellite altimetry
Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry
An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015)
A new global gridded sea surface temperature data product based on multisource data
A climate index for the Newfoundland and Labrador shelf
Measurements from the RV Ronald H. Brown and related platforms as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC)
Global sea-level budget and ocean-mass budget, with focus on advanced data products and uncertainty characterisation
The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?
Wind, waves, and surface currents in the Southern Ocean: observations from the Antarctic Circumnavigation Expedition
Nine years of SMOS sea surface salinity global maps at the Barcelona Expert Center
A novel hydrographic gridded data set for the northern Antarctic Peninsula
A gridded surface current product for the Gulf of Mexico from consolidated drifter measurements
Meteorological and hydrodynamic data in the Mar Grande and Mar Piccolo, Italy, of the Coastal Engineering Laboratory (LIC) Survey, winter and summer 2015
Global maps of Forel–Ule index, hue angle and Secchi disk depth derived from 21 years of monthly ESA Ocean Colour Climate Change Initiative data
Global dataset of thermohaline staircases obtained from Argo floats and Ice-Tethered Profilers
Physical and biogeochemical parameters of the Mediterranean Sea during a cruise with RV Maria S. Merian in March 2018
Half-hourly changes in intertidal temperature at nine wave-exposed locations along the Atlantic Canadian coast: a 5.5-year study
A volumetric census of the Barents Sea in a changing climate
Heat stored in the Earth system: where does the energy go?
The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations
A comprehensive oceanographic dataset of a subpolar, mid-latitude broad fjord: Fortune Bay, Newfoundland, Canada
Reanalysis of vertical mixing in mesocosm experiments: PeECE III and KOSMOS 2013
A multi-year time series of observation-based 3D horizontal and vertical quasi-geostrophic global ocean currents
Global distribution of photosynthetically available radiation on the seafloor
Quality assurance and control on hydrological data off western Sardinia (2000–2004), western Mediterranean
An updated seabed bathymetry beneath Larsen C Ice Shelf, Antarctic Peninsula
Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom
Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration
A compilation of global bio-optical in situ data for ocean-colour satellite applications – version two
Near-ice hydrographic data from Seaglider missions in the western Greenland Sea in summer 2014 and 2015
A near-surface sea temperature time series from Trieste, northern Adriatic Sea (1899–2015)
Field investigations of coastal sea surface temperature drop after typhoon passages
Glider data collected during the Algerian Basin Circulation Unmanned Survey
The AlborEX dataset: sampling of sub-mesoscale features in the Alboran Sea
Environmental conditions of a salt-marsh biodiversity experiment on the island of Spiekeroog (Germany)
Global sea-level budget 1993–present
North Atlantic subpolar gyre along predetermined ship tracks since 1993: a monthly data set of surface temperature, salinity, and density
Sea surface salinity and temperature in the southern Atlantic Ocean from South African icebreakers, 2010–2017
UDASH – Unified Database for Arctic and Subarctic Hydrography
An inventory of Arctic Ocean data in the World Ocean Database
An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative
Wind and wave dataset for Matara, Sri Lanka
Over 10 million seawater temperature records for the United Kingdom Continental Shelf between 1880 and 2014 from 17 Cefas (United Kingdom government) marine data systems
Manuel Bensi, Vedrana Kovačević, Federica Donda, Philip Edward O'Brien, Linda Armbrecht, and Leanne Kay Armand
Earth Syst. Sci. Data, 14, 65–78, https://doi.org/10.5194/essd-14-65-2022, https://doi.org/10.5194/essd-14-65-2022, 2022
Short summary
Short summary
The Totten Glacier (Sabrina Coast, East Antarctica) has undergone significant retreat in recent years, underlining its sensitivity to climate change and its potential contribution to global sea-level rise. The melting process is strongly influenced by ocean dynamics and the spatial distribution of water masses appears to be linked to the complex morpho-bathymetry of the area, supporting the hypothesis that downwelling processes contribute to shaping the architecture of the continental margin.
Matthew A. Chamberlain, Peter R. Oke, Russell A. S. Fiedler, Helen M. Beggs, Gary B. Brassington, and Prasanth Divakaran
Earth Syst. Sci. Data, 13, 5663–5688, https://doi.org/10.5194/essd-13-5663-2021, https://doi.org/10.5194/essd-13-5663-2021, 2021
Short summary
Short summary
BRAN2020 is a dynamical reconstruction of the ocean, combining observations with a high-resolution global ocean model. BRAN2020 currently spans January 1993 to December 2019, assimilating in situ temperature and salinity, as well as satellite-based sea level and sea surface temperature. A new multiscale approach to data assimilation constrains the broad-scale ocean properties and turbulent mesoscale dynamics in two steps, showing closer agreement to observations than all previous versions.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Zhan Hu, Simei Lian, Huaiyu Wei, Yulong Li, Marcel Stive, and Tomohiro Suzuki
Earth Syst. Sci. Data, 13, 4987–4999, https://doi.org/10.5194/essd-13-4987-2021, https://doi.org/10.5194/essd-13-4987-2021, 2021
Short summary
Short summary
The process of wave attenuation in vegetation is important as it is related to the coastal protection service of these coastal ecosystems. In intertidal environments, waves often propagate into vegetation fields with underlying tidal currents, but the effect of these currents on the wave attenuation is often overlooked, and the relevant dataset is rarely available. Here, we present a dataset of wave propagation through vegetation with following and opposing currents to assist further studies.
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-334, https://doi.org/10.5194/essd-2021-334, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Measuring salinity from space is challenging since the sensitivity of the brightness temperature to sea surface salinity is low, but this is even more challenging the retrieval of the SSS in the cold waters. In 2019, ESA launched a specific initiative called Arctic+Salinity to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-220, https://doi.org/10.5194/essd-2021-220, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase of greenhouse gases and aerosols concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Robert Hagen, Andreas Plüß, Romina Ihde, Janina Freund, Norman Dreier, Edgar Nehlsen, Nico Schrage, Peter Fröhle, and Frank Kösters
Earth Syst. Sci. Data, 13, 2573–2594, https://doi.org/10.5194/essd-13-2573-2021, https://doi.org/10.5194/essd-13-2573-2021, 2021
Short summary
Short summary
We established an open-access, integrated marine data collection for 1996 to 2015 in the German Bight as a database of scientific, economic, and governmental interest. This paper presents data for tidal elevation, depth-averaged current velocity, bottom shear stress, depth-averaged salinity, and wave parameters and spectra at a high temporal and spatial resolution. Data are additionally processed into meaningful parameters (i.e., tidal characteristic values, e.g., tidal range) for accessibility.
