28 Mar 2018
28 Mar 2018
Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity
Valerie Carranza et al.
Related authors
No articles found.
Jakob Borchardt, Konstantin Gerilowski, Sven Krautwurst, Heinrich Bovensmann, Andrew K. Thorpe, David R. Thompson, Christian Frankenberg, Charles E. Miller, Riley M. Duren, and John Philip Burrows
Atmos. Meas. Tech., 14, 1267–1291, https://doi.org/10.5194/amt-14-1267-2021, https://doi.org/10.5194/amt-14-1267-2021, 2021
Short summary
Short summary
The AVIRIS-NG hyperspectral imager has been used successfully to identify and quantify anthropogenic methane sources utilizing different retrieval and inversion methods. Here, we examine the adaption and application of the WFM-DOAS algorithm to AVIRIS-NG measurements to retrieve local methane column enhancements, compare the results with other retrievals, and quantify the uncertainties resulting from the retrieval method. Additionally, we estimate emissions from five detected methane plumes.
Yonghong Yi, John S. Kimball, Jennifer D. Watts, Susan M. Natali, Donatella Zona, Junjie Liu, Masahito Ueyama, Hideki Kobayashi, Walter Oechel, and Charles E. Miller
Biogeosciences, 17, 5861–5882, https://doi.org/10.5194/bg-17-5861-2020, https://doi.org/10.5194/bg-17-5861-2020, 2020
Short summary
Short summary
We developed a 1 km satellite-data-driven permafrost carbon model to evaluate soil respiration sensitivity to recent snow cover changes in Alaska. Results show earlier snowmelt enhances growing-season soil respiration and reduces annual carbon uptake, while early cold-season soil respiration is linked to the number of snow-free days after the land surface freezes. Our results also show nonnegligible influences of subgrid variability in surface conditions on model-simulated CO2 seasonal cycles.
Alison R. Marklein, Deanne Meyer, Marc L. Fischer, Seongeun Jeong, Talha Rafiq, Michelle Carr, and Francesca M. Hopkins
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-133, https://doi.org/10.5194/essd-2020-133, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
Dairy cow farms produce half of California's (CA) methane (CH4) emissions. Current CH4 emission inventories lack regional variation in management and are inadequate to assess CH4 mitigation measures. We develop a spatial database of CH4 emissions for CA dairy farms including farm-scale herd demographics and management data. This database is useful to predict CH4 emission reductions from mitigation efforts, to compare with atmospheric CH4 observations and to attribute emissions to specific farms.
Anna Karion, William Callahan, Michael Stock, Steve Prinzivalli, Kristal R. Verhulst, Jooil Kim, Peter K. Salameh, Israel Lopez-Coto, and James Whetstone
Earth Syst. Sci. Data, 12, 699–717, https://doi.org/10.5194/essd-12-699-2020, https://doi.org/10.5194/essd-12-699-2020, 2020
Short summary
Short summary
Our paper presents atmospheric concentrations of carbon dioxide and methane in the northeastern United States. We also describe the collection, quality control, and uncertainty estimation methods associated with the observations. The network is composed of 23 tower-based stations, including a dense sub-network in the Washington, DC, and Baltimore, Maryland, urban areas. Observations can be used to assess greenhouse gas emissions from these cities and regions.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steve Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1067, https://doi.org/10.5194/acp-2019-1067, 2020
Revised manuscript under review for ACP
Short summary
Short summary
We analyzed high resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires. These fires likely emit more CO, CH4, and organic carbon aerosol into the atmosphere than previously thought.
Siraput Jongaramrungruang, Christian Frankenberg, Georgios Matheou, Andrew K. Thorpe, David R. Thompson, Le Kuai, and Riley M. Duren
Atmos. Meas. Tech., 12, 6667–6681, https://doi.org/10.5194/amt-12-6667-2019, https://doi.org/10.5194/amt-12-6667-2019, 2019
Short summary
Short summary
This paper demonstrates the use of high-resolution 2-D plume imagery from airborne remote sensing retrievals to quantify methane point-source emissions. It shows significant improvements on the flux estimates without the need for direct wind speed measurements. This paves the way for enhanced flux estimates in future field campaign and space-based observations to better understand the magnitude and distribution of various point sources of methane.
