Articles | Volume 11, issue 1
https://doi.org/10.5194/essd-11-147-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-147-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Glider data collected during the Algerian Basin Circulation Unmanned Survey
Yuri Cotroneo
CORRESPONDING AUTHOR
Università degli Studi di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143, Naples, Italy
Giuseppe Aulicino
Università degli Studi di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143, Naples, Italy
Università Politecnica delle Marche, Via Brecce Bianche, 12, 60131, Ancona, Italy
Simon Ruiz
Instituto Mediterráneo de Estudios Avanzados, IMEDEA(CSIC-UIB), Carrer de Miquel Marquès, 21, 07190 Esporles, Balearic Islands, Spain
Antonio Sánchez Román
Instituto Mediterráneo de Estudios Avanzados, IMEDEA(CSIC-UIB), Carrer de Miquel Marquès, 21, 07190 Esporles, Balearic Islands, Spain
Marc Torner Tomàs
Balearic Islands Coastal Observing and Forecasting System (SOCIB), Edificio Naorte, Bloque A, Parc Bit, 07122 Palma, Spain
Ananda Pascual
Instituto Mediterráneo de Estudios Avanzados, IMEDEA(CSIC-UIB), Carrer de Miquel Marquès, 21, 07190 Esporles, Balearic Islands, Spain
Giannetta Fusco
Università degli Studi di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143, Naples, Italy
Consorzio Interuniversitario Nazionale per la Fisica delle Atmosfere e delle Idrosfere, CINFAI, Piazza Nicolò Mauruzi, 17, 62029 Tolentino (MC), Italy
Emma Heslop
Intergovernmental Oceanographic Commission of UNESCO, 7, place de Fontenoy 75732 Paris CEDEX 07, France
Joaquín Tintoré
Instituto Mediterráneo de Estudios Avanzados, IMEDEA(CSIC-UIB), Carrer de Miquel Marquès, 21, 07190 Esporles, Balearic Islands, Spain
Balearic Islands Coastal Observing and Forecasting System (SOCIB), Edificio Naorte, Bloque A, Parc Bit, 07122 Palma, Spain
Giorgio Budillon
Università degli Studi di Napoli “Parthenope”, Centro Direzionale di Napoli, Isola C4, 80143, Naples, Italy
Consorzio Interuniversitario Nazionale per la Fisica delle Atmosfere e delle Idrosfere, CINFAI, Piazza Nicolò Mauruzi, 17, 62029 Tolentino (MC), Italy
Related authors
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-417, https://doi.org/10.5194/essd-2024-417, 2024
Preprint under review for ESSD
Short summary
Short summary
This study gathered water temperature data in the last 30 years from several research cruises using XBT probes between New Zealand and the Ross Sea (Antarctica). These observations, collected in the framework of Italian National Antarctic Research Program, were rigorously checked for accuracy and corrected for depth and temperature bias. The public dataset offers valuable information to get insights into the Southern Ocean's climate and improve satellite observations and oceanographic models.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Federica Pessini, Antonio Olita, Yuri Cotroneo, and Angelo Perilli
Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, https://doi.org/10.5194/os-14-669-2018, 2018
Short summary
Short summary
The Algerian Basin plays a key role in the WMED, and the formation and propagation of mesoscale structures strongly influence its circulation. They transport water masses, heat, salts and other properties and also have an impact on chlorophyll and fisheries. We investigated the spatial and temporal distribution of the eddies by applying a detection and tracking method to altimetry data. The results show mesoscale structures with different origins, behaviours and energies.
Giuseppe Aulicino, Yuri Cotroneo, Isabelle Ansorge, Marcel van den Berg, Cinzia Cesarano, Maria Belmonte Rivas, and Estrella Olmedo Casal
Earth Syst. Sci. Data, 10, 1227–1236, https://doi.org/10.5194/essd-10-1227-2018, https://doi.org/10.5194/essd-10-1227-2018, 2018
Short summary
Short summary
We present sea surface salinity and temperature data collected across the Atlantic sector of the Southern Ocean by thermosalinographs on board Agulhas-I and Agulhas-II research vessels. After a rigorous quality control, data have been validated through comparison with water samples and independent products. Hence this dataset represents a valuable tool for validating salinity observations provided by SMOS and Aquarius missions and improving the study of climate variability over this region.
Giuseppe Aulicino, Antonino Ian Ferola, Laura Fortunato, Giorgio Budillon, Pasquale Castagno, Pierpaolo Falco, Giannetta Fusco, Naomi Krauzig, Giancarlo Spezie, Enrico Zambianchi, and Yuri Cotroneo
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-417, https://doi.org/10.5194/essd-2024-417, 2024
Preprint under review for ESSD
Short summary
Short summary
This study gathered water temperature data in the last 30 years from several research cruises using XBT probes between New Zealand and the Ross Sea (Antarctica). These observations, collected in the framework of Italian National Antarctic Research Program, were rigorously checked for accuracy and corrected for depth and temperature bias. The public dataset offers valuable information to get insights into the Southern Ocean's climate and improve satellite observations and oceanographic models.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1056, https://doi.org/10.5194/egusphere-2024-1056, 2024
Short summary
Short summary
This study offers a “journey through time” to discover historical information about snow precipitation in the Italian Apennines. In this area, in the second half of past century, a gradual decline in snow persistence on the ground as well as in the frequency of occurrence of snowfall events has been observed, especially in sites located above 1000 m a.s.l.. The old data rescued in this study strongly enhances our knowledge about past snowfall variability and climate in the Mediterranean area.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Elisa Adirosi, Federico Porcù, Mario Montopoli, Luca Baldini, Alessandro Bracci, Vincenzo Capozzi, Clizia Annella, Giorgio Budillon, Edoardo Bucchignani, Alessandra Lucia Zollo, Orietta Cazzuli, Giulio Camisani, Renzo Bechini, Roberto Cremonini, Andrea Antonini, Alberto Ortolani, Samantha Melani, Paolo Valisa, and Simone Scapin
Earth Syst. Sci. Data, 15, 2417–2429, https://doi.org/10.5194/essd-15-2417-2023, https://doi.org/10.5194/essd-15-2417-2023, 2023
Short summary
Short summary
The paper describes the database of 1 min drop size distribution (DSD) of atmospheric precipitation collected by the Italian disdrometer network over the last 10 years. These data are useful for several applications that range from climatological, meteorological and hydrological uses to telecommunications, agriculture and conservation of cultural heritage exposed to precipitation. Descriptions of the processing and of the database organization, along with some examples, are provided.
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022, https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary
Short summary
This work documents the snowfall variability observed from late XIX century to recent years in Montevergine (southern Italy) and discusses its relationship with large-scale atmospheric circulation. The main results lie in the absence of a trend until mid-1970s, in the strong reduction of the snowfall quantity and frequency from mid-1970s to 1990s and in the increase of both variables from early 2000s. In the past 50 years, the nivometric regime has been strongly modulated by AO and NAO indices.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Jaime Hernandez-Lasheras, Baptiste Mourre, Alejandro Orfila, Alex Santana, Emma Reyes, and Joaquín Tintoré
Ocean Sci., 17, 1157–1175, https://doi.org/10.5194/os-17-1157-2021, https://doi.org/10.5194/os-17-1157-2021, 2021
Short summary
Short summary
Correct surface ocean circulation forecasts are highly relevant to search and rescue, oil spills, and ecological processes, among other things. High-frequency radar (HFR) is a remote sensing technology that measures surface currents in coastal areas with high temporal and spatial resolution. We performed a series of experiments in which we use HFR observations from the Ibiza Channel to improve the forecasts provided by a regional ocean model in the western Mediterranean.