Mengmeng Cao, Kebiao Mao, Yibo Yan, Jiancheng Shi, Han Wang, Tongren Xu, Shu Fang, and Zijin Yuan
Earth Syst. Sci. Data, 13, 2111–2134, https://doi.org/10.5194/essd-13-2111-2021, https://doi.org/10.5194/essd-13-2111-2021, 2021
Short summary
Short summary
We constructed a temperature depth and observation time correction model to eliminate the sampling depth and temporal differences among different data. Then, we proposed a reconstructed spatial model that filters and removes missing pixels and low-quality pixels contaminated by clouds from raw SST images and retrieves real sea surface temperatures under cloud coverage based on multisource data to generate a high-quality unified global SST product with long-term spatiotemporal continuity.
Frédéric Cyr and Peter S. Galbraith
Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, https://doi.org/10.5194/essd-13-1807-2021, 2021
Short summary
Short summary
Climate indices are often regarded as simple ways to relate mean environmental conditions to the state of an ecosystem. Such indices are often used to inform fisheries scientists and managers or used in fisheries resource assessments and ecosystem studies. The Newfoundland and Labrador (NL) climate index aims to describe the environmental conditions on the NL shelf and in the Northwest Atlantic as a whole. It consists of annual normalized anomalies of 10 subindices relevant for the NL shelf.
Patricia K. Quinn, Elizabeth J. Thompson, Derek J. Coffman, Sunil Baidar, Ludovic Bariteau, Timothy S. Bates, Sebastien Bigorre, Alan Brewer, Gijs de Boer, Simon P. de Szoeke, Kyla Drushka, Gregory R. Foltz, Janet Intrieri, Suneil Iyer, Chris W. Fairall, Cassandra J. Gaston, Friedhelm Jansen, James E. Johnson, Ovid O. Krüger, Richard D. Marchbanks, Kenneth P. Moran, David Noone, Sergio Pezoa, Robert Pincus, Albert J. Plueddemann, Mira L. Pöhlker, Ulrich Pöschl, Estefania Quinones Melendez, Haley M. Royer, Malgorzata Szczodrak, Jim Thomson, Lucia M. Upchurch, Chidong Zhang, Dongxiao Zhang, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 1759–1790, https://doi.org/10.5194/essd-13-1759-2021, https://doi.org/10.5194/essd-13-1759-2021, 2021
Short summary
Short summary
ATOMIC took place in the northwestern tropical Atlantic during January and February of 2020 to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Measurements made from the NOAA RV Ronald H. Brown and assets it deployed (instrumented mooring and uncrewed seagoing vehicles) are described herein to advance widespread use of the data by the ATOMIC and broader research communities.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Randall, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-137, https://doi.org/10.5194/essd-2021-137, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
Global mean sea level change observed from 1993 to 2016 (at a mean rate of 3.05 mm per year) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean mass change is assessed through the contributions from glaciers, ice sheets and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Marzieh H. Derkani, Alberto Alberello, Filippo Nelli, Luke G. Bennetts, Katrin G. Hessner, Keith MacHutchon, Konny Reichert, Lotfi Aouf, Salman Khan, and Alessandro Toffoli
Earth Syst. Sci. Data, 13, 1189–1209, https://doi.org/10.5194/essd-13-1189-2021, https://doi.org/10.5194/essd-13-1189-2021, 2021
Short summary
Short summary
The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface. The scarcity of observations in this remote region hampers the comprehension of fundamental physics, the accuracy of satellite sensors, and the capabilities of prediction models. To fill this gap, a unique data set of simultaneous observations of winds, surface currents, and ocean waves in the Southern Ocean is presented.
Estrella Olmedo, Cristina González-Haro, Nina Hoareau, Marta Umbert, Verónica González-Gambau, Justino Martínez, Carolina Gabarró, and Antonio Turiel
Earth Syst. Sci. Data, 13, 857–888, https://doi.org/10.5194/essd-13-857-2021, https://doi.org/10.5194/essd-13-857-2021, 2021
Short summary
Short summary
After more than 10 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) European mission is still a unique, high-quality instrument for providing soil moisture over land and sea surface salinity (SSS) over the oceans. At the Barcelona
Expert Center (BEC), a new reprocessing of 9 years (2011–2019) of global SMOS SSS maps has been generated. This work presents the algorithms used in the generation of the BEC global SMOS SSS product v2.0, as well as an extensive quality assessment.
Tiago S. Dotto, Mauricio M. Mata, Rodrigo Kerr, and Carlos A. E. Garcia
Earth Syst. Sci. Data, 13, 671–696, https://doi.org/10.5194/essd-13-671-2021, https://doi.org/10.5194/essd-13-671-2021, 2021
Short summary
Short summary
A novel seasonal three-dimensional high-resolution hydrographic gridded data set for the northern Antarctic Peninsula (NAP) based on measurements obtained from 1990–2019 by the ship-based Argo profilers and tagged marine mammals is presented. The main oceanographic features of the NAP are well represented, with the final product having many advantages compared to low-resolution climatologies. In addition, new information on the regional water mass pathways and their characteristics is unveiled.
Jonathan M. Lilly and Paula Pérez-Brunius
Earth Syst. Sci. Data, 13, 645–669, https://doi.org/10.5194/essd-13-645-2021, https://doi.org/10.5194/essd-13-645-2021, 2021
Short summary
Short summary
A large set of historical surface drifter data from the Gulf of Mexico are processed and assimilated into a spatially and temporally gridded dataset called GulfFlow, forming a significant resource for studying the circulation and variability in this important region. The uniformly processed historical drifter data interpolated to hourly resolution from all publicly available sources are also distributed in a separate product. A greatly improved map of the mean circulation is presented.