Daniel H. Cusworth, Daniel J. Jacob, Daniel J. Varon, Christopher Chan Miller, Xiong Liu, Kelly Chance, Andrew K. Thorpe, Riley M. Duren, Charles E. Miller, David R. Thompson, Christian Frankenberg, Luis Guanter, and Cynthia A. Randles
Atmos. Meas. Tech., 12, 5655–5668, https://doi.org/10.5194/amt-12-5655-2019, https://doi.org/10.5194/amt-12-5655-2019, 2019
Short summary
Short summary
We examine the potential for global detection of methane plumes from individual point sources with the new generation of spaceborne imaging spectrometers scheduled for launch in 2019–2025. We perform methane retrievals on simulated scenes with varying surfaces and atmospheric methane concentrations. Our results suggest that imaging spectrometers in space could play a transformative role in the future for quantifying methane emissions from point sources on a global scale.
Kevin R. Gurney, Risa Patarasuk, Jianming Liang, Yang Song, Darragh O'Keeffe, Preeti Rao, James R. Whetstone, Riley M. Duren, Annmarie Eldering, and Charles Miller
Earth Syst. Sci. Data, 11, 1309–1335, https://doi.org/10.5194/essd-11-1309-2019, https://doi.org/10.5194/essd-11-1309-2019, 2019
Short summary
Short summary
The
Hestia Projectis an effort to provide bottom-up fossil fuel (FFCO2) emissions at the urban scale with building, street, and hourly space–time resolution. Here, we report on the latest urban area for which a Hestia estimate has been completed – the Los Angeles megacity. We provide a complete description of the methods used to build the Hestia FFCO2 emissions data product and general analysis of the numerical results.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, and Charles E. Miller
The Cryosphere, 13, 197–218, https://doi.org/10.5194/tc-13-197-2019, https://doi.org/10.5194/tc-13-197-2019, 2019
Short summary
Short summary
To better understand active-layer freezing process and its climate sensitivity, we developed a new 1 km snow data set for permafrost modeling and used the model simulations with multiple new in situ and P-band radar data sets to characterize the soil freeze onset and duration of zero curtain in Arctic Alaska. Results show that zero curtains of upper soils are primarily affected by early snow cover accumulation, while zero curtains of deeper soils are more closely related to maximum thaw depth.
Nicholas C. Parazoo, Charles D. Koven, David M. Lawrence, Vladimir Romanovsky, and Charles E. Miller
The Cryosphere, 12, 123–144, https://doi.org/10.5194/tc-12-123-2018, https://doi.org/10.5194/tc-12-123-2018, 2018
Short summary
Short summary
Carbon models suggest the permafrost carbon feedback (soil carbon emissions from permafrost thaw) acts as a slow, unobservable leak. We investigate if permafrost temperature provides an observable signal to detect feedbacks. We find a slow carbon feedback in warm sub-Arctic permafrost soils, but potentially rapid feedback in cold Arctic permafrost. This is surprising since the cold permafrost region is dominated by tundra and underlain by deep, cold permafrost thought impervious to such changes.
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Short summary
Methane is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. This study uses aircraft measurements of methane from Alaska to estimate surface emissions. We found that methane emission rates depend on the soil temperature at depths where its production was taking place, and that total emissions were similar between tundra and boreal regions. These results provide a simple way to predict methane emissions in this region.
Andrew K. Thorpe, Christian Frankenberg, David R. Thompson, Riley M. Duren, Andrew D. Aubrey, Brian D. Bue, Robert O. Green, Konstantin Gerilowski, Thomas Krings, Jakob Borchardt, Eric A. Kort, Colm Sweeney, Stephen Conley, Dar A. Roberts, and Philip E. Dennison
Atmos. Meas. Tech., 10, 3833–3850, https://doi.org/10.5194/amt-10-3833-2017, https://doi.org/10.5194/amt-10-3833-2017, 2017
Short summary
Short summary
At local scales emissions of methane (CH4) and carbon dioxide (CO2) are highly uncertain. The AVIRIS-NG imaging spectrometer maps large regions and generates high-spatial-resolution CH4 and CO2 concentration maps from anthropogenic and natural sources. Examples include CH4 from a processing plant, tank, pipeline leak, seep, mine vent shafts, and CO2 from power plants. This demonstrates a greenhouse gas monitoring capability that targets the two dominant anthropogenic climate-forcing agents.
