Articles | Volume 12, issue 4
https://doi.org/10.5194/essd-12-2447-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-12-2447-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A volumetric census of the Barents Sea in a changing climate
Sylvain Watelet
CORRESPONDING AUTHOR
Department of Astrophysics, Geophysics and Oceanography, GeoHydrodynamics and Environment Research Unit, FOCUS Research Unit, University of Liège, Liège, Belgium
currently at: Observation Scientific Service, Royal Meteorological Institute, Brussels, Belgium
Øystein Skagseth
Institute of Marine Research, Bergen, Norway
Vidar S. Lien
Institute of Marine Research, Bergen, Norway
Helge Sagen
Institute of Marine Research, Bergen, Norway
Øivind Østensen
Institute of Marine Research, Bergen, Norway
Viktor Ivshin
Polar Branch of the Russian Federal Research Institute of Fisheries and Oceanography (PINRO), Murmansk, Russia
Jean-Marie Beckers
Department of Astrophysics, Geophysics and Oceanography, GeoHydrodynamics and Environment Research Unit, FOCUS Research Unit, University of Liège, Liège, Belgium
Related authors
Sylvain Watelet, Jean-Marie Beckers, Jean-Marc Molines, and Charles Troupin
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-79, https://doi.org/10.5194/os-2020-79, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, we use a numerical hindcast at high resolution (1/12°) to examine the occurrence and properties of Rossby waves in the North Atlantic between 1970–2015. We show evidence of Rossby waves travelling at 39° N at a speed of 4.17 cm s−1. These results are consistent with baroclinic Rossby waves generated by the North Atlantic Oscillation in the central North Atlantic and travelling westward before interacting with the Gulf Stream transport with a time lag of about 2 years.
Till M. Baumann, Øystein Skagseth, Randi B. Ingvaldsen, and Kjell Arne Mork
EGUsphere, https://doi.org/10.5194/egusphere-2025-2854, https://doi.org/10.5194/egusphere-2025-2854, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Thirty years of in-situ hydrographic measurements combined with satellite observations reveal that Atlantic Water flowing northward along Norway is cooling less than before. We find that reduced surface heat loss and faster advection are likely drivers, though their relative effect varies over time. These changes result in more ocean heat reaching the Arctic, with likely impacts on climate, sea ice, and marine ecosystems.
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
Ocean Sci., 21, 787–805, https://doi.org/10.5194/os-21-787-2025, https://doi.org/10.5194/os-21-787-2025, 2025
Short summary
Short summary
This work presents an approach for increasing the spatial resolution of satellite data and interpolating gaps due to cloud cover, using a method called DINEOF (data-interpolating empirical orthogonal functions). The method is tested on turbidity and chlorophyll-a concentration data in the Belgian coastal zone and the North Sea. The results show that we are able to improve the spatial resolution of these data in order to perform analyses of spatial and temporal variability in coastal regions.
Luke Harry Marsden, Øystein Godøy, Tove Margrethe Gabrielsen, Pål Gunnar Ellingsen, Marit Reigstad, Miriam Marquardt, Arnfinn Morvik, Helge Sagen, Stein Tronstad, and Lara Ferrighi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-56, https://doi.org/10.5194/essd-2025-56, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
This article presents the data management strategies of the Nansen Legacy project, developed to handle data from 300+ researchers and 20 expeditions in the northern Barents Sea. Data collection protocols were documented and followed for consistency, and a searchable data overview was available soon after each cruise. The project required early data sharing and publishing in line with FAIR principles where possible. This article details these strategies to guide future projects.
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
Ocean Sci., 20, 1567–1584, https://doi.org/10.5194/os-20-1567-2024, https://doi.org/10.5194/os-20-1567-2024, 2024
Short summary
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Vidar S. Lien, Roshin P. Raj, and Sourav Chatterjee
State Planet, 4-osr8, 8, https://doi.org/10.5194/sp-4-osr8-8-2024, https://doi.org/10.5194/sp-4-osr8-8-2024, 2024
Short summary
Short summary
We find that major marine heatwaves are rather coherent throughout the Barents Sea, but surface marine heatwaves occur more frequently while heatwaves on the ocean floor have a longer duration. Moreover, we investigate the sensitivity to the choice of climatological average length when calculating marine heatwave statistics. Our results indicate that severe marine heatwaves may become more frequent in the future Barents Sea due to ongoing climate change.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Vidar S. Lien, Angelika H. H. Renner, Mari S. Myksvoll, Johnny A. Johannessen, Jeremy Cook, Helene Spurkeland, and Ronald Toppe
State Planet Discuss., https://doi.org/10.5194/sp-2022-12, https://doi.org/10.5194/sp-2022-12, 2022
Preprint withdrawn
Short summary
Short summary
The One Ocean Expedition, a part of the United Nations Ocean Decade, is a sailing voyage where a traditional tall ship equipped with state-of-the-art ocean observation technology is circumnavigating the globe with a crew consisting of students, scientists, trainees and professionals. The focus for the expedition is awareness raising and education through showcasing ocean science using a traditional tall ship as a platform.