Michele Mossa, Elvira Armenio, Mouldi Ben Meftah, Maria Francesca Bruno, Diana De Padova, and Francesca De Serio
Earth Syst. Sci. Data, 13, 599–607, https://doi.org/10.5194/essd-13-599-2021, https://doi.org/10.5194/essd-13-599-2021, 2021
Short summary
Short summary
Two fixed stations have been installed in the Mar Grande and Mar Piccolo of Taranto, one of the most complex marine ecosystem models. Although typical trends in the water circulation and exchanges have been studied by models developed for the seas of Taranto, more monitoring actions and numerical modelling are still necessary to better understand the most significant hydrodynamic–biological variability in this coastal basin. The results of this study can be applied to similar zones.
Jaime Pitarch, Marco Bellacicco, Salvatore Marullo, and Hendrik J. van der Woerd
Earth Syst. Sci. Data, 13, 481–490, https://doi.org/10.5194/essd-13-481-2021, https://doi.org/10.5194/essd-13-481-2021, 2021
Short summary
Short summary
Ocean monitoring is crucial to understand the regular seasonality and the drift induced by climate change. Satellites offer a possibility to monitor the complete surface of the Earth within a few days with a harmonized methodology, reaching resolutions of few kilometres. We revisit traditional ship survey optical parameters such as the
Secchi disk depthand the
Forel–Ule indexand derive them from satellite observations. Our time series is 21 years long and has global coverage.
Carine G. van der Boog, J. Otto Koetsier, Henk A. Dijkstra, Julie D. Pietrzak, and Caroline A. Katsman
Earth Syst. Sci. Data, 13, 43–61, https://doi.org/10.5194/essd-13-43-2021, https://doi.org/10.5194/essd-13-43-2021, 2021
Short summary
Short summary
Thermohaline staircases are stepped structures in the ocean that contain enhanced diapycnal salt and heat transport. In this study, we present a global dataset of thermohaline staircases derived from 487 493 observations of Argo profiling floats and Ice-Tethered Profilers using a novel detection algorithm.
Dagmar Hainbucher, Marta Álvarez, Blanca Astray Uceda, Giancarlo Bachi, Vanessa Cardin, Paolo Celentano, Spyros Chaikalis, Maria del Mar Chaves Montero, Giuseppe Civitarese, Noelia M. Fajar, Francois Fripiat, Lennart Gerke, Alexandra Gogou, Elisa F. Guallart, Birte Gülk, Abed El Rahman Hassoun, Nico Lange, Andrea Rochner, Chiara Santinelli, Tobias Steinhoff, Toste Tanhua, Lidia Urbini, Dimitrios Velaoras, Fabian Wolf, and Andreas Welsch
Earth Syst. Sci. Data, 12, 2747–2763, https://doi.org/10.5194/essd-12-2747-2020, https://doi.org/10.5194/essd-12-2747-2020, 2020
Short summary
Short summary
We report on data from an oceanographic cruise in the Mediterranean Sea (MSM72, March 2018). The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake, and further assess the hydrographical situation after the Eastern and Western Mediterranean Transients. Multidisciplinary measurements were conducted on a predominantly
zonal section throughout the Mediterranean Sea.
Ricardo A. Scrosati, Julius A. Ellrich, and Matthew J. Freeman
Earth Syst. Sci. Data, 12, 2695–2703, https://doi.org/10.5194/essd-12-2695-2020, https://doi.org/10.5194/essd-12-2695-2020, 2020
Short summary
Short summary
We measured temperature every half hour during a period of 5.5 years (2014–2019) at nine wave-exposed rocky intertidal locations along the Atlantic coast of Nova Scotia, Canada. We summarize the main properties of this data set by focusing on location-wise values of daily maximum and minimum temperature and daily SST.
Sylvain Watelet, Øystein Skagseth, Vidar S. Lien, Helge Sagen, Øivind Østensen, Viktor Ivshin, and Jean-Marie Beckers
Earth Syst. Sci. Data, 12, 2447–2457, https://doi.org/10.5194/essd-12-2447-2020, https://doi.org/10.5194/essd-12-2447-2020, 2020
Short summary
Short summary
We present here a seasonal atlas of the Barents Sea including both temperature and salinity for the period 1965–2016. This atlas is curated using several in situ data sources interpolated thanks to the tool DIVA minimizing the expected errors. The results show a recent "Atlantification" of the Barents Sea, i.e., a general increase in both temperature and salinity, while its density remains stable. The atlas is made freely accessible (https://doi.org/10.21335/NMDC-2058021735).
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Sebastien Donnet, Pascal Lazure, Andry Ratsimandresy, and Guoqi Han
Earth Syst. Sci. Data, 12, 1877–1896, https://doi.org/10.5194/essd-12-1877-2020, https://doi.org/10.5194/essd-12-1877-2020, 2020
Short summary
Short summary
Fortune Bay (Canada) is a large fjord-like embayment that hosts aquaculture (salmon) industries, lobster fisheries and wild salmon runs. To better understand the ecological pressure of human-related activities, an important oceanographic program was undertaken to provide basic knowledge of the physical environment. The program ran for 2 consecutive years and successfully obtained data on water temperature, salinity, oxygen, ocean currents, tides and meteorological forcing (e.g. wind).
Sabine Mathesius, Julia Getzlaff, Heiner Dietze, Andreas Oschlies, and Markus Schartau
Earth Syst. Sci. Data, 12, 1775–1787, https://doi.org/10.5194/essd-12-1775-2020, https://doi.org/10.5194/essd-12-1775-2020, 2020
Short summary
Short summary
Controlled manipulation of environmental conditions within large enclosures in the ocean, pelagic mesocosms, has become a standard method to explore responses of marine plankton communities to anthropogenic change. Among the challenges of interpreting mesocosm data is the often uncertain role of vertical mixing. This study introduces a mesocosm mixing model that is able to estimate vertical diffusivities and thus provides a tool for future mesocosm data analyses that account for mixing.
Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 12, 1711–1723, https://doi.org/10.5194/essd-12-1711-2020, https://doi.org/10.5194/essd-12-1711-2020, 2020
Short summary
Short summary
To better understand ocean dynamics and assess their responses and feedbacks to natural and anthropogenic pressures, 3D ocean circulation estimates are needed. Here we present the OMEGA3D product, an observation-based time series (1993–2018) of global 3D ocean currents developed within the European Copernicus Marine Environment Monitoring Service. OMEGA3D provides vertical velocities – an observational barrier due to their small intensity – and full horizontal velocities down to 1500 m depth.