Kristal R. Verhulst, Anna Karion, Jooil Kim, Peter K. Salameh, Ralph F. Keeling, Sally Newman, John Miller, Christopher Sloop, Thomas Pongetti, Preeti Rao, Clare Wong, Francesca M. Hopkins, Vineet Yadav, Ray F. Weiss, Riley M. Duren, and Charles E. Miller
Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, https://doi.org/10.5194/acp-17-8313-2017, 2017
Short summary
Short summary
We present the first carbon dioxide (CO2) and methane (CH4) measurements from an extensive surface network as part of the Los Angeles Megacity Carbon Project. We describe methods that are essential for understanding carbon fluxes from complex urban environments. CO2 and CH4 levels are spatially and temporally variable, with urban sites showing significant enhancements relative to background. In 2015, the median afternoon enhancement near downtown Los Angeles was ~15 ppm CO2 and ~80 ppb CH4.
Camille Viatte, Thomas Lauvaux, Jacob K. Hedelius, Harrison Parker, Jia Chen, Taylor Jones, Jonathan E. Franklin, Aijun J. Deng, Brian Gaudet, Kristal Verhulst, Riley Duren, Debra Wunch, Coleen Roehl, Manvendra K. Dubey, Steve Wofsy, and Paul O. Wennberg
Atmos. Chem. Phys., 17, 7509–7528, https://doi.org/10.5194/acp-17-7509-2017, https://doi.org/10.5194/acp-17-7509-2017, 2017
Short summary
Short summary
This study estimates methane emissions at local scale in dairy farms using four new mobile ground-based remote sensing spectrometers (EM27/SUN) and isotopic in situ measurements. Our top-down estimates are in the low end of previous studies. Inverse modeling from a comprehensive high-resolution model simulations (WRF-LES) is used to assess the geographical distribution of the emissions. Both the model and the measurements indicate a mixture of anthropogenic and biogenic emissions.
Annmarie Eldering, Chris W. O'Dell, Paul O. Wennberg, David Crisp, Michael R. Gunson, Camille Viatte, Charles Avis, Amy Braverman, Rebecca Castano, Albert Chang, Lars Chapsky, Cecilia Cheng, Brian Connor, Lan Dang, Gary Doran, Brendan Fisher, Christian Frankenberg, Dejian Fu, Robert Granat, Jonathan Hobbs, Richard A. M. Lee, Lukas Mandrake, James McDuffie, Charles E. Miller, Vicky Myers, Vijay Natraj, Denis O'Brien, Gregory B. Osterman, Fabiano Oyafuso, Vivienne H. Payne, Harold R. Pollock, Igor Polonsky, Coleen M. Roehl, Robert Rosenberg, Florian Schwandner, Mike Smyth, Vivian Tang, Thomas E. Taylor, Cathy To, Debra Wunch, and Jan Yoshimizu
Atmos. Meas. Tech., 10, 549–563, https://doi.org/10.5194/amt-10-549-2017, https://doi.org/10.5194/amt-10-549-2017, 2017
Short summary
Short summary
This paper describes the measurements of atmospheric carbon dioxide collected in the first 18 months of the satellite mission known as the Orbiting Carbon Observatory-2 (OCO-2). The paper shows maps of the carbon dioxide data, data density, and other data fields that illustrate the data quality. This mission has collected a more precise, more dense dataset of carbon dioxide then we have ever had previously.
A. Anthony Bloom, Thomas Lauvaux, John Worden, Vineet Yadav, Riley Duren, Stanley P. Sander, and David S. Schimel
Atmos. Chem. Phys., 16, 15199–15218, https://doi.org/10.5194/acp-16-15199-2016, https://doi.org/10.5194/acp-16-15199-2016, 2016
Short summary
Short summary
Understanding terrestrial carbon processes is a major challenge in climate science. We define the satellite system required to understand greenhouse gas biogeochemistry: our study is focused on Amazon wetland CH4 emissions. We find that future geostationary satellites will provide the CH4 measurements required to understand wetland CH4 processes. Low-earth orbit satellites will be unable to resolve wetland CH4 processes due to a low number of cloud-free CH4 measurements over the Amazon basin.