Vincenzo Capozzi, Yuri Cotroneo, Pasquale Castagno, Carmela De Vivo, and Giorgio Budillon
Earth Syst. Sci. Data, 12, 1467–1487, https://doi.org/10.5194/essd-12-1467-2020, https://doi.org/10.5194/essd-12-1467-2020, 2020
Short summary
Short summary
This work describes the entire rescue process, from digitization to quality control, of a new historical dataset that includes sub-daily meteorological observations collected in Montevergine (southern Italy) since the late 19th century. These data enhance and supplement sub-daily datasets currently available in Mediterranean regions. Moreover, they offer a unique opportunity to investigate meteorological and climatological features of the mountainous environment prior to the 1950s.
Guillaume Taburet, Antonio Sanchez-Roman, Maxime Ballarotta, Marie-Isabelle Pujol, Jean-François Legeais, Florent Fournier, Yannice Faugere, and Gerald Dibarboure
Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, https://doi.org/10.5194/os-15-1207-2019, 2019
Short summary
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
Evan Mason, Simón Ruiz, Romain Bourdalle-Badie, Guillaume Reffray, Marcos García-Sotillo, and Ananda Pascual
Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, https://doi.org/10.5194/os-15-1111-2019, 2019
Short summary
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Antonio Sanchez-Roman, Gabriel Jorda, Gianmaria Sannino, and Damia Gomis
Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, https://doi.org/10.5194/os-14-1547-2018, 2018
Short summary
Short summary
We explore the vertical transfers of heat, salt and mass between the inflowing and outflowing layers at the Strait of Gibraltar by using a 3-D model with very high spatial resolution that allows for a realistic representation of the exchange. Results show a significant transformation of the water mass properties along their path through the strait, mainly induced by the recirculation of water between layers, while mixing seems to have little influence on the heat and salt exchanged.
Diana Di Luccio, Guido Benassai, Giorgio Budillon, Luigi Mucerino, Raffaele Montella, and Eugenio Pugliese Carratelli
Nat. Hazards Earth Syst. Sci., 18, 2841–2857, https://doi.org/10.5194/nhess-18-2841-2018, https://doi.org/10.5194/nhess-18-2841-2018, 2018
Short summary
Short summary
Forecasting and hindcasting the action of sea storms on piers, coastal structures and beaches is important to mitigate their effects. To this end, with particular regard to low coasts and beaches, we have configured a computational model chain based partly on open-access models and partly on an ad-hoc-developed numerical calculator to evaluate beach wave run-up levels. The results were validated by a set of specially conceived video-camera-based experiments on a micro-tidal beach.
Federica Pessini, Antonio Olita, Yuri Cotroneo, and Angelo Perilli
Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, https://doi.org/10.5194/os-14-669-2018, 2018
Short summary
Short summary
The Algerian Basin plays a key role in the WMED, and the formation and propagation of mesoscale structures strongly influence its circulation. They transport water masses, heat, salts and other properties and also have an impact on chlorophyll and fisheries. We investigated the spatial and temporal distribution of the eddies by applying a detection and tracking method to altimetry data. The results show mesoscale structures with different origins, behaviours and energies.
Giuseppe Aulicino, Yuri Cotroneo, Isabelle Ansorge, Marcel van den Berg, Cinzia Cesarano, Maria Belmonte Rivas, and Estrella Olmedo Casal
Earth Syst. Sci. Data, 10, 1227–1236, https://doi.org/10.5194/essd-10-1227-2018, https://doi.org/10.5194/essd-10-1227-2018, 2018
Short summary
Short summary
We present sea surface salinity and temperature data collected across the Atlantic sector of the Southern Ocean by thermosalinographs on board Agulhas-I and Agulhas-II research vessels. After a rigorous quality control, data have been validated through comparison with water samples and independent products. Hence this dataset represents a valuable tool for validating salinity observations provided by SMOS and Aquarius missions and improving the study of climate variability over this region.
Guido Benassai, Pietro Aucelli, Giorgio Budillon, Massimo De Stefano, Diana Di Luccio, Gianluigi Di Paola, Raffaele Montella, Luigi Mucerino, Mario Sica, and Micla Pennetta
Nat. Hazards Earth Syst. Sci., 17, 1493–1503, https://doi.org/10.5194/nhess-17-1493-2017, https://doi.org/10.5194/nhess-17-1493-2017, 2017
Short summary
Short summary
The study of the shallow coastal area of the Sele mouth in the Gulf of Salerno (southern Italy) identified the features of nearshore circulation,
which often produced rip currents. The occurrence of a rip current cell circulation in restricted ranges of heights, periods and incident directions was
related to the non-dimensional fall velocity parameter, which proved to be an efficient index for rip current formation.
Vincenzo Mazzarella, Ida Maiello, Vincenzo Capozzi, Giorgio Budillon, and Rossella Ferretti
Adv. Sci. Res., 14, 271–278, https://doi.org/10.5194/asr-14-271-2017, https://doi.org/10.5194/asr-14-271-2017, 2017
Short summary
Short summary
This work aims to provide a comparison between three dimensional and four dimensional variational data assimilation methods (3D-Var and 4D-Var) for a heavy rainfall case in central Italy. Nine simulations are compared in terms of rainfall forecast and precipitation measured by the gauges through three statistical indicators. The assimilation of conventional observations with 4D-Var method improves the quantitative precipitation forecast (QPF) compared to 3D-Var.
Vincenzo Capozzi and Giorgio Budillon
Adv. Geosci., 44, 35–51, https://doi.org/10.5194/adgeo-44-35-2017, https://doi.org/10.5194/adgeo-44-35-2017, 2017
Short summary
Short summary
The extreme temperature events, the heat and cold waves, besides to have a significant impact on human health and activities, have negative influences also on mountain ecosystems. This work provides a characterization of heat and cold waves variability and trends in high-elevation sites of Central Mediterranean area, by using the long-term temperature time series collected in Montevergine. Main results highlight a positive trend in heat waves frequency and severity in the last 40 years.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Bàrbara Barceló-Llull, Evan Mason, Arthur Capet, and Ananda Pascual
Ocean Sci., 12, 1003–1011, https://doi.org/10.5194/os-12-1003-2016, https://doi.org/10.5194/os-12-1003-2016, 2016
Short summary
Short summary
Vertical velocity in the ocean makes an important contribution to the modulation of marine ecosystems through its impact on fluxes of nutrients and phytoplankton. Here, we estimate full 3-D current velocity fields from an observation-based data product. The 3-D currents are used to force a set of particle-tracking (Lagrangian) experiments. The Lagrangian results show that vertical motions induce local increases in nitrate uptake reaching up to 30 %.