Jean-Pierre Gattuso, Bernard Gentili, David Antoine, and David Doxaran
Earth Syst. Sci. Data, 12, 1697–1709, https://doi.org/10.5194/essd-12-1697-2020, https://doi.org/10.5194/essd-12-1697-2020, 2020
Short summary
Short summary
Light is a key ocean variable shaping the composition of benthic and pelagic communities by controlling the three-dimensional distribution of primary producers. It also plays a major role in the global carbon cycle. We provide a continuous monthly data set of the global distribution of light reaching the seabed. It is 4 times longer (21 vs 5 years) than the previous data set, the spatial resolution is better (4.6 vs 9.3 km), and the bathymetric resolution is also better (0.46 vs 3.7 km).
Alberto Ribotti, Roberto Sorgente, and Mireno Borghini
Earth Syst. Sci. Data, 12, 1287–1294, https://doi.org/10.5194/essd-12-1287-2020, https://doi.org/10.5194/essd-12-1287-2020, 2020
Short summary
Short summary
From May 2000 to January 2004 seven cruises in the Sea of Sardinia collected physical, chemical and biological data. They contributed to knowledge of the local circulation and its interaction with the general Mediterranean one. Accurate and sustained quality assurance for physical sensors was ensured through pre- and postcruise calibration (described here) and verified during cruises by redundant sensors and instruments. Hydrological data are in two open-access datasets in the SEANOE repository.
Alex Brisbourne, Bernd Kulessa, Thomas Hudson, Lianne Harrison, Paul Holland, Adrian Luckman, Suzanne Bevan, David Ashmore, Bryn Hubbard, Emma Pearce, James White, Adam Booth, Keith Nicholls, and Andrew Smith
Earth Syst. Sci. Data, 12, 887–896, https://doi.org/10.5194/essd-12-887-2020, https://doi.org/10.5194/essd-12-887-2020, 2020
Short summary
Short summary
Melting of the Larsen C Ice Shelf in Antarctica may lead to its collapse. To help estimate its lifespan we need to understand how the ocean can circulate beneath. This requires knowledge of the geometry of the sub-shelf cavity. New and existing measurements of seabed depth are integrated to produce a map of the ocean cavity beneath the ice shelf. The observed deep seabed may provide a pathway for circulation of warm ocean water but at the same time reduce rapid tidal melt at a critical location.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Malcolm Taberner, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Elisabetta Canuti, Francisco Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Richard Gould, Stanford B. Hooker, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Hubert Loisel, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Frank Muller-Karger, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 11, 1037–1068, https://doi.org/10.5194/essd-11-1037-2019, https://doi.org/10.5194/essd-11-1037-2019, 2019
Short summary
Short summary
A compiled set of in situ data is useful to evaluate the quality of ocean-colour satellite data records. Here we describe the compilation of global bio-optical in situ data (spanning from 1997 to 2018) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Katrin Latarius, Ursula Schauer, and Andreas Wisotzki
Earth Syst. Sci. Data, 11, 895–920, https://doi.org/10.5194/essd-11-895-2019, https://doi.org/10.5194/essd-11-895-2019, 2019
Short summary
Short summary
During summer 2014 and summer 2015 two autonomous underwater vehicles were operated over several months in the western Nordic Seas close to the ice edge. They took measurements of temperature, salinity and water depth (pressure) on the way. The aim of the Seaglider missions was to observe if near-surface freshwater, which flows out of the Arctic Ocean in the direction to the North Atlantic, increased with shrinking ice coverage. The measurements were executed to finally provide validated data.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 11, 761–768, https://doi.org/10.5194/essd-11-761-2019, https://doi.org/10.5194/essd-11-761-2019, 2019
Short summary
Short summary
Thanks to near-surface sea temperatures measured at Trieste, northern Adriatic Sea, from 1899 to 2015, we estimated mean daily temperatures at 2 m depth and built a quasi-homogeneous 117-year-long time series. We describe the instruments used and the sites of measurements, which are all within Trieste harbour. The data set represents a valuable tool to study sea temperature variability on different timescales. A mean temperature rise rate of 1.1 ± 0.3 °C per century was estimated.
Dong-Jiing Doong, Jen-Ping Peng, and Alexander V. Babanin
Earth Syst. Sci. Data, 11, 323–340, https://doi.org/10.5194/essd-11-323-2019, https://doi.org/10.5194/essd-11-323-2019, 2019
Short summary
Short summary
Seawater temperature has a major impact on human comfort and safety during swimming, surfing and snorkeling activities and the marine ecosystems. The authors deployed marine buoys to collect meteo-oceanographic data for the government and found the temperature always dropped significantly after typhoon passages. Presentation of the dataset gives a first understanding and can help to validate the numerical model in order to study the mechanism.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Oliver Zielinski, Daniela Meier, Kertu Lõhmus, Thorsten Balke, Michael Kleyer, and Helmut Hillebrand
Earth Syst. Sci. Data, 10, 1843–1858, https://doi.org/10.5194/essd-10-1843-2018, https://doi.org/10.5194/essd-10-1843-2018, 2018
Short summary
Short summary
An experiment for biodiversity–ecosystem functioning at the intersection of land and sea was set up in the intertidal zone of the back-barrier salt marsh of Spiekeroog Island in the German Bight. Here we report the accompanying instrumentation, maintenance, data acquisition, data handling and data quality control as well as monitoring results observed over a continuous period from September 2014 to April 2017.
WCRP Global Sea Level Budget Group
Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, https://doi.org/10.5194/essd-10-1551-2018, 2018
Short summary
Short summary
Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Studying the sea level budget, i.e., comparing observed global mean sea level to the sum of components (ocean thermal expansion, glaciers and ice sheet mass loss as well as changes in land water storage) improves our understanding of processes at work and provides constraints on missing contributions (e.g., deep ocean).
