Articles | Volume 11, issue 1
https://doi.org/10.5194/essd-11-409-2019
https://doi.org/10.5194/essd-11-409-2019
Review article
 | 
21 Mar 2019
Review article |  | 21 Mar 2019

Historical and recent aufeis in the Indigirka River basin (Russia)

Olga Makarieva, Andrey Shikhov, Nataliia Nesterova, and Andrey Ostashov

Related authors

Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost
Olga Makarieva, Nataliia Nesterova, David Andrew Post, Artem Sherstyukov, and Lyudmila Lebedeva
The Cryosphere, 13, 1635–1659, https://doi.org/10.5194/tc-13-1635-2019,https://doi.org/10.5194/tc-13-1635-2019, 2019
Short summary
Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: a database from the Kolyma Water-Balance Station, 1948–1997
Olga Makarieva, Nataliia Nesterova, Lyudmila Lebedeva, and Sergey Sushansky
Earth Syst. Sci. Data, 10, 689–710, https://doi.org/10.5194/essd-10-689-2018,https://doi.org/10.5194/essd-10-689-2018, 2018
Short summary
Evaluation of short-term changes of hydrological response in mountainous basins of the Vitim Plateau (Russia) after forest fires based on data analysis and hydrological modelling
O. M. Semenova, L. S. Lebedeva, N. V. Nesterova, and T. A. Vinogradova
Proc. IAHS, 371, 157–162, https://doi.org/10.5194/piahs-371-157-2015,https://doi.org/10.5194/piahs-371-157-2015, 2015
Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus
L. S. Lebedeva, O. M. Semenova, T. A. Vinogradova, M. N. Kruchin, and N. V. Volkova
Proc. IAHS, 370, 161–165, https://doi.org/10.5194/piahs-370-161-2015,https://doi.org/10.5194/piahs-370-161-2015, 2015

Related subject area

Permafrost
Multisource Synthesized Inventory of CRitical Infrastructure and HUman-Impacted Areas in AlaSka (SIRIUS)
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024,https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
The first hillslope thermokarst inventory for the permafrost region of the Qilian Mountains
Xiaoqing Peng, Guangshang Yang, Oliver W. Frauenfeld, Xuanjia Li, Weiwei Tian, Guanqun Chen, Yuan Huang, Gang Wei, Jing Luo, Cuicui Mu, and Fujun Niu
Earth Syst. Sci. Data, 16, 2033–2045, https://doi.org/10.5194/essd-16-2033-2024,https://doi.org/10.5194/essd-16-2033-2024, 2024
Short summary
An observational network of ground surface temperature under different land-cover types on the northeastern Qinghai–Tibet Plateau
Raul-David Şerban, Huijun Jin, Mihaela Şerban, Giacomo Bertoldi, Dongliang Luo, Qingfeng Wang, Qiang Ma, Ruixia He, Xiaoying Jin, Xinze Li, Jianjun Tang, and Hongwei Wang
Earth Syst. Sci. Data, 16, 1425–1446, https://doi.org/10.5194/essd-16-1425-2024,https://doi.org/10.5194/essd-16-1425-2024, 2024
Short summary
Modern air, englacial and permafrost temperatures at high altitude on Mt Ortles (3905 m a.s.l.), in the eastern European Alps
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023,https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
A new 2010 permafrost distribution map over the Qinghai–Tibet Plateau based on subregion survey maps: a benchmark for regional permafrost modeling
Zetao Cao, Zhuotong Nan, Jianan Hu, Yuhong Chen, and Yaonan Zhang
Earth Syst. Sci. Data, 15, 3905–3930, https://doi.org/10.5194/essd-15-3905-2023,https://doi.org/10.5194/essd-15-3905-2023, 2023
Short summary

Cited articles

Alekseev, V. R.: Naledi, Novosibirsk, Nauka, Moscow, 1987 (in Russian). 
Alekseev, V. R.: Landscape indication of aufeis phenomena, Novosibirsk, Nauka, 364 p., 2005 (in Russian). 
Alekseev, V. R.: Cryogenesis and geodynamics of icing valleys, Geodyn. Tectonophys., 6, 171–224, https://doi.org/10.5800/GT-2015-6-2-0177, 2015. 
Alekseev, V. R.: Long-term variability of the spring taryn-aufeis, Ice and Snow, 56, 73–92, https://doi.org/10.15356/2076-6734-2016-1-73-92, 2016. 
Ananicheva, M. D.: Estimation of the areas, volumes and heights of the boundary of the feeding of glacier systems of the Northeast of Russia from the space images of the beginning of the 21st century, Ice and Snow, 1, 35–48, 2014. 
Download
Short summary
Aufeis is formed through a complex interconnection between river water and groundwater. The dynamics of aufeis assessed by the analysis of remote sensing data can be viewed as an indicator of groundwater changes in warming climate which are otherwise difficult to be observed naturally in remote arctic areas. The spatial geodatabase developed shows that aufeis formation conditions may have changed between the mid-20th century and the present in the Indigirka River basin.
Altmetrics
Final-revised paper
Preprint