Vincenzo Capozzi, Errico Picciotti, Vincenzo Mazzarella, Giorgio Budillon, and Frank Silvio Marzano
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-177, https://doi.org/10.5194/hess-2016-177, 2016
Revised manuscript not accepted
Short summary
Short summary
This work explores the potentialities in urban hailstorms detection of X-band miniradar measurements. The results show that the latter are suitable for early monitoring of hail events at urban scale, especially when combined with conventional meteorological data. The experimental hail detection product developed in this study, although trained for a specific urban environment (i.e. Naples urban area), can be easily adapted to other areas where detailed meteorological information is needed.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
Related subject area
Physical oceanography
Reprocessing of eXpendable BathyThermograph (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with a full metadata upgrade
Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP): the CoASTS-BiOMaP dataset
Spatio-temporal changes in China's mainland shorelines over 30 years using Landsat time series data (1990–2019)
ISASO2: recent trends and regional patterns of ocean dissolved oxygen change
Constructing a 22-year internal wave dataset for the northern South China Sea: spatiotemporal analysis using MODIS imagery and deep learning
Near-real-time atmospheric and oceanic science products of Himawari-8 and Himawari-9 geostationary satellites over the South China Sea
High-resolution observations of the ocean upper layer south of Cape St. Vincent, the western northern margin of the Gulf of Cádiz
Catalogue of coastal-based instances with bathymetric and topographic data
Oceanographic monitoring in Hornsund fjord, Svalbard
Salinity and Stratification at the Sea Ice Edge (SASSIE): an oceanographic field campaign in the Beaufort Sea
Weekly green tide mapping in the Yellow Sea with deep learning: integrating optical and synthetic aperture radar ocean imagery
IAPv4 ocean temperature and ocean heat content gridded dataset
Probabilistic reconstruction of sea-level changes and their causes since 1900
Global Coastal Characteristics (GCC): a global dataset of geophysical, hydrodynamic, and socioeconomic coastal indicators
Insights from a topo-bathymetric and oceanographic dataset for coastal flooding studies: the French Flooding Prevention Action Program of Saint-Malo
A Moored Array Observation Dataset for Air-Sea·Surface, Upper and Bottom Ocean in the Northern South China Sea during 2014–2015 (MASCS 1.0)
Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea
A daily reconstructed chlorophyll-a dataset in the South China Sea from MODIS using OI-SwinUnet
Underwater light environment in Arctic fjords
A new multi-resolution bathymetric dataset of the Gulf of Naples (Italy) from complementary multi-beam echosounders
Multiyear surface wave dataset from the subsurface “DeepLev” eastern Levantine moored station
A Submesoscale Eddy Identification Dataset in the Northwest Pacific Ocean Derived from GOCI I Chlorophyll–a Data based on Deep Learning
SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data
Lagrangian surface drifter observations in the North Sea: an overview of high-resolution tidal dynamics and surface currents
The physical and biogeochemical parameters along the coastal waters of Saudi Arabia during field surveys in summer, 2021
A Lagrangian coherent eddy atlas for biogeochemical applications in the North Pacific Subtropical Gyre
Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Lagoon hydrodynamics of pearl farming islands: the case of Gambier (French Polynesia)
Oceanographic dataset collected during the 2021 scientific expedition of the Canadian Coast Guard Ship Amundsen
Extension of a high temporal resolution sea level time series at Socoa (Saint-Jean-de-Luz, France) back to 1875
Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from a dry to wet and submerged state
Lagoon hydrodynamics of pearl farming atolls: the case of Raroia, Takapoto, Apataki and Takaroa (French Polynesia)
Measurements of nearshore ocean-surface kinematics through coherent arrays of free-drifting buoys
A Mediterranean drifter dataset
The DTU21 global mean sea surface and first evaluation
A dataset for investigating socio-ecological changes in Arctic fjords
Dataset of depth and temperature profiles obtained from 2012 to 2020 using commercial fishing vessels of the AdriFOOS fleet in the Adriatic Sea
Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain)
Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Deep-water hydrodynamic observations around a cold-water coral habitat in a submarine canyon in the eastern Ligurian Sea (Mediterranean Sea)
Ocean cross-validated observations from R/Vs L'Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign
A global Lagrangian eddy dataset based on satellite altimetry
The sea level time series of Trieste, Molo Sartorio, Italy (1869–2021)
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea
Simona Simoncelli, Franco Reseghetti, Claudia Fratianni, Lijing Cheng, and Giancarlo Raiteri
Earth Syst. Sci. Data, 16, 5531–5561, https://doi.org/10.5194/essd-16-5531-2024, https://doi.org/10.5194/essd-16-5531-2024, 2024
Short summary
Short summary
This data review is about the reprocessing of historical eXpendable BathyThermograp (XBT) profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019. A new automated quality control analysis has been performed starting from the original raw data and operational log sheets. The data have been formatted and standardized according to the latest community best practices, and all available metadata have been inserted, including calibration information and uncertainty specification.
Giuseppe Zibordi and Jean-François Berthon
Earth Syst. Sci. Data, 16, 5477–5502, https://doi.org/10.5194/essd-16-5477-2024, https://doi.org/10.5194/essd-16-5477-2024, 2024
Short summary
Short summary
The Coastal Atmosphere and Sea Time Series (CoASTS) and Bio-Optical mapping of Marine Properties (BiOMaP) programs produced bio-optical data supporting satellite ocean color applications across European seas for almost 2 decades. CoASTS and BiOMaP applied equal standardized instruments, measurement methods, quality control schemes and processing codes to ensure temporal and spatial consistency with data products.
Gang Yang, Ke Huang, Lin Zhu, Weiwei Sun, Chao Chen, Xiangchao Meng, Lihua Wang, and Yong Ge
Earth Syst. Sci. Data, 16, 5311–5331, https://doi.org/10.5194/essd-16-5311-2024, https://doi.org/10.5194/essd-16-5311-2024, 2024
Short summary
Short summary
Continuous monitoring of shoreline dynamics is critical to understanding the drivers of shoreline change and evolution. This study uses long-term sequences of Landsat Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) images to analyze the spatio-temporal evolution characteristics of the coastlines of Hainan, mainland China, Taiwan, and other countries from 1990 to 2019.
Nicolas Kolodziejczyk, Esther Portela, Virginie Thierry, and Annaig Prigent
Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, https://doi.org/10.5194/essd-16-5191-2024, 2024
Short summary
Short summary
Oceanic dissolved oxygen (DO) is fundamental for ocean biogeochemical cycles and marine life. To ease the computation of the ocean oxygen budget from in situ DO data, mapping of data on a regular 3D grid is useful. Here, we present a new DO gridded product from the Argo database. We compare it with existing DO mapping from a historical dataset. We suggest that the ocean has generally been losing oxygen since the 1980s, but large interannual and regional variabilities should be considered.
Xudong Zhang and Xiaofeng Li
Earth Syst. Sci. Data, 16, 5131–5144, https://doi.org/10.5194/essd-16-5131-2024, https://doi.org/10.5194/essd-16-5131-2024, 2024
Short summary
Short summary
Internal wave (IW) is an important ocean process and is frequently observed in the South China Sea (SCS). This study presents a detailed IW dataset for the northern SCS spanning from 2000 to 2022, with a spatial resolution of 250 m, comprising 3085 IW MODIS images. This dataset can enhance understanding of IW dynamics and serve as a valuable resource for studying ocean dynamics, validating numerical models, and advancing AI-driven model building, fostering further exploration into IW phenomena.