Gilles Reverdin, Hedinn Valdimarsson, Gael Alory, Denis Diverres, Francis Bringas, Gustavo Goni, Lars Heilmann, Leon Chafik, Tanguy Szekely, and Andrew R. Friedman
Earth Syst. Sci. Data, 10, 1403–1415, https://doi.org/10.5194/essd-10-1403-2018, https://doi.org/10.5194/essd-10-1403-2018, 2018
Short summary
Short summary
We report monthly time series of surface temperature, salinity, and density in the North Atlantic subpolar gyre in 1993–2017 from hydrographical data collected in particular from thermosalinographs onboard selected ships of opportunity. Most of the time, this data set reproduces well the large-scale variability, except for a few seasons with limited sampling, in particular in winter along western Greenland or northeast of Newfoundland in the presence of sea ice.
Giuseppe Aulicino, Yuri Cotroneo, Isabelle Ansorge, Marcel van den Berg, Cinzia Cesarano, Maria Belmonte Rivas, and Estrella Olmedo Casal
Earth Syst. Sci. Data, 10, 1227–1236, https://doi.org/10.5194/essd-10-1227-2018, https://doi.org/10.5194/essd-10-1227-2018, 2018
Short summary
Short summary
We present sea surface salinity and temperature data collected across the Atlantic sector of the Southern Ocean by thermosalinographs on board Agulhas-I and Agulhas-II research vessels. After a rigorous quality control, data have been validated through comparison with water samples and independent products. Hence this dataset represents a valuable tool for validating salinity observations provided by SMOS and Aquarius missions and improving the study of climate variability over this region.
Axel Behrendt, Hiroshi Sumata, Benjamin Rabe, and Ursula Schauer
Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, https://doi.org/10.5194/essd-10-1119-2018, 2018
Short summary
Short summary
Oceanographic data have been collected in the Arctic Ocean over many decades. They were measured by a large variety of platforms. Most of these data are publicly available from the World Ocean Database (WOD). This important online archive, however, does not contain all available modern data and has quality problems in the upper water layers. To enable a quick access to nearly all available temperature and salinity profiles, we compiled UDASH, a complete data archive with a higher quality.
Melissa M. Zweng, Tim P. Boyer, Olga K. Baranova, James R. Reagan, Dan Seidov, and Igor V. Smolyar
Earth Syst. Sci. Data, 10, 677–687, https://doi.org/10.5194/essd-10-677-2018, https://doi.org/10.5194/essd-10-677-2018, 2018
Short summary
Short summary
The World Ocean Database (WOD) contains over 1.3 million oceanographic casts collected in the Arctic Ocean basin and its surrounding marginal seas. WOD
provides a
one-stopsource of Arctic Ocean profile data in a uniform data and metadata format, with quality control applied, which makes it simple for scientists to apply the information to their research.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Yao Luo, Dongxiao Wang, Tilak Priyadarshana Gamage, Fenghua Zhou, Charith Madusanka Widanage, and Taiwei Liu
Earth Syst. Sci. Data, 10, 131–138, https://doi.org/10.5194/essd-10-131-2018, https://doi.org/10.5194/essd-10-131-2018, 2018
Short summary
Short summary
We present a continuous in situ hydro-meteorology observational dataset from a set of instruments first deployed in December 2012 in the south of Sri Lanka, facing toward the north Indian Ocean. This study describes the survey, deployment, and measurements of wind and wave, with the aim of offering future users of the dataset the most comprehensive and as much information as possible.
David J. Morris, John K. Pinnegar, David L. Maxwell, Stephen R. Dye, Liam J. Fernand, Stephen Flatman, Oliver J. Williams, and Stuart I. Rogers
Earth Syst. Sci. Data, 10, 27–51, https://doi.org/10.5194/essd-10-27-2018, https://doi.org/10.5194/essd-10-27-2018, 2018
Short summary
Short summary
This paper brings together over 10 million previously unpublished, quality-controlled seawater temperature measurements from 130 years of government-funded marine science investigations in the United Kingdom (UK).
The records focus around the UK but also extend from Greenland to the Bay of Biscay. Making the data open and accessible provides valuable information to assess changing hydrological conditions.
The data are now all publicly available at https://www.cefas.co.uk/cefas-data-hub/.
Cited articles
Allen, J. T., Smeed, D. A., Tintoré, J., and Ruiz, S.: Mesoscale subduction at
the Almeria–Oran front: Part 1: Ageostrophic flow, J. Marine Syst., 30, 263–285, https://doi.org/10.1016/S0924-7963(01)00062-8, 2001.
Allen, J. T., Painter, S. C., and Rixen, M.: Eddy transport of Western
Mediterranean Intermediate Water to the Alboran
Sea, J. Geophys. Res.-Oceans, 113, C04024,
https://doi.org/10.1029/2007JC004649, 2008.
Aulicino, G., Cotroneo, Y., Ruiz, S., Sánchez Román, A., Pascual,
A., Fusco, G., Tintoré, J., and Budillon, G.: Monitoring the Algerian Basin
through glider observations, satellite altimetry and numerical simulations
along a SARAL/AltiKa track, J. Marine Syst., 179, 55–71,
https://doi.org/10.1016/j.jmarsys.2017.11.006, 2018.
Aulicino, G., Cotroneo, Y., Olmedo, E., Cesarano, C., Fusco, G., and Budillon,
G.: In Situ and Satellite Sea Surface Salinity in the Algerian Basin
Observed through ABACUS Glider Measurements and BEC SMOS Regional
Products, Remote Sens., 11, 1361, https://doi.org/10.3390/rs11111361, 2019.
Barceló-Llull, B., Pascual, A., Díaz Barroso, L.,
Sánchez-Román, A., Casas, B., Muñoz, C., Torner, M., Alou, E., Cutolo,
E., Mourre, B., Allen, J., Aulicino, G., Cabornero, A., Calafat, N., Capó, E.,
Cotroneo, Y., Cyr, F., Doglioli, A., d'Ovidio, F., Dumas, F., Fernández, J.G.,
Gómez, Navarro, L., Gregori, G., Hernández-Lasheras, J., Mahadevan, A.,
Mason, E., Miralles, A., Roque, D., Rubio, M., Ruiz, I., Ruiz, S., Ser-Giacomi, E.,
and Toomey, T.: PRE-SWOT Cruise Report. Mesoscale and sub-mesoscale vertical
exchanges from multi-platform experiments and supporting modeling
simulations: anticipating SWOT launch (CTM2016-78607-P), 138 pp.,
https://digital.csic.es/handle/10261/172644, 2019.