Clare K. Wong, Thomas J. Pongetti, Tom Oda, Preeti Rao, Kevin R. Gurney, Sally Newman, Riley M. Duren, Charles E. Miller, Yuk L. Yung, and Stanley P. Sander
Atmos. Chem. Phys., 16, 13121–13130, https://doi.org/10.5194/acp-16-13121-2016, https://doi.org/10.5194/acp-16-13121-2016, 2016
Short summary
Short summary
Methane is the second most important greenhouse gas and a target of new emissions regulations in the United States. Despite its importance, its emissions are poorly understood. In this study, we used a remote sensing instrument located on Mount Wilson to estimate the monthly and annual methane emissions from Los Angeles. Derived methane emissions from Los Angeles showed consistent peaks in late summer/early fall and winter during the study period from 2011 to 2015.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Sha Feng, Thomas Lauvaux, Sally Newman, Preeti Rao, Ravan Ahmadov, Aijun Deng, Liza I. Díaz-Isaac, Riley M. Duren, Marc L. Fischer, Christoph Gerbig, Kevin R. Gurney, Jianhua Huang, Seongeun Jeong, Zhijin Li, Charles E. Miller, Darragh O'Keeffe, Risa Patarasuk, Stanley P. Sander, Yang Song, Kam W. Wong, and Yuk L. Yung
Atmos. Chem. Phys., 16, 9019–9045, https://doi.org/10.5194/acp-16-9019-2016, https://doi.org/10.5194/acp-16-9019-2016, 2016
Short summary
Short summary
We developed a high-resolution land–atmosphere modelling system for urban CO2 emissions over the LA Basin. We evaluated various model configurations, FFCO2 products, and the impact of the model resolution. FFCO2 emissions outpace the atmospheric model resolution to represent the CO2 concentration variability across the basin. A novel forward model approach is presented to evaluate the surface measurement network, reinforcing the importance of using high-resolution emission products.
Le Kuai, John R. Worden, King-Fai Li, Glynn C. Hulley, Francesca M. Hopkins, Charles E. Miller, Simon J. Hook, Riley M. Duren, and Andrew D. Aubrey
Atmos. Meas. Tech., 9, 3165–3173, https://doi.org/10.5194/amt-9-3165-2016, https://doi.org/10.5194/amt-9-3165-2016, 2016
Short summary
Short summary
This paper describes the retrieval algorithm to estimate the lower tropospheric methane concentrations using Hyperspectral Thermal Emission Spectrometer (HyTES) airborne measurements. This project aims to map and detect methane plumes from the oil leaking or dairy emission. Our results demonstrate an example of the quantitative retrievals, imaged a big methane plume from storage tanks near Kern River Oil Field. The methane enhancement is well above the uncertainties of the estimates.
Glynn C. Hulley, Riley M. Duren, Francesca M. Hopkins, Simon J. Hook, Nick Vance, Pierre Guillevic, William R. Johnson, Bjorn T. Eng, Jonathan M. Mihaly, Veljko M. Jovanovic, Seth L. Chazanoff, Zak K. Staniszewski, Le Kuai, John Worden, Christian Frankenberg, Gerardo Rivera, Andrew D. Aubrey, Charles E. Miller, Nabin K. Malakar, Juan M. Sánchez Tomás, and Kendall T. Holmes
Atmos. Meas. Tech., 9, 2393–2408, https://doi.org/10.5194/amt-9-2393-2016, https://doi.org/10.5194/amt-9-2393-2016, 2016
Short summary
Short summary
Using data from a new airborne Hyperspectral Thermal Emission Spectrometer (HyTES) instrument, we present a technique for the detection and wide-area mapping of emission plumes of methane and other atmospheric trace gas species over challenging and diverse environmental conditions with high spatial resolution, that permits direct attribution to sources in complex environments.