Jian Liu, Jingjing Yu, Chuyong Lin, Min He, Haiyan Liu, Wei Wang, and Min Min
Earth Syst. Sci. Data, 16, 4949–4969, https://doi.org/10.5194/essd-16-4949-2024, https://doi.org/10.5194/essd-16-4949-2024, 2024
Short summary
Short summary
The Japanese Himawari-8 and Himawari-9 (H8/9) geostationary (GEO) satellites are strategically positioned over the South China Sea (SCS), spanning from 3 November 2022 to the present. They mainly provide cloud mask, fraction, height, phase, optical, and microphysical property; layered precipitable water; and sea surface temperature products within a temporal resolution of 10 min and a gridded resolution of 0.05° × 0.05°.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Owein Thuillier, Nicolas Le Josse, Alexandru-Liviu Olteanu, Marc Sevaux, and Hervé Tanguy
Earth Syst. Sci. Data, 16, 4529–4556, https://doi.org/10.5194/essd-16-4529-2024, https://doi.org/10.5194/essd-16-4529-2024, 2024
Short summary
Short summary
Our study unveils a comprehensive catalogue of 17 700 unique coastal digital elevation models (DEMs) derived from the General Bathymetric Chart of the Oceans (GEBCO) as of 2022. These DEMs are designed to support a variety of scientific and educational purposes. Organised into three libraries, they cover a wide range of coastal geometries and different sizes. Data and custom colour palettes for visualisation are made freely available online, promoting open science and collaboration.
Meri Korhonen, Mateusz Moskalik, Oskar Głowacki, and Vineet Jain
Earth Syst. Sci. Data, 16, 4511–4527, https://doi.org/10.5194/essd-16-4511-2024, https://doi.org/10.5194/essd-16-4511-2024, 2024
Short summary
Short summary
Since 2015, temperature and salinity have been monitored in Hornsund fjord (Svalbard), where retreating glaciers add meltwater and terrestrial matter to coastal waters. Therefore, turbidity and water sampling for suspended sediment concentration and sediment deposition are measured. The monitoring spans from May to October, enabling studies on seasonality and its variability over the years, and the dataset covers the whole fjord, including the inner basins in close proximity to the glaciers.
Kyla Drushka, Elizabeth Westbrook, Frederick M. Bingham, Peter Gaube, Suzanne Dickinson, Severine Fournier, Viviane Menezes, Sidharth Misra, Jaynice Pérez Valentín, Edwin J. Rainville, Julian J. Schanze, Carlyn Schmidgall, Andrey Shcherbina, Michael Steele, Jim Thomson, and Seth Zippel
Earth Syst. Sci. Data, 16, 4209–4242, https://doi.org/10.5194/essd-16-4209-2024, https://doi.org/10.5194/essd-16-4209-2024, 2024
Short summary
Short summary
The NASA SASSIE mission aims to understand the role of salinity in modifying sea ice formation in early autumn. The 2022 SASSIE campaign collected measurements of upper-ocean properties, including stratification (layering of the ocean) and air–sea fluxes in the Beaufort Sea. These data are presented here and made publicly available on the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC), along with code to manipulate the data and generate the figures presented herein.
Le Gao, Yuan Guo, and Xiaofeng Li
Earth Syst. Sci. Data, 16, 4189–4207, https://doi.org/10.5194/essd-16-4189-2024, https://doi.org/10.5194/essd-16-4189-2024, 2024
Short summary
Short summary
Since 2008, the Yellow Sea has faced a significant ecological issue, the green tide, which has become one of the world's largest marine disasters. Satellite remote sensing plays a pivotal role in detecting this phenomenon. This study uses AI-based models to extract the daily green tide from MODIS and SAR images and integrates these daily data to introduce a continuous weekly dataset, which aids research in disaster simulation, forecasting, and prevention.
Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
Short summary
Short summary
Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
Sönke Dangendorf, Qiang Sun, Thomas Wahl, Philip Thompson, Jerry X. Mitrovica, and Ben Hamlington
Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, https://doi.org/10.5194/essd-16-3471-2024, 2024
Short summary
Short summary
Sea-level information from the global ocean is sparse in time and space, with comprehensive data being limited to the period since 2005. Here we provide a novel reconstruction of sea level and its contributing causes, as determined by a Kalman smoother approach applied to tide gauge records over the period 1900–2021. The new reconstruction shows a continuing acceleration in global mean sea-level rise since 1970 that is dominated by melting land ice. Contributors vary significantly by region.
Panagiotis Athanasiou, Ap van Dongeren, Maarten Pronk, Alessio Giardino, Michalis Vousdoukas, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 16, 3433–3452, https://doi.org/10.5194/essd-16-3433-2024, https://doi.org/10.5194/essd-16-3433-2024, 2024
Short summary
Short summary
The shape of the coast, the intensity of waves, the height of the water levels, the presence of people or critical infrastructure, and the land use are important information to assess the vulnerability of the coast to coastal hazards. Here, we provide 80 indicators of this kind at consistent locations along the global ice-free coastline using open-access global datasets. These can be valuable for quick assessments of the vulnerability of the coast and at data-poor locations.
Léo Seyfried, Laurie Biscara, Héloïse Michaud, Fabien Leckler, Audrey Pasquet, Marc Pezerat, and Clément Gicquel
Earth Syst. Sci. Data, 16, 3345–3367, https://doi.org/10.5194/essd-16-3345-2024, https://doi.org/10.5194/essd-16-3345-2024, 2024
Short summary
Short summary
In Saint-Malo, France, an initiative to enhance marine submersion prevention began in 2018. Shom conducted an extensive sea campaign, mapping the bay's topography and exploring coastal processes. High-resolution data improve knowledge of the interactions between waves, tide and surge and determine processes responsible for submersion. Beyond science, these findings contribute crucially to a local warning system, providing a tangible solution to protect the community from coastal threats.
Han Zhang, Dake Chen, Tongya Liu, Di Tian, Min He, Qi Li, and Jian Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-224, https://doi.org/10.5194/essd-2024-224, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The manuscript provides a moored array dataset (MASCS 1.0) of the observation that consists of five buoys and four moorings in the northern South China Sea during 2014 to 2015. The moored array is influenced by atmospheric forcing such as tropical cyclones and monsoon, as well as oceanic tides and flows. The data reveals variations of air-sea interface and ocean itself, which are valuable for studies on air-sea interactions and ocean dynamics in the northern South China Sea.
Jisun Shin, Dae-Won Kim, So-Hyun Kim, Gi Seop Lee, Boo-Keun Khim, and Young-Heon Jo
Earth Syst. Sci. Data, 16, 3193–3211, https://doi.org/10.5194/essd-16-3193-2024, https://doi.org/10.5194/essd-16-3193-2024, 2024
Short summary
Short summary
We overcame the limitations of satellite and reanalysis sea surface salinity (SSS) datasets and produced a gap-free gridded SSS product with reasonable accuracy and a spatial resolution of 1 km using a machine learning model. Our data enabled the recognition of SSS distribution and movement patterns of the Changjiang diluted water (CDW) front in the East China Sea (ECS) during summer. These results will further advance our understanding and monitoring of long-term SSS variations in the ECS.
Haibin Ye, Chaoyu Yang, Yuan Dong, Shilin Tang, and Chuqun Chen
Earth Syst. Sci. Data, 16, 3125–3147, https://doi.org/10.5194/essd-16-3125-2024, https://doi.org/10.5194/essd-16-3125-2024, 2024
Short summary
Short summary
A deep-learning model for gap-filling based on expected variance was developed. OI-SwinUnet achieves good performance reconstructing chlorophyll-a concentration data on the South China Sea. The reconstructed dataset depicts both the spatiotemporal patterns at the seasonal scale and a fast-change process at the weather scale. Reconstructed data show chlorophyll perturbations of individual eddies at different life stages, giving academics a unique and complete perspective on eddy studies.