Borrione, I., Falchetti, S., and Alvarez, A.: Physical and dynamical
characteristics of a 300m-deep anticyclonic eddy in the Ligurian Sea
(Northwest Mediterranean Sea): Evidence from a multi-platform sampling
strategy, Deep-Sea Res. Pt. I, 116,
145–164, https://doi.org/10.1016/j.dsr.2016.07.013, 2016.
Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., d'Ortenzio,
F., and Coppola, L.: Spreading of Levantine Intermediate Waters by submesoscale
coherent vortices in the northwestern Mediterranean Sea as observed with
gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, https://doi.org/10.1002/2014JC010263, 2015.
Bosse, A., Testor, P., Houpert, L., Damien, P., Prieur, L., Hayes, D.,
Taillandier, V., Durrieu de Madron, X., d'Ortenzio, F., Coppola, L.,
Karstensen, J., and Mortier, L.: Scales and dynamics of Submesoscale Coherent
Vortices formed by deep convection in the northwestern Mediterranean Sea, J.
Geophys. Res.-Oceans, 121, 7716–7742, https://doi.org/10.1002/2016JC012144, 2016.
Bosse, A., Testor, P., Mayot, N., Prieur, L., D'Ortenzio, F., Mortier, L.,
Goff, H.L., Gourcuff, C., Coppola, L., Lavigne, H., and Raimbault, P.: A
submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to
biological implications, J. Geophys. Res.-Oceans, 122,
6196–6217, https://doi.org/10.1002/2016JC012634, 2017.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013.
Carret, A., Birol, F., Estournel, C., Zakardjian, B., and Testor, P.: Synergy between in situ and altimetry data to observe and study Northern Current variations (NW Mediterranean Sea), Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019, 2019.
Coppola, L., Raimbault, P., Mortier, L., and Testor, P.: Monitoring the
environment in the northwestern Mediterranean Sea, Eos,
100, https://doi.org/10.1029/2019EO125951, 2019.
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G.,
and Tintoré, J.: Glider and satellite high resolution monitoring of a
mesoscale eddy in the algerian basin: Effects on the mixed layer depth and
biochemistry, J. Marine Syst., 62, 73–88,
https://doi.org/10.1016/j.jmarsys.2015.12.004, 2016.
Cotroneo, Y., Aulicino, G., Ruiz, S., Sánchez Román, A., Torner Tomàs, M., Pascual, A., Fusco, G., Heslop, E., Tintoré, J., and Budillon, G.: Glider data collected during the Algerian Basin Circulation Unmanned Survey, Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, 2019.
de Verneil, A., Rousselet, L., Doglioli, A. M., Petrenko, A. A., and Moutin, T.: The fate of a southwest Pacific bloom: gauging the impact of submesoscale vs. mesoscale circulation on biological gradients in the subtropics, Biogeosciences, 14, 3471–3486, https://doi.org/10.5194/bg-14-3471-2017, 2017.
d'Ovidio, F., Fernández, V., Hernández-García, E., and
López, C.: Mixing structures in the Mediterranean Sea from finite-size
Lyapunov exponents, Geophys. Res. Lett., 31, L17203, https://doi.org/10.1029/2004GL020328, 2004.
d'Ovidio, F., Pascual, A., Wang, J., Doglioli, A. M., Jing, Z., Moreau, S.,
Grégori, G., Swart, S., Speich, S., Cyr, F., Legresy, B., Chao, Y., Fu,
L., and Morrow, R. A.: Frontiers in Fine-Scale in situ Studies: Opportunities
During the SWOT Fast Sampling Phase, Front. Mar. Sci., 6, 168, https://doi.org/10.3389/fmars.2019.00168, 2019.
Dumas, F., Garreau, P., Louazel, S., Correard, S., Fercoq, S., Le Menn, M.,
Serpette, A., Garnier, V., Stegner, A., Le Vu, B., Doglioli, A., and Gregori,
G.: PROTEVS-MED field experiments: Very High Resolution Hydrographic Surveys
in the Western Mediterranean Sea, SEANOE, https://doi.org/10.17882/62352, 2018.
Durrieu de Madron, X., Houpert, L., Puig, P., Sanchez-Vidal, A., Testor, P.,
Bosse, A., Estournel, C., Somot, S., Bourrin, F., Bouin, M.N., Beauverger,
M., Beguery, L., Calafat, A., Canals, M., Cassou, C., Coppola, L., Dausse,
D., D'Ortenzio, F., Font, J., Heussner, S., Kunesch, S., Lefevre, D., Le
Goff, H., Martiìn, J., Mortier, L., Palanques, A., and Raimbault, P.:
Interaction of dense shelf water cascading and open-sea convection in the
northwestern Mediterranean during winter 2012, Geophys. Res. Lett.,
40, 1379–1385, 2013.
Escudier, R., Mourre, B., Juza, M., and Tintoré, J.: Subsurface circulation
and mesoscale variability in the Algerian subbasin from altimeter-derived
eddy trajectories, J. Geophys. Res.-Oceans, 121, 6310–6322,
https://doi.org/10.1002/2016JC011760, 2016a.
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier,
J.: Eddy properties in the Western Mediterranean Sea from satellite
altimetry and a numerical simulation, J. Geophys. Res.-Oceans, 121, 3990–4006, https://doi.org/10.1002/2015JC011371,
2016b.
Estournel, C., Testor, P., Taupier-Letage, I., Bouin, M.-N., Coppola, L.,
Durand, P., Conan, P., Bosse, A., Brilouet, P.-E., Beguery, L., Belamari,
S., Béranger, K., Beuvier, J., Bourras, D., Canut, G., Doerenbecher, A.,
Durrieu de Madron, X., D'Ortenzio, F., Drobinski, P., Ducrocq, V.,
Fourrié, N., Giordani, H., Houpert, L., Labatut, L., Lebeaupin Brossier,
C., Nuret, M., Prieur, L., Roussot, O., Seyfried, L., and Somot, S.: HyMeX-SOP2:
The Field Campaign Dedicated to Dense Water Formation in the Northwestern
Mediterranean, Oceanography 29, 196–206, https://doi.org/10.5670/oceanog.2016.94, 2016.