Anna Karion, Colm Sweeney, John B. Miller, Arlyn E. Andrews, Roisin Commane, Steven Dinardo, John M. Henderson, Jacob Lindaas, John C. Lin, Kristina A. Luus, Tim Newberger, Pieter Tans, Steven C. Wofsy, Sonja Wolter, and Charles E. Miller
Atmos. Chem. Phys., 16, 5383–5398, https://doi.org/10.5194/acp-16-5383-2016, https://doi.org/10.5194/acp-16-5383-2016, 2016
Short summary
Short summary
Northern high-latitude carbon sources and sinks, including those resulting from degrading permafrost, are thought to be sensitive to the rapidly warming climate. Here we use carbon dioxide and methane measurements from a tower near Fairbanks AK to investigate regional Alaskan fluxes of CO2 and CH4 for 2012–2014.
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
S. E. Bush, F. M. Hopkins, J. T. Randerson, C.-T. Lai, and J. R. Ehleringer
Atmos. Meas. Tech., 8, 3481–3492, https://doi.org/10.5194/amt-8-3481-2015, https://doi.org/10.5194/amt-8-3481-2015, 2015
J. M. Henderson, J. Eluszkiewicz, M. E. Mountain, T. Nehrkorn, R. Y.-W. Chang, A. Karion, J. B. Miller, C. Sweeney, N. Steiner, S. C. Wofsy, and C. E. Miller
Atmos. Chem. Phys., 15, 4093–4116, https://doi.org/10.5194/acp-15-4093-2015, https://doi.org/10.5194/acp-15-4093-2015, 2015
Short summary
Short summary
This paper describes the atmospheric modeling that underlies the science analysis for the NASA Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE). Summary statistics of the WRF meteorological model performance on a 3.3 km grid indicate good overall agreement with surface and radiosonde observations. The high quality of the WRF meteorological fields inspires confidence in their use to drive the STILT transport model for the purpose of computing surface influence fields (“footprints”).
K. W. Wong, D. Fu, T. J. Pongetti, S. Newman, E. A. Kort, R. Duren, Y.-K. Hsu, C. E. Miller, Y. L. Yung, and S. P. Sander
Atmos. Chem. Phys., 15, 241–252, https://doi.org/10.5194/acp-15-241-2015, https://doi.org/10.5194/acp-15-241-2015, 2015
J. B. Fisher, M. Sikka, W. C. Oechel, D. N. Huntzinger, J. R. Melton, C. D. Koven, A. Ahlström, M. A. Arain, I. Baker, J. M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Masri, D. Hayes, C. Huntingford, A. K. Jain, P. E. Levy, M. R. Lomas, B. Poulter, D. Price, A. K. Sahoo, K. Schaefer, H. Tian, E. Tomelleri, H. Verbeeck, N. Viovy, R. Wania, N. Zeng, and C. E. Miller
Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, https://doi.org/10.5194/bg-11-4271-2014, 2014
P. Ciais, A. J. Dolman, A. Bombelli, R. Duren, A. Peregon, P. J. Rayner, C. Miller, N. Gobron, G. Kinderman, G. Marland, N. Gruber, F. Chevallier, R. J. Andres, G. Balsamo, L. Bopp, F.-M. Bréon, G. Broquet, R. Dargaville, T. J. Battin, A. Borges, H. Bovensmann, M. Buchwitz, J. Butler, J. G. Canadell, R. B. Cook, R. DeFries, R. Engelen, K. R. Gurney, C. Heinze, M. Heimann, A. Held, M. Henry, B. Law, S. Luyssaert, J. Miller, T. Moriyama, C. Moulin, R. B. Myneni, C. Nussli, M. Obersteiner, D. Ojima, Y. Pan, J.-D. Paris, S. L. Piao, B. Poulter, S. Plummer, S. Quegan, P. Raymond, M. Reichstein, L. Rivier, C. Sabine, D. Schimel, O. Tarasova, R. Valentini, R. Wang, G. van der Werf, D. Wickland, M. Williams, and C. Zehner
Biogeosciences, 11, 3547–3602, https://doi.org/10.5194/bg-11-3547-2014, https://doi.org/10.5194/bg-11-3547-2014, 2014
K. E. O. Todd-Brown, J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison
Biogeosciences, 11, 2341–2356, https://doi.org/10.5194/bg-11-2341-2014, https://doi.org/10.5194/bg-11-2341-2014, 2014
Related subject area
Atmosphere – Atmospheric Chemistry and Physics
Shipborne measurements of XCO2, XCH4, and XCO above the Pacific Ocean and comparison to CAMS atmospheric analyses and S5P/TROPOMI
Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring
Year-round record of near-surface ozone and O3 enhancement events (OEEs) at Dome A, East Antarctica
A decade of GOSAT Proxy satellite CH4 observations
A multi-sensor satellite-based archive of the largest SO2 volcanic eruptions since 2006
A homogenized daily in situ PM2.5 concentration dataset from the national air quality monitoring network in China
Trade-wind clouds and aerosols characterized by airborne horizontal lidar measurements during the EUREC4A field campaign