Robert W. Schlegel, Rakesh Kumar Singh, Bernard Gentili, Simon Bélanger, Laura Castro de la Guardia, Dorte Krause-Jensen, Cale A. Miller, Mikael Sejr, and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 16, 2773–2788, https://doi.org/10.5194/essd-16-2773-2024, https://doi.org/10.5194/essd-16-2773-2024, 2024
Short summary
Short summary
Fjords play a vital role in the Arctic ecosystems and human communities. It is therefore important to have as clear of an understanding of the processes within these systems as possible. While temperature and salinity tend to be well measured, light is usually not. The dataset described in this paper uses remotely sensed data from 2003 to 2022 to address this problem by providing high-spatial-resolution surface, water column, and seafloor light data for several well-studied Arctic fjords.
Federica Foglini, Marzia Rovere, Renato Tonielli, Giorgio Castellan, Mariacristina Prampolini, Francesca Budillon, Marco Cuffaro, Gabriella Di Martino, Valentina Grande, Sara Innangi, Maria Filomena Loreto, Leonardo Langone, Fantina Madricardo, Alessandra Mercorella, Paolo Montagna, Camilla Palmiotto, Claudio Pellegrini, Antonio Petrizzo, Lorenzo Petracchini, Alessandro Remia, Marco Sacchi, Daphnie Sanchez Galvez, Anna Nora Tassetti, and Fabio Trincardi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-135, https://doi.org/10.5194/essd-2024-135, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2022, the new CNR Research Vessel GAIA BLU explored the seafloor of the Naples and Pozzuoli Gulfs, and the Amalfi coastal area (Tyrrhenian Sea, Italy) from 50 to 2000 m water depth, covering 5000 m2 of seafloor. This paper describes data acquisition and processing and provides maps in unprecedented detail of this area abrupt to geological changes and human impacts. These findings support future geological and geomorphological investigations and mapping and monitoring seafloor and habitats.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Yan Wang, Jie Yang, and Ge Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-188, https://doi.org/10.5194/essd-2024-188, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Mesoscale eddies are ubiquitous in the ocean and account for 90 % of its kinetic energy, but their generation and dissipation struggle to observe with current remote sensing technology. Our submesoscale eddy dataset, formed by suppressing large-scale circulation signals and enhancing small-scale chlorophyll structures, has important implications for understanding marine environments and ecosystems, as well as improving climate model predictions.
Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 16, 2281–2296, https://doi.org/10.5194/essd-16-2281-2024, https://doi.org/10.5194/essd-16-2281-2024, 2024
Short summary
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Yasser O. Abualnaja, Alexandra Pavlidou, James H. Churchill, Ioannis Hatzianestis, Dimitris Velaoras, Harilaos Kontoyiannis, Vassilis P. Papadopoulos, Aristomenis P. Karageorgis, Georgia Assimakopoulou, Helen Kaberi, Theodoros Kannelopoulos, Constantine Parinos, Christina Zeri, Dionysios Ballas, Elli Pitta, Vassiliki Paraskevopoulou, Afroditi Androni, Styliani Chourdaki, Vassileia Fioraki, Stylianos Iliakis, Georgia Kabouri, Angeliki Konstantinopoulou, Georgios Krokos, Dimitra Papageorgiou, Alkiviadis Papageorgiou, Georgios Pappas, Elvira Plakidi, Eleni Rousselaki, Ioanna Stavrakaki, Eleni Tzempelikou, Panagiota Zachioti, Anthi Yfanti, Theodore Zoulias, Abdulah Al Amoudi, Yasser Alshehri, Ahmad Alharbi, Hammad Al Sulami, Taha Boksmati, Rayan Mutwalli, and Ibrahim Hoteit
Earth Syst. Sci. Data, 16, 1703–1731, https://doi.org/10.5194/essd-16-1703-2024, https://doi.org/10.5194/essd-16-1703-2024, 2024
Short summary
Short summary
We present oceanographic measurements obtained during two surveillance cruises conducted in June and September 2021 in the Red Sea and the Arabian Gulf. It is the first multidisciplinary survey within the Saudi Arabian coastal zone, extending from near the Saudi–Jordanian border in the north of the Red Sea to the south close to the Saudi--Yemen border and in the Arabian Gulf. The objective was to record the pollution status along the coastal zone of the kingdom related to specific pressures.
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang
Earth Syst. Sci. Data, 16, 1167–1176, https://doi.org/10.5194/essd-16-1167-2024, https://doi.org/10.5194/essd-16-1167-2024, 2024
Short summary
Short summary
Gravity gradient tensor, a set of six unique gravity signals, is suitable for detecting undersea features. However, due to poor spatial resolution in past years, it has received less research interest and investment. However, current datasets have better accuracy and resolutions, thereby necessitating a revisit. Our analysis shows comparable results with reference models. We conclude that current-generation altimetry datasets can precisely resolve all six gravity gradients.
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024, https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Short summary
Estimating 3D currents is crucial for the understanding of ocean dynamics, and a precise knowledge of ocean circulation is essential to ensure a sustainable ocean. In this context, a new high-resolution (1 / 10°) data-driven dataset of 3D ocean currents has been developed within the European Space Agency World Ocean Circulation project, providing 10 years (2010–2019) of horizontal and vertical quasi-geostrophic currents at daily resolution over the North Atlantic Ocean, down to 1500 m depth.
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024, https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Short summary
This study measured the wave-induced plant drag, flow structure, turbulent intensity, and wave energy attenuation in the presence of a salt marsh. We showed that leaves contribute to most of the total plant drag and wave dissipation. Plant resistance significantly reshapes the velocity profile and enhances turbulence intensity. Adding current obviously impact the plants' wave decay capacity. The dataset can be reused to develop and calibrate marsh-flow theoretical and numerical models.
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024, https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary
Short summary
We present new datasets that are useful for exploring extreme ocean temperature events in Australian coastal waters. These datasets span multiple decades, starting from the 1940s and 1950s, and include observations from the surface to the bottom at four coastal sites. The datasets provide valuable insights into the intensity, frequency and timing of extreme warm and cold temperature events and include event characteristics such as duration, onset and decline rates and their categorisation.
Marlies A. van der Lugt, Jorn W. Bosma, Matthieu A. de Schipper, Timothy D. Price, Marcel C. G. van Maarseveen, Pieter van der Gaag, Gerben Ruessink, Ad J. H. M. Reniers, and Stefan G. J. Aarninkhof
Earth Syst. Sci. Data, 16, 903–918, https://doi.org/10.5194/essd-16-903-2024, https://doi.org/10.5194/essd-16-903-2024, 2024
Short summary
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
Oriane Bruyère, Romain Le Gendre, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 16, 667–679, https://doi.org/10.5194/essd-16-667-2024, https://doi.org/10.5194/essd-16-667-2024, 2024
Short summary
Short summary
During 2019–2020, the lagoon and forereefs of Gambier Island (French Polynesia) were monitored with oceanographic instruments to measure lagoon hydrodynamics and ocean–lagoon water exchanges. Gambier Island is a key black pearl producer and the study goal was to understand the processes influencing spat collection of pearl oyster Pinctada margaritifera, the species used to produce black pearls. The data set is provided to address local pearl farming questions and other investigations as well.