Gaillard, F., Diverres, D., Jacquin, S., Gouriou, Y., Grelet, J., Menn,
M. L., Tassel, J., and Reverdin, G.: Sea surface temperature and salinity from
French research vessels, 2001–2013, Scientific Data, 2, 150054, https://doi.org/10.1038/sdata.2015.54, 2015.
Garreau, P., Dumas, F., Louazel, S., Stegner, A., and Le Vu, B.: High-Resolution
Observations and Tracking of a Dual-Core Anticyclonic Eddy in the Algerian
Basin, J.Geophys. Res.-Oceans, 123, 9320–9339, https://doi.org/10.1029/2017JC013667, 2018.
Giordani, H., Lebeaupin-Brossier, C., Léger, F., and Caniaux, G.: A
PV-approach for dense water formation along fronts: Application to the
Northwestern Mediterranean, J. Geophys. Res.-Oceans, 122,
995–1015, https://doi.org/10.1002/2016JC012019, 2017.
Gosud: GOSUD-Global Ocean Surface Underway data, SEANOE,
https://doi.org/10.17882/47403, 2016.
Heslop, E. E., Sánchez-Román, A., Pascual, A., Rodríguez, D.,
Reeve, K. A., Faugère, Y., and Raynal, M.: Sentinel-3A Views Ocean
Variability More Accurately at Finer
Resolution, Geophys. Res. Lett., 44, 12367–12374, https://doi.org/10.1002/2017GL076244,
2017.
Houpert, L., Durrieu de Madron, X., Testor, P., Bosse, A., D'Ortenzio, F.,
Bouin, M. N., Dausse, D., Le Goff, H., Kunesch, S., Labaste, M., Coppola, L.,
Mortier, L., and Raimbault, P.: Observations of open-ocean deep convection in
the northwestern Mediterranean Sea: Seasonal and interannual variability of
mixing and deep water masses for the 2007–2013
Period, J. Geophys. Res.-Oceans, 121, 8139–8171,
https://doi.org/10.1002/2016JC011857, 2016.
JCOMM: Pilot intercomparison project for seawater salinity
measurements, final report. World Meteorological Organization
(WMO), Intergovernmental Oceanographic Commission: JCOMM technical report, no. 84, 2015.
Jones, H. and Marshall, J.: Convection with Rotation in a Neutral Ocean: A
Study of Open-Ocean Deep Convection, J. Phys. Oceanogr., 23, 1009–1039,
https://doi.org/10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;2, 1993.
Jones, H. and Marshall, J.: Restratification after Deep Convection, J. Phys.
Oceanogr., 27, 2276–2287, https://doi.org/10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2, 1997.
Knoll, M., Borrione, I., Fiekas, H.-V., Funk, A., Hemming, M. P., Kaiser, J., Onken, R., Queste, B., and Russo, A.: Hydrography and circulation west of Sardinia in June 2014, Ocean Sci., 13, 889–904, https://doi.org/10.5194/os-13-889-2017, 2017.
Le Menn, M.: About uncertainties in practical salinity calculations, Ocean Sci., 7, 651–659, https://doi.org/10.5194/os-7-651-2011, 2011.
Le Vu, B., Stegner, A., and Arsouze, T.: Angular Momentum Eddy Detection and
Tracking Algorithm (AMEDA) and Its Application to Coastal Eddy Formation,
J. Atmos. Ocean. Tech., 35, 739–762, https://doi.org/10.1175/JTECH-D-17-0010.1,
2017.
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale
currents in structuring marine ecosystems, Nat. Commun., 9, 1–15, 2018.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and
models, Rev. Geophys. 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
McWilliams, J. C.: Submesoscale, coherent vortices in the ocean, Rev.
Geophys., 23, 165–182, https://doi.org/10.1029/RG023i002p00165, 1985.
McWilliams, J. C.: Submesoscale currents in the ocean, P.
R. Soc. A, 472,
20160117, https://doi.org/10.1098/rspa.2016.0117, 2016.
Medoc Group: Observation of Formation of Deep Water in the Mediterranean
Sea1969, Nature, 227, 1037–1040, https://doi.org/10.1038/2271037a0, 1970.
Meloni, M., Bouffard, J., Doglioli, A. M., Petrenko, A. A., and Valladeau, G.:
Toward science-oriented validations of coastal altimetry: application to the
Ligurian Sea, Remote Sens. Environ., 224, 275–288, https://doi.org/10.1016/j.rse.2019.01.028, 2019.
Margirier, F., Bosse, A., Testor, P., L'Hévéder, B., Mortier, L.,
and Smeed, D.: Characterization of Convective Plumes Associated With Oceanic
Deep Convection in the Northwestern Mediterranean From High-Resolution In
Situ Data Collected by Gliders, J. Geophys. Res.-Oceans, 122,
9814–9826, https://doi.org/10.1002/2016JC012633, 2017.
Marrec, P., Grégori, G., Doglioli, A. M., Dugenne, M., Della Penna, A., Bhairy, N., Cariou, T., Hélias Nunige, S., Lahbib, S., Rougier, G., Wagener, T., and Thyssen, M.: Coupling physics and biogeochemistry thanks to high-resolution observations of the phytoplankton community structure in the northwestern Mediterranean Sea, Biogeosciences, 15, 1579–1606, https://doi.org/10.5194/bg-15-1579-2018, 2018.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Marine Syst., 20, 423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in:
The Mediterranean Sea, Handbook of Environmental Chemistry, edited by:
Saliot, A., Springer, Berlin, Heidelberg, 29–66,
https://doi.org/10.1007/b107143, 2005.
Millot, C., Taupierletage, I., and Benzohra, M.: The Algerian Eddies, Earth-Sci.
Rev., 27, 203–219, https://doi.org/10.1016/0012-8252(90)90003-E,
1990.
Nencioli, F., d'Ovidio, F., Doglioli, A. M., and Petrenko, A. A.: Surface coastal
circulation patterns by in-situ detection of Lagrangian coherent structures, Geophys. Res. Lett., 38, L17604, https://doi.org/10.1029/2011GL048815, 2011.
Niewiadomska, K., Claustre, H., Prieur, L., and d'Ortenzio, F.: Submesoscale
physical-biogeochemical coupling across the Ligurian current (northwestern
Mediterranean) using a bio-optical glider, Limnol. Oceanogr., 53,
2210–2225, https://doi.org/10.4319/lo.2008.53.5_part_2.2210, 2008.