Monitoring of solar spectral ultraviolet irradiance in Aosta, Italy
The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018
Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018
DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1° × 0.1° resolution
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign
The HadGEM3-GA7.1 radiative kernel: the importance of a well-resolved stratosphere
Gas flaring activity and black carbon emissions in 2017 derived from the Sentinel-3A Sea and Land Surface Temperature Radiometer
Cloud_cci ATSR-2 and AATSR data set version 3: a 17-year climatology of global cloud and radiation properties
New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China
Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition
The Global Methane Budget 2000–2017
Simplified SAGE II ozone data usage rules
Database for the kinetics of the gas-phase atmospheric reactions of organic compounds
A Six-year long (2013–2018) High-resolution Air Quality Reanalysis Dataset over China base on the assimilation of surface observations from CNEMC
New continuous total ozone, UV, VIS and PAR measurements at Marambio, 64° S, Antarctica
Greenhouse gas observations from the Northeast Corridor tower network
Marine carbonyl sulfide (OCS) and carbon disulfide (CS2): a compilation of measurements in seawater and the marine boundary layer
A global gridded (0.1° × 0.1°) inventory of methane emissions from oil, gas, and coal exploitation based on national reports to the United Nations Framework Convention on Climate Change
A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign
Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions
Atmospheric observations made at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign
The Hestia fossil fuel CO2 emissions data product for the Los Angeles megacity (Hestia-LA)
The Utah urban carbon dioxide (UUCON) and Uintah Basin greenhouse gas networks: instrumentation, data, and measurement uncertainty
A machine-learning-based global sea-surface iodide distribution
EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012
Satellite and ground-based measurements of XCO2 in a remote semiarid region of Australia
Revised records of atmospheric trace gases CO2, CH4, N2O, and δ13C-CO2 over the last 2000 years from Law Dome, Antarctica
Contiguous United States wildland fire emission estimates during 2003–2015
The Berkeley High Resolution Tropospheric NO2 product
An updated version of a gap-free monthly mean zonal mean ozone database
PRIMAP-crf: UNFCCC CRF data in IPCC 2006 categories
History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)
GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings
A database of 10 min average measurements of solar radiation and meteorological variables in Ostrava, Czech Republic
A global space-based stratospheric aerosol climatology: 1979–2016
The Alberta smoke plume observation study
The Total Carbon Column Observing Network site description for Lauder, New Zealand
Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE
Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017
The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes
The MSG-SEVIRI-based cloud property data record CLAAS-2
The MUMBA campaign: measurements of urban, marine and biogenic air
Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8 ° N, 20.4 ° E), since 2008
Marvin Knapp, Ralph Kleinschek, Frank Hase, Anna Agustí-Panareda, Antje Inness, Jérôme Barré, Jochen Landgraf, Tobias Borsdorff, Stefan Kinne, and André Butz
Earth Syst. Sci. Data, 13, 199–211, https://doi.org/10.5194/essd-13-199-2021, https://doi.org/10.5194/essd-13-199-2021, 2021
Short summary
Short summary
We developed a shipborne variant of a remote sensing spectrometer for direct sunlight measurements of column-averaged atmospheric mixing ratios of carbon dioxide, methane, and carbon monoxide. The instrument was deployed on the research vessel Sonne during a longitudinal transect over the Pacific during June 2019. The campaign yielded more than 32 000 observations which compare excellently to atmospheric composition data from a state-of-the-art model (CAMS) and satellite observations (TROPOMI).