Tahiana Ratsimbazafy, Thibaud Dezutter, Amélie Desmarais, Daniel Amirault, Pascal Guillot, and Simon Morisset
Earth Syst. Sci. Data, 16, 471–499, https://doi.org/10.5194/essd-16-471-2024, https://doi.org/10.5194/essd-16-471-2024, 2024
Short summary
Short summary
The Canadian Coast Guard Ship has collected oceanographic data across the Canadian Arctic annually since 2003. Such activity aims to support Canadian and international researchers. The ship has several instruments with cutting-edge technology available for research each year during the summer. The data presented here include measurements of physical, chemical and biological variables during the year 2021. Datasets collected from each expedition are available free of charge for the public.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data, 15, 5575–5596, https://doi.org/10.5194/essd-15-5575-2023, https://doi.org/10.5194/essd-15-5575-2023, 2023
Short summary
Short summary
We present a high-quality dataset of hyperspectral point and multipixel reflectance observations of virgin, ocean-harvested, and biofouled multipurpose plastics. Biofouling and a submerged scenario of the dataset further extend the variability in open-access spectral reference libraries that are important in algorithm development with relevance to remote sensing use cases.
Oriane Bruyère, Romain Le Gendre, Mathilde Chauveau, Bertrand Bourgeois, David Varillon, John Butscher, Thomas Trophime, Yann Follin, Jérôme Aucan, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data, 15, 5553–5573, https://doi.org/10.5194/essd-15-5553-2023, https://doi.org/10.5194/essd-15-5553-2023, 2023
Short summary
Short summary
During 2018–2022, four pearl farming Tuamotu atolls (French Polynesia) were studied with oceanographic instruments to measure lagoon hydrodynamics and ocean-lagoon water exchanges. The goal was to gain knowledge on the processes influencing the spat collection of the pearl oyster Pinctada margaritifera, the species used to produce black pearls. A worldwide unique oceanographic atoll data set is provided to address local pearl farming questions and other fundamental and applied investigations.
Edwin Rainville, Jim Thomson, Melissa Moulton, and Morteza Derakhti
Earth Syst. Sci. Data, 15, 5135–5151, https://doi.org/10.5194/essd-15-5135-2023, https://doi.org/10.5194/essd-15-5135-2023, 2023
Short summary
Short summary
Measuring ocean waves nearshore is essential for understanding how the waves impact our coastlines. We designed and deployed many small wave buoys in the nearshore ocean over 27 d in Duck, North Carolina, USA, in 2021. The wave buoys measure their motion as they drift. In this paper, we describe multiple levels of data processing. We explain how this dataset can be used in future studies to investigate nearshore wave kinematics, transport of buoyant particles, and wave-breaking processes.
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Pierluigi Penna, Filippo Domenichetti, Andrea Belardinelli, and Michela Martinelli
Earth Syst. Sci. Data, 15, 3513–3527, https://doi.org/10.5194/essd-15-3513-2023, https://doi.org/10.5194/essd-15-3513-2023, 2023
Short summary
Short summary
This work presents the pressure (depth) and temperature profile dataset provided by the AdriFOOS infrastructure in the Adriatic Sea (Mediterranean basin) from 2012 to 2020. Data were subject to quality assurance (QA) and quality control (QC). This infrastructure, based on the ships of opportunity principle and involving the use of commercial fishing vessels, is able to produce huge amounts of useful data both for operational oceanography and fishery biology purposes.
Carmen Zarzuelo, Alejandro López-Ruiz, María Bermúdez, and Miguel Ortega-Sánchez
Earth Syst. Sci. Data, 15, 3095–3110, https://doi.org/10.5194/essd-15-3095-2023, https://doi.org/10.5194/essd-15-3095-2023, 2023
Short summary
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Tongya Liu and Ryan Abernathey
Earth Syst. Sci. Data, 15, 1765–1778, https://doi.org/10.5194/essd-15-1765-2023, https://doi.org/10.5194/essd-15-1765-2023, 2023
Short summary
Short summary
Nearly all existing datasets of mesoscale eddies are based on the Eulerian method because of its operational simplicity. Using satellite observations and a Lagrangian method, we present a global Lagrangian eddy dataset (GLED v1.0). We conduct the statistical comparison between two types of eddies and the dataset validation. Our dataset offers relief from dilemma that the Eulerian eddy dataset is nearly the only option for studying mesoscale eddies.
Fabio Raicich
Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, https://doi.org/10.5194/essd-15-1749-2023, 2023
Short summary
Short summary
In the changing climate, long sea level time series are essential for studying the variability of the mean sea level and the occurrence of extreme events on different timescales. This work summarizes the rescue and quality control of the ultra-centennial sea level data set of Trieste, Italy. The whole time series is characterized by a linear trend of about 1.4 mm yr−1, the period corresponding to the altimetry coverage by a trend of about 3.0 mm yr−1, similarly to the global ocean.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Cited articles
Alvarez, A. and Mourre, B.: Optimum sampling designs for a glider–mooring
observing network, J. Atmos. Ocean. Tech., 29, 601–612, 2016.
Aulicino, G., Cotroneo, Y., Lacava, T., Sileo, G., Fusco, G., Carlon, R.,
Satriano, V., Pergola, N., Tramutoli, V., and Budillon, G.: Results of the
first wave glider experiment in the southern Tyrrhenian Sea, Adv. Oceanogr.
Limnol., 7, 16–35, https://doi.org/10.4081/aiol.2016.5682, 2016.
Aulicino, G., Cotroneo, Y., Ruiz, S., Sánchez Román, A., Pascual, A.,
Fusco, G., Tintoré, J., and Budillon, G.: Monitoring the Algerian Basin
through glider observations, satellite altimetry and numerical simulations
along a SARAL/AltiKa track, J. Mar. Syst., 179, 55–71, https://doi.org/10.1016/j.jmarsys.2017.11.006, 2018.
Bosse, A., Testor, P., Houpert, L., Damien, P., Prieur, L., Hayes, D.,
Taillandier, V., Durrieude Madron, X., D'Ortenzio, F., Coppola, L.,
Karstensen, J., and Mortier, L.: Scales and dynamics of submesoscale coherent
vortices formed by deep convection in the northwestern Mediterranean Sea, J.
Geophys. Res., 121, 7716–7742, https://doi.org/10.1002/2016JC012144, 2016.
Bouffard, J., Pascual, A., Ruiz, S., Faugère, Y., and Tintoré, J.:
Coastal and mesoscale dynamics characterization using altimetry and gliders:
a case study in the Balearic Sea, J. Geophys. Res., 115, C10029, https://doi.org/10.1029/2009JC006087, 2010.
Budillon, G., Cotroneo, Y., Fusco, G., and Rivaro, P.: Variability of the
Mediterranean Deep and Bottom Waters: Some Recent Evidences in the Western
Basin, CIESM Workshop Monographs, 2009.
Budillon, G., Cotroneo, Y., Aulicino, G., Fusco, G., Heslop, E., Torner, M., and Tintoré, J.: SOCIB TNA Abacus (Version 1.0), SOCIB, https://doi.org/10.25704/b200-3vf5,
2018.
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V.,
Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer
Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon,
P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean
temperature and salinity measurements, Ocean Sci., 9, 1–18,
https://doi.org/10.5194/os-9-1-2013, 2013.
Carret, A., Birol, F., Estournel, C., Zakardjian, B., and Testor, P.: Synergy
between in situ and altimetry data to observe and study the Northern Current
variations (NW Mediterranean Sea), Ocean Sci. Discuss.,
https://doi.org/10.5194/os-2018-76, in review, 2018.
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G.,
and Tintoré, J.: Glider and satellite high resolution monitoring of a
mesoscale eddy in the Algerian basin: Effects on the mixed layer depth and
biochemistry, J. Mar. Syst., 162, 73–88, 2016.