Onken, R. and Brambilla, E.: Double diffusion in the Mediterranean Sea:
Observation and parameterization of salt finger convection, J. Geophys. Res.-Oceans, 108, 8124, https://doi.org/10.1029/2002JC001349, 2003.
Onken, R., Fiekas, H.-V., Beguery, L., Borrione, I., Funk, A., Hemming, M., Hernandez-Lasheras, J., Heywood, K. J., Kaiser, J., Knoll, M., Mourre, B., Oddo, P., Poulain, P.-M., Queste, B. Y., Russo, A., Shitashima, K., Siderius, M., and Thorp Küsel, E.: High-resolution observations in the western Mediterranean Sea: the REP14-MED experiment, Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, 2018.
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B.,
Mourre, B., Poulain, P.-M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen,
J. T., Mahadevan, A., and Tintoré, J.: A Multiplatform Experiment to Unravel
Meso- and Submesoscale Processes in an Intense Front (AlborEx), Front. Mar.
Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017.
Petrenko, A. A., Doglioli, A. M., Nencioli, F., Kersalé, M., Hu, Z.,
and d'Ovidio, F.: A review of the LATEX project: mesoscale to submesoscale
processes in a coastal environment, Ocean Dynam., 67, 513–533, https://doi.org/10.1007/s10236-017-1040-9, 2017.
Puillat, I., Taupier-Letage, I., and Millot, C.: Algerian Eddies lifetime can
near 3 years, J. Marine Syst., 31, 245–259, https://doi.org/10.1016/S0924-7963(01)00056-2, 2002.
Robinson, A. R. and Golnaraghi, M.: The Physical and Dynamical Oceanography of
the Mediterranean Sea, in:
Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by: Malanotte-Rizzoli, P. and Robinson, A. R.,
Springer, Netherlands, Dordrecht, 255–306, https://doi.org/10.1007/978-94-011-0870-6_12, 1994.
Rousselet L., Doglioli, A. M., de Verneil, A., Pietri, A., Della Penna, A.,
Berline, L., Marrec, P., Gregori, G., Thyssen, M., Carlotti, F., Barillon,
S., Simon-Bot, F., Bonal, M., d'Ovidio, F., and Petrenko, A. A.: Vertical
motions and their effects on a biogeochemical tracer in a cyclonic structure
finely observed in the Ligurian Sea, J. Geophys. Res., 124, 3561–3574, https://doi.org/10.1029/2018JC014392, 2019.
Ruiz, S., Pascual, A., Garau, B., Faugère, Y., Alvarez, A., and Tintoré,
J.: Mesoscale dynamics of the Balearic Front, integrating glider, ship and
satellite data, J. Marine Syst., 78, S3–S16, https://doi.org/10.1016/j.jmarsys.2009.01.007, 2009.
Salat, J., Emelianov, M., Frail, E., and Latasa, M.: After deep water formation:
sinking and spreading or reorganising phase, including upwelling?, Rapp.
Comm. int. Mer Médit, 40,
available at: http://www.ciesm.org/online/archives/abstracts/pdf/40/PG_0175.pdf (last access: 19 February 2020), 2013.
Sverdrup, H. U., Johnson, M. W., and Fleming, R. H.: The oceans: their physics, chemistry,
and general biology, Englewood Cliffs, NJ, Prentice-Hall, 1942.
Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G.: CORA, Coriolis Ocean
Dataset for Reanalysis, SEANOE, https://doi.org/10.17882/46219,
2019.
Taupier-Letage, I., Puillat, I., Millot, C., and Raimbault, P.: Biological
response to mesoscale eddies in the Algerian Basin, J. Geophys. Res.-Oceans, 108, 3845, https://doi.org/10.1029/1999JC000117,
2003.
Testor, P. and Gascard, J.-C.: Large-Scale Spreading of Deep Waters in the
Western Mediterranean Sea by Submesoscale Coherent Eddies, J. Phys.
Oceanogr., 33, 75–87, https://doi.org/10.1175/1520-0485(2003)033<0075:LSSODW>2.0.CO;2, 2003.
Testor, P. and Gascard, J.-C.: Post-convection spreading phase in the
Northwestern Mediterranean Sea, Deep-Sea Res. Pt. I, 53, 869–893, https://doi.org/10.1016/j.dsr.2006.02.004, 2006.
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H.,
Dausse, D., Labaste, M., Karstensen, J., Hayes, D., Olita, A., Ribotti, A.,
Schroeder, K., Chiggiato, J., Onken, R., Heslop, E., Mourre, B., D'Ortenzio,
F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L.,
Taillandier, V., Durrieu de Madron, X., Bourrin, F., Many, G., Damien, P.,
Estournel, C., Marsaleix, P., Taupier-Letage, I., Raimbault, P., Waldman,
R., Bouin, M.-N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan,
P.: Multiscale Observations of Deep Convection in the Northwestern
Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms, J.
Geophys. Res.-Oceans, 123, 1745–1776,
https://doi.org/10.1002/2016JC012671, 2018.
Troupin, C., Pascual, A., Ruiz, S., Olita, A., Casas, B., Margirier, F., Poulain, P.-M., Notarstefano, G., Torner, M., Fernández, J. G., Rújula, M. À., Muñoz, C., Alou, E., Ruiz, I., Tovar-Sánchez, A., Allen, J. T., Mahadevan, A., and Tintoré, J.: The AlborEX dataset: sampling of sub-mesoscale features in the Alboran Sea, Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, 2019.
Visbeck, M.: Deep Velocity Profiling Using Lowered Acoustic Doppler Current
Profilers: Bottom Track and Inverse Solutions, J. Atmos. Ocean. Tech.,
19, 794–807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2, 2002.
Short summary
The oceanic circulation is composed of the main currents, of large eddies and meanders, and of fine motions at a scale of about a few hundreds of metres, rarely observed in situ. PROTEVS-MED experiments were devoted to very high resolution observations of water properties (temperature and salinity) and currents, thanks to an undulating trawled vehicle revealing a patchy, stirred and energetic ocean in the first 400 m depth. These fine-scale dynamics drive the plankton and air–sea exchanges.
The oceanic circulation is composed of the main currents, of large eddies and meanders, and of...