Vidar S. Lien and Roshin P. Raj
State Planet Discuss., https://doi.org/10.5194/sp-2022-13, https://doi.org/10.5194/sp-2022-13, 2022
Preprint withdrawn
Short summary
Short summary
Dense overflow water entering the North Atlantic from the Nordic Seas forms the northern limb of the Atlantic Meridional Overturning Circulation. The formation of dense water in the Nordic Seas is sensitive to the properties of the northward flowing Atlantic Water entering the Nordic Seas to the south. We find that the unprecedented freshwater anomaly in the North Atlantic recent years caused the dense water formed in the Barents Sea to have the lowest density in recorded history.
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.
Sylvain Watelet, Jean-Marie Beckers, Jean-Marc Molines, and Charles Troupin
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-79, https://doi.org/10.5194/os-2020-79, 2020
Revised manuscript not accepted
Short summary
Short summary
In this study, we use a numerical hindcast at high resolution (1/12°) to examine the occurrence and properties of Rossby waves in the North Atlantic between 1970–2015. We show evidence of Rossby waves travelling at 39° N at a speed of 4.17 cm s−1. These results are consistent with baroclinic Rossby waves generated by the North Atlantic Oscillation in the central North Atlantic and travelling westward before interacting with the Gulf Stream transport with a time lag of about 2 years.
Cited articles
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the
Barents Sea causes the polar front to limit the expansion of winter sea ice,
J. Phys. Oceanogr., 48, 1849–1866, 2018. a
Beckers, J.-M., Barth, A., Troupin, C., and Alvera-Azcárate, A.:
Approximate and efficient methods to assess error fields in spatial gridding
with data interpolating variational analysis (DIVA), J. Atmos.
Ocean. Technol., 31, 515–530, 2014. a
Boyer, T., Levitus, S., Antonov, J., Locarnini, R., Mishonov, A., Garcia, H.,
and Josey, S. A.: Changes in freshwater content in the North Atlantic Ocean
1955–2006, Geophys. Res. Lett., 34, 16, https://doi.org/10.1029/2007GL030126, 2007. a, b
Brasseur, P.: Reconstitution de champs d'observations océanographiques par
le Modèle Variationnel Inverse: Méthodologie et Applications, Ph.D.
thesis, Universite de Liege, Faculte des sciences appliquees, 1995. a
Chouquet, C.: Modèles Linéaires, Laboratoire de Statistique et
Probabilités, available at: http://www.math.univ-toulouse.fr/~barthe/M1modlin/poly.pdf,
(last access: 22 September 2015), 2009. a
Comiso, J. C. and Hall, D. K.: Climate trends in the Arctic as observed from
space, Wiley Interdisciplinary Reviews: Climate Change, 5, 389–409, 2014. a
Craven, P. and Wahba, G.: Smoothing noisy data with spline functions,
Numer. Math., 31, 377–403, 1978. a
Dickson, R. R., Meincke, J., Malmberg, S.-A., and Lee, A. J.: The “great
salinity anomaly” in the northern North Atlantic 1968–1982,
Prog. Oceanogr., 20, 103–151, 1988. a
Eriksen, E., Gjøsæter, H., Prozorkevich, D., Shamray, E., Dolgov, A.,
Skern-Mauritzen, M., Stiansen, J. E., Kovalev, Y., and Sunnanå, K.: From
single species surveys towards monitoring of the Barents Sea ecosystem,
Prog. Oceanogr., 166, 4–14, 2018. a
Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M.,
and Dolgov, A. V.: Recent warming leads to a rapid borealization of fish
communities in the Arctic, Nat. Clim. Change, 5, 673–677, 2015. a
Free Software Foundation, Licence publique générale GNU, available at: http://www.gnu.org/copyleft/gpl.html (last access: 24 September 2020), 2018.
gher-ulg: DIVA, GitHub, available at: https://github.com/gher-ulg/DIVA, last access: 24 September 2020. a
Helland-Hansen, B. and Nansen, F.: The Norwegian Sea: its physical oceanography
based upon the Norwegian researches 1900–1904, Det Mallingske Bogtrykkeri,
1909. a
Hill, M. N. E.: The Sea: Composition of Sea-Water, Vol. 2, Wiley, 1962. a
Johannesen, E., Ingvaldsen, R. B., Bogstad, B., Dalpadado, P., Eriksen, E.,
Gjøsæter, H., Knutsen, T., Skern-Mauritzen, M., and Stiansen, J. E.:
Changes in Barents Sea ecosystem state, 1970–2009: climate fluctuations,
human impact, and trophic interactions, ICES J. Mar. Sci., 69,
880–889, 2012. a
Knipowitsch, N.: Hydrologische Untersuchungen im Europäischen Eismeer,
Ann. Hydrogr. Maritim. Meteorol., 33, 241–260, 1905. a
Kuhlbrodt, T., Rahmstorf, S., Zickfeld, K., Vikebø, F. B., Sundby, S.,
Hofmann, M., Link, P. M., Bondeau, A., Cramer, W., and Jaeger, C.: An
integrated assessment of changes in the thermohaline circulation, Clim.