Cusi, S., Torner, M., Martinez-Ledesma, M., Roque, D., Beltran, J. P., Ruiz,
S., Casas, B., Castilla, C., Lizaran, I., Lora, S., Heslop, E., and
Tintoré, J.: On the setup of an operational autonomous underwater glider
facility, in: 5th MARTECH, Girona (Spain), 2013.
Davis, R. E., Eriksen, C. C., and Jones, C. P.: Autonomous buoyancy-driven
underwater gliders, in: Technology and Applications of Autonomous Underwater
Vehicles, edited by: Griffiths, G., Taylor and Francis, London, 2003.
Drinkwater, M. R. and Rebhan, H.: Sentinel-3: Mission Requirements Document,
EOPSMO/1151/MD-md, 2007.
Escudier, R., Mourre, B., Juza, M., and Tintoré, J.: Subsurface
circulation and mesoscale variability in the Algerian sub-basin from
altimeter-derived eddy trajectories, J. Geophys. Res., 121, 6310–6322,
https://doi.org/10.1002/2016JC011760, 2016.
Font, J., Isern-Fontanet, J., and Salas, J.: Tracking a big anticyclonic eddy
in the westernMediterranean Sea, Sci. Mar., 68, 331–342, 2004.
Fu, L. L. and Ferrari, R.: Observing oceanic submesoscale processes from
space, EOSTrans. Am. Geophys. Union, 89, 489–499,
https://doi.org/10.1029/2008EO480003, 2008.
Fusco, G., Manzella, G. M. R., Cruzado, A., Gacic, M., Gasparini, G. P.,
Kovacevic, V., Millot, C., Tziavos, C., Velasquez, Z. R., Walne, A.,
Zervakis, V., and Zodiatis, G.: Variability of mesoscale features in the
Mediterranean Sea from XBT data analysis, Ann. Geophys., 21, 21–32,
https://doi.org/10.5194/angeo-21-21-2003, 2003.
Fusco, G., Artale, V., Cotroneo, Y., and Sannino, G.: Thermohaline
variability of Mediterranean Water in the Gulf of Cádiz, 1948–1999,
Deep-Sea Res. Pt. I, 55, 1624–1638, 2008.
Garau, B., Ruiz, S., Zang, G. W., Heslop, E., Kerfoot, J., Pascual, A., and
Tintoré, J.: Thermal lag correction on Slocum CTD glider data, J. Atmos.
Ocean. Tech., 28, 1065–1074, 2011.
Gualdi, S., Somot, S., Li, L., Artale, V., Adani, M., Bellucci, A., Braun,
A., Calmanti, S., Carillo, A., Dell'Aquilla, A., Déqué, M., Dubois,
C., Elizalde, A., Harzallah, A., L'Hévéder, B., May, W., Oddo, P.,
Ruti, P., Sanna, A., Sannino, G., Sevault, F., Scoccimarro, E., and Navarra,
A.: The CIRCE simulations: A new set of regional climate change projections
performed with a realistic representation of the Mediterranean Sea, B.
Am. Meteor. Soc., 94, 65–81, https://doi.org/10.1175/BAMS-D-11-00136.1, 2013.
Heslop, E. E., Ruiz, S., Allen, J., Lopez-Jurado, J.-L., Renault, L., and
Tintore, J.: Autonomous underwater gliders monitoring variability at “choke
points” in our ocean system: A case study in the Western Mediterranean Sea,
Geophys. Res. Lett., 39, L20604, https://doi.org/10.1029/2012GL053717, 2012.
Heslop, E. E., Sánchez-Román, A., Pascual, A., Rodríguez, D.,
Reeve, K. A., Faugère, Y., and Raynal, M.: Sentinel-3A views ocean
variability more accurately at finer resolution, Geophys. Res.
Lett., 44, 12367–12374, https://doi.org/10.1002/2017GL076244, 2017.
Isern-Fontanet, J., Olmedo, E., Turiel, A., Ballabrera-Poy, J., and
García-Ladona, E.: Retrieval of eddy dynamics from SMOS sea surface
salinity measurements in theAlgerian Basin (Mediterranean Sea), Geophys. Res.
Lett., 43, 6427–6434, https://doi.org/10.1002/2016GL069595, 2016.
Jones, C., Creed, E., Glenn, S., Kerfoot, J., Kohut, J., Mudgal, C., and
Schofield, O.: Slocum gliders – A component of operational oceanography, in:
Proc. 14th Int. Symp. on Unmanned Untethered Submersible Technology, 21–24 August, Lee, NH,
Autonomous Undersea Systems, 2005.
Liblik, T., Karstensen, J., Testor, P., Mortier, L., Alenius, P., Ruiz, S.,
Pouliquen, S., Hayes, D., Mauri, E., and Heywood, K.: Potential for an
underwater glider component as part of the Global Ocean Observing System,
Meth. Oceanogr., 17, 50–82, 2016.
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M.-J., and Iona, A.:
Physical and biogeochemical averaged vertical profiles in the Mediterranean
regions: an important tool to trace the climatology of water masses and to
validate incoming data from operational oceanography, J. Mar. Syst., 48,
83–116, 2004.
MEDAR Group: MEDATLAS/2002 database, Mediterranean and Black Sea database of
temperature salinity and bio-chemical parameters. Climatological Atlas,
IFREMER Edition (4 Cdroms), 2002.
Merckelbach, L. M., Briggs, R. D., Smeed, D. A., and Griffiths, G.: Current
measurements from autonomous underwater gliders, in: Proc. IEEE/OES 9th Work,
Conf. Current Meas. Technol. (CMTC), March 2008, 61–67, 2008.
Merckelbach, L., Smeed, D., and Griffiths, G.: Vertical Water Velocities from
Underwater Gliders, J. Atmos. Ocean. Tech., 27, 547–563, https://doi.org/10.1175/2009JTECHO710.1, 2010.
Millot, C.: Some features of the Algerian current, J. Geophys. Res., 90,
7169–7176, 1985.
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst.,
20, 423–442, 1999.
Millot, C., Candela, J., Fuda, J. L., and Tber, Y.: Large warming and
salinification of the Mediterranean outflow due to changes in its
composition, Deep-Sea Res. Pt. I, 53, 655–666, 2006.
Moran, X. A. G., Taupier-Letage, I., Vazquez-Domınguez, E., Ruiz, S., Arın,
L., Raimbault, P., and Estarda, M.: Physical-biological coupling in the
Algerian basin (SW Mediterranean): influence of mesoscale instabilities on
the biomass and production of phytoplankton and bacterioplankton, Deep-Sea
Res., 48, 405–437, 2001.
Olita, A., Ribotti, A., Sorgente, R., Fazioli, L., and Perilli, A.:
SLA-chlorophyll-a variability and covariability in the Algero-Provençal
Basin (1997–2007) through combined use of EOF and wavelet analysis of
satellite data, Ocean Dynam. 61, 89–102, 2011.
Olita, A., Capet, A., Mahadevan, A., Claret, A., Poulain, P.-M., Ribotti,
Ruiz, S., Tintoré, J., Tovar-Sánchez, A., A., and Pascual, A.:
Frontal dynamics boost primary production in the summer stratified
Mediterranean Sea, Ocean Dynam., 67, 767–782, https://doi.org/10.1007/s10236-017-1058-z,
2017.
Pascual, A., Bouffard, J., Ruiz, S., Buongiorno Nardelli, B., Vidal-Vijande,
E., Escudier, R., Sayol, J. M., and Orfila, A.: Recent improvements in
mesoscale characterization of the western Mediterranean Sea: synergy between
satellite altimetry and other observational approaches, Sci. Mar., 77,
19–36,
https://doi.org/10.3989/scimar.03740.15A, 2013.