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Minghu Ding, Biao Tian, Michael C. B. Ashley, Davide Putero, Zhenxi Zhu, Lifan Wang, Shihai Yang, Chuanjin Li, and Cunde Xiao
Earth Syst. Sci. Data, 12, 3529–3544, https://doi.org/10.5194/essd-12-3529-2020, https://doi.org/10.5194/essd-12-3529-2020, 2020
Short summary
Short summary
Dome A, is one of the harshest environments on Earth.To evaluate the characteristics of near-surface O3, continuous observations were carried out in 2016. The results showed different patterns between coastal and inland Antarctic areas that were characterized by high concentrations in cold seasons and at night. Short-range transport accounted for the O3 enhancement events (OEEs) during summer at DA, rather than efficient local production, which is consistent with previous studies.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Kaixu Bai, Ke Li, Chengbo Wu, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data, 12, 3067–3080, https://doi.org/10.5194/essd-12-3067-2020, https://doi.org/10.5194/essd-12-3067-2020, 2020
Short summary
Short summary
PM2.5 data from the national air quality monitoring network in China suffered from significant inconsistency and inhomogeneity issues. To create a coherent PM2.5 concentration dataset to advance our understanding of haze pollution and its impact on weather and climate, we homogenized this PM2.5 dataset between 2015 and 2019 after filling in the data gaps. The homogenized PM2.5 data is found to better characterize the variation of aerosol in space and time compared to the original dataset.
Patrick Chazette, Julien Totems, Alexandre Baron, Cyrille Flamant, and Sandrine Bony
Earth Syst. Sci. Data, 12, 2919–2936, https://doi.org/10.5194/essd-12-2919-2020, https://doi.org/10.5194/essd-12-2919-2020, 2020
Short summary
Short summary
To characterize the trade-wind cumuli for climate change purposes, 20 ATR-42 flights were conducted over the tropical Atlantic, off the coast of Barbados from 23 January to 13 February 2020. These flights were conducted as part of the international EUREC4A (Elucidating the role of cloud–circulation coupling in climate) field campaign. A new sampling approach was applied, consisting in using a sidewards-staring lidar. The data are now made available to the international scientific community.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Gregor Hülsen, and Julian Gröbner
Earth Syst. Sci. Data, 12, 2787–2810, https://doi.org/10.5194/essd-12-2787-2020, https://doi.org/10.5194/essd-12-2787-2020, 2020
Short summary
Short summary
In this study we discuss the procedures and the technical aspects which ensure the high quality of the measurements of the global solar ultraviolet (UV) irradiance performed by a Bentham spectroradiometer located at Aosta–Saint-Christophe (north-western Alps), Italy. This particular instrument is the reference for the Aosta Valley UV monitoring network, which is the first UV monitoring network in Italy. The final spectra constitute one of the most accurate datasets globally.
Mahesh Kovilakam, Larry W. Thomason, Nicholas Ernest, Landon Rieger, Adam Bourassa, and Luis Millán
Earth Syst. Sci. Data, 12, 2607–2634, https://doi.org/10.5194/essd-12-2607-2020, https://doi.org/10.5194/essd-12-2607-2020, 2020
Short summary
Short summary
A robust stratospheric aerosol climatology is important as many global climate models (GCMs) make use of observed aerosol properties to prescribe aerosols in the stratosphere. Here, we present version 2.0 of the GloSSAC data set in which a new methodology is used for the post-2005 data that improves the quality of data in the lower stratosphere, which includes an improved 1020 nm extinction. Additionally, size information from multiwavelength measurements of SAGE III/ISS is provided.
Kazuyuki Miyazaki, Kevin Bowman, Takashi Sekiya, Henk Eskes, Folkert Boersma, Helen Worden, Nathaniel Livesey, Vivienne H. Payne, Kengo Sudo, Yugo Kanaya, Masayuki Takigawa, and Koji Ogochi
Earth Syst. Sci. Data, 12, 2223–2259, https://doi.org/10.5194/essd-12-2223-2020, https://doi.org/10.5194/essd-12-2223-2020, 2020
Short summary
Short summary
This study presents the results from the Tropospheric Chemistry Reanalysis version 2 (TCR-2) for 2005–2018 obtained from the assimilation of multiple satellite measurements of ozone, CO, NO2, HNO3, and SO2 from the OMI, SCIAMACHY, GOME-2, TES, MLS, and MOPITT instruments. The evaluation results demonstrate the capability of the reanalysis products to improve understanding of the processes controlling variations in atmospheric composition, including long-term changes in air quality and emissions.