Change, 96, 489–537, 2009. a
Locarnini, R., Mishonov, A., Baranova, O., Boyer, T., Zweng, M., Garcia, H.,
Reagan, J., Seidov, D., Weathers, K., Paver, C., and Smolyar, I.: World ocean
atlas 2018, Temperature, p. 52, 2018. a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de
Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M.
E., Johns, W. E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I. A., Lin, X.,
Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart, R. S., Ramsey, A. L., Rayner, D.,
Straneo, F., Thierry, V., Torres, D. J., Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A sea change in our view
of overturning in the subpolar North Atlantic, Science, 363, 516–521, 2019. a
Mauritzen, C., Rudels, B., and Toole, J.: The Arctic and Subarctic Oceans/Seas,
in: International Geophysics, Vol. 103, 443–470, Elsevier, 2013. a
Montgomery, D. C., Peck, E. A., and Vining, G. G.: Introduction to linear
regression analysis, Vol. 821, John Wiley & Sons, 2012. a
Mork, K. A., Skagseth, Ø., and Søiland, H.: Recent warming and freshening
of the Norwegian Sea observed by Argo data, J. Climate, 32,
3695–3705, 2019. a
Reiniger, R. and Ross, C.: A method of interpolation with application to
oceanographic data, in: Deep Sea Research and Oceanographic Abstracts,
Vol. 15, 185–193, Elsevier, 1968. a
Rixen, M., Beckers, J.-M., Brankart, J.-M., and Brasseur, P.: A numerically
efficient data analysis method with error map generation, Ocean Modell., 2, 45–60, 2000. a
Schauer, U., Muench, R. D., Rudels, B., and Timokhov, L.: Impact of eastern
Arctic shelf waters on the Nansen Basin intermediate layers, J.
Geophys. Res.-Oceans, 102, 3371–3382, 1997. a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M.,
Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B.,
Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The role
of the Barents Sea in the Arctic climate system, Rev. Geophys., 51,
415–449, 2013. a
Swift, J. H., Takahashi, T., and Livingston, H. D.: The contribution of the
Greenland and Barents seas to the deep water of the Arctic Ocean, J.
Geophys. Res.-Oceans, 88, 5981–5986, 1983. a
Troupin, C., Machin, F., Ouberdous, M., Sirjacobs, D., Barth, A., and Beckers,
J.-M.: High-resolution climatology of the northeast Atlantic using
Data-Interpolating Variational Analysis (DIVA), J. Geophys.
Res.-Oceans, 115, C8, https://doi.org/10.1029/2009JC005512, 2010. a
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.-M., Brasseur, P., Rixen, M., Alvera-Azcárate,
A., Belounis, M., Capet, A., Lenartz, F., Toussaint, M.-E., and Beckers, J.-M.: Generation of analysis and consistent error fields using the Data
Interpolating Variational Analysis (DIVA), Ocean Modell., 52, 90–101,
2012. a
Troupin, C., Ouberdous, M., Sirjacobs, D., Alvera-Azcárate, A., Barth,
A., Toussaint, M.-E., Watelet, S., and Beckers, J.-M.: Diva User Guide,
available at: http://modb.oce.ulg.ac.be/mediawiki/index.php/Diva_documents, (last access: 30 June 2020), 2016. a
ULiège, ULiège home page, available at: https://www.uliege.be (last access: 24 September 2020), 2018.
University of Liège, GHER home page, available at: http://labos.ulg.ac.be/gher/ (last access: 24 September 2020), 2016.
Wang, C., Zhang, L., Lee, S.-K., Wu, L., and Mechoso, C. R.: A global
perspective on CMIP5 climate model biases, Nat. Clim. Change, 4,
201–205, 2014. a
Watelet, S., Skagseth, Ø., Lien S., V., Sagen, H., Østensen, Ø.,
Ivshin, V., and Beckers, J.-M.: Barents Sea Atlas, NMDC,
https://doi.org/10.21335/NMDC-2058021735, 2020. a, b, c
Wilks, D. S.: Statistical methods in the atmospheric sciences, an introduction,
Vol. 59, Academic press, 1995. a
Yang, X.-Y., Yuan, X., and Ting, M.: Dynamical link between the Barents–Kara
sea ice and the Arctic Oscillation, J. Climate, 29, 5103–5122, 2016. a
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E.,
Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and Smolyar, I.: World ocean
atlas 2018, Salinity, p. 50, 2018. a
Short summary
We present here a seasonal atlas of the Barents Sea including both temperature and salinity for the period 1965–2016. This atlas is curated using several in situ data sources interpolated thanks to the tool DIVA minimizing the expected errors. The results show a recent "Atlantification" of the Barents Sea, i.e., a general increase in both temperature and salinity, while its density remains stable. The atlas is made freely accessible (https://doi.org/10.21335/NMDC-2058021735).
We present here a seasonal atlas of the Barents Sea including both temperature and salinity for...
Altmetrics
Final-revised paper
Preprint