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre,
B., Poulain, P. M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T.,
Mahadevan, A., and Tintoré, J.: A multiplatform experiment to unravel
Meso- and submesoscale processes in an intense front (AlborEx), Front. Mar.
Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017.
Pessini, F., Olita, A., Cotroneo, Y., and Perilli, A.: Mesoscale eddies in
the Algerian Basin: do they differ as a function of their formation site?,
Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, 2018.
Robinson, M. and Golnaraghi, A.: Ocean Processes in Climate Dynamics: Global
and Mediterranean examples, The physical and dynamical oceanography of the
Mediterranean Sea, Kluwer Academic Publishing, Dordrecht, 1994.
Rudnick, D. L.: Ocean research enabled by underwater gliders, Annu. Rev. Mar.
Sci., 8, 519–541, https://doi.org/10.1146/annurev-marine-122414-033913,
2016.
Rudnick, D. L. and Cole, S. T.: On sampling the ocean using underwater
gliders, J. Geophys. Res., 116, C08010, https://doi.org/10.1029/2010JC006849, 2011.
Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., and Perry,
M. J.: Undersea gliders for ocean research, Mar. Technol. Soc. J., 38,
73–84, 2004.
Ruiz, S., Font, J., Emelianov, M., Isern-Fontanet, I., Millot, C., Salas, J.,
and Taupier-Letage, I.: Deep structure of an open sea eddy in the Algerian
Basin, J. Mar. Syst., 33–34, 179–195, 2002.
Ruiz, S., Pascual, A., Garau, B., Pujol, M. I., and Tintoré, J.: Vertical
motion in the upper ocean from glider and altimetry data, Geophys. Res.
Lett.,
36, L14607, https://doi.org/10.1029/2009GL038569, 2009.
Ruiz, S., Renault, L., Garau, B., and Tintoré, J.: Underwater glider
observations and modelling of an abrupt mixing event in the upper ocean,
Geophys. Res. Lett., 39, https://doi.org/10.1029/2011GL050078, 2012.
Schroeder, K., Chiggiato, J., Josey, S. A., Borghini, M., Aracri, S., and
Sparnocchia, S.: Rapid response to climate change in a marginal sea, Sci.
Rep., 7, 4065, https://doi.org/10.1038/s41598-017-04455-5, 2017.
Shcherbina, A. Y., Sundermeyer, M. A., Kunze, E., D'Asaro, E., Badin, G.,
Birch, D., Brunner-Suzuki, A. E., Callies, J., Kuebel Cervantes, B. T., Claret,
M., Concannon, B., Early, J., Ferrari, R., Goodman, L., Harcourt, R. R.,
Klymak, J. M., Lee, C. M., Lelong, M., Levine, M. D., Lien, R., Mahadevan, A.,
McWilliams, J. C., Molemaker, M. J., Mukherjee, S., Nash, J. D.,
Özgökmen, T., Pierce, S. D., Ramachandran, S., Samelson, R. M., Sanford,
T. B., Shearman, R. K., Skyllingstad, E. D., Smith, K. S., Tandon, A., Taylor,
J. R., Terray, E. A., Thomas, L. N., and Ledwell, J. R.: The LatMix Summer
Campaign: Submesoscale Stirring in the Upper Ocean, B. Am. Meteor. Soc.,
96, 1257–1279, https://doi.org/10.1175/BAMS-D-14-00015.1, 2015.
Taupier-Letage, I., Puillat, I., Raimbault, P., and Millot, C.: Biological
response to mesoscale eddies in the Algerian basin, J. Geophys. Res., 108, 3245–3267, 2003.
Testor, P., Send, U., Gascard, J. C., Millot, C., Taupier-Letage, I., and
Beranger, K.: The mean circulation of the southwestern Mediterranean Sea:
Algerian gyres, J. Geophys. Res., 110, C11017, https://doi.org/10.1029/2004JC002861, 2005.
Thomsen, S., Kanzow, T., Krahmann, G., Greatbatch, R. J., Dengler, M., and
Lavik, G.: The formation of a subsurface anticyclonic eddy in the Peru-Chile
undercurrent and its impact on the near-coastal salinity, oxygen, and
nutrient distributions, J. Geophys. Res.-Oceans, 121, 476–501,
https://doi.org/10.1002/2015JC010878, 2016.
Tintoré, J., Gomis, D., Alonso, S., and Parrilla, G.: Mesoscale dynamics
and vertical motion in the Alboran Sea, J. Phys. Oceanogr., 21, 811–823,
1991.
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A.,
Ruiz, S., Martínez-Ledesma, M., Torner, M., Cusi, S., Diedrich, A.,
Balaguer, P., Gómez-Pujol, L., Álvarez-Ellacuria, A., Gómara, S.,
Sebastian, K., Lora, S., Beltrán, J. P., Renault, L., Juza, M.,
Álvarez, D., March, D., Garau, B., Castilla, C., Cañellas, T., Roque,
D., Lizarán, I., Pitarch, S., Carrasco, M. A., Lana, A., Mason, E.,
Escudier, R., Conti, D., Sayol, J. M., Barceló, B., Alemany, F., Reglero,
P., Massuti, E., Vélez-Belchí, P., Ruiz, J., Oguz, T., Gómez,
M., Álvarez, E., Ansorena, L., and Manriquez, M.: SOCIB: the Balearic
Islands coastal ocean observing and forecasting system responding to science,
technology and society needs, Mar. Technol. Soc. J., 47, 101–117, 2013.
Troupin, C., Pascual, A., Ruiz, S., Olita, A., Casas, B., Margirier, F.,
Poulain, P.-M., Notarstefano, G., Torner, M., Fernández, J. G.,
Rújula, M. À., Muñoz, C., Allen, J. T., Mahadevan, A., and
Tintoré, J.: The AlborEX dataset: sampling of submesoscale features in
the Alboran Sea, Earth Syst. Sci. Data Discuss.,
https://doi.org/10.5194/essd-2018-104, in review, 2018.
Troupin, C., Beltran, J. P., Heslop, E., Torner, M., Garau, B., Allen, J.,
Ruiz, S., and Tintoré, J.: A toolbox for glider data processing and
management, Meth. Oceanogr, 13–14, 13–23, https://doi.org/10.1016/j.mio.2016.01.001, 2016.
Vidal-Vijande, E., Pascual, A., Barnier, B., Molines, J. M., and Tintoré,
J.: Analysis of a 44-year hindcast for the Mediterranean Sea: comparison with
altimetry and in situ observations, Sci. Mar., 75, 71–86, 2011.
Vignudelli, S., Cipollini, P., Reseghetti, F., Fusco, G., Gasparini, G. P.,
and Manzella, G. M. R.: Comparison between XBT data and TOPEX/Poseidon
satellite altimetry in the Ligurian-Tyrrhenian area, Ann. Geophys., 21,
123–135, https://doi.org/10.5194/angeo-21-123-2003, 2003.
Webb, D. C., Simonetti, P. J., and Jones, C. P.: SLOCUM: an underwater glider
propelled by environmental energy, IEEE J Ocean. Eng., 26, 447–452,
https://doi.org/10.1109/48.972077, 2001.
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
We present data collected from the first three glider surveys in the Algerian Basin conducted...
Altmetrics
Final-revised paper
Preprint