Dalei Hao, Ghassem R. Asrar, Yelu Zeng, Qing Zhu, Jianguang Wen, Qing Xiao, and Min Chen
Earth Syst. Sci. Data, 12, 2209–2221, https://doi.org/10.5194/essd-12-2209-2020, https://doi.org/10.5194/essd-12-2209-2020, 2020
Short summary
Short summary
We adopted machine-learning models to generate the first global land products of SW–PAR based on DSCOVR/EPIC data. Our products are consistent with ground-based observations, capture the spatiotemporal patterns well and accurately track substantial diurnal, monthly and seasonal variations in SW–PAR. Our products provide a valuable alternative for solar photovoltaic applications and can be used to improve our understanding of the diurnal cycles of terrestrial water, carbon and energy fluxes.
Kirk Knobelspiesse, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, Anthony Cook, Antonio Di Noia, Bastiaan van Diedenhoven, David J. Diner, Richard Ferrare, Guangliang Fu, Meng Gao, Michael Garay, Johnathan Hair, David Harper, Gerard van Harten, Otto Hasekamp, Mark Helmlinger, Chris Hostetler, Olga Kalashnikova, Andrew Kupchock, Karla Longo De Freitas, Hal Maring, J. Vanderlei Martins, Brent McBride, Matthew McGill, Ken Norlin, Anin Puthukkudy, Brian Rheingans, Jeroen Rietjens, Felix C. Seidel, Arlindo da Silva, Martijn Smit, Snorre Stamnes, Qian Tan, Sebastian Val, Andrzej Wasilewski, Feng Xu, Xiaoguang Xu, and John Yorks
Earth Syst. Sci. Data, 12, 2183–2208, https://doi.org/10.5194/essd-12-2183-2020, https://doi.org/10.5194/essd-12-2183-2020, 2020
Short summary
Short summary
The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) field campaign is a resource for the next generation of spaceborne multi-angle polarimeter (MAP) and lidar missions. Conducted in the fall of 2017 from the Armstrong Flight Research Center in Palmdale, California, four MAP instruments and two lidars were flown on the high-altitude ER-2 aircraft over a variety of scene types and ground assets. Data are freely available to the public and useful for algorithm development and testing.
Christopher J. Smith, Ryan J. Kramer, and Adriana Sima
Earth Syst. Sci. Data, 12, 2157–2168, https://doi.org/10.5194/essd-12-2157-2020, https://doi.org/10.5194/essd-12-2157-2020, 2020
Short summary
Short summary
Radiative kernels allow efficient diagnosis of climate feedbacks and radiative adjustments to an external forcing using standard climate model output. We present a radiative kernel derived from the UK Met Office's HadGEM3-GA7.1 climate model. We show that a highly resolved stratosphere is important for correctly diagnosing the stratospheric temperature adjustment to greenhouse gas forcings and, by extension, the instantaneous radiative forcing.
Alexandre Caseiro, Berit Gehrke, Gernot Rücker, David Leimbach, and Johannes W. Kaiser
Earth Syst. Sci. Data, 12, 2137–2155, https://doi.org/10.5194/essd-12-2137-2020, https://doi.org/10.5194/essd-12-2137-2020, 2020
Short summary
Short summary
Gas flaring is a global phenomenon with local, regional, and global environmental impacts. The present knowledge on gas flaring activity and emissions lacks consistency. Satellite remote sensing offers the possibility of global and consistent coverage of gas flares. In this work, we present the application of a previously published method to the detection and characterisation of gas flares globally. We derive the volumes of gas flared and their respective black carbon emissions.
Caroline A. Poulsen, Gregory R. McGarragh, Gareth E. Thomas, Martin Stengel, Matthew W. Christensen, Adam C. Povey, Simon R. Proud, Elisa Carboni, Rainer Hollmann, and Roy G. Grainger
Earth Syst. Sci. Data, 12, 2121–2135, https://doi.org/10.5194/essd-12-2121-2020, https://doi.org/10.5194/essd-12-2121-2020, 2020
Short summary
Short summary
We have created a satellite cloud and radiation climatology from the ATSR-2 and AATSR on board ERS-2 and Envisat, respectively, which spans the period 1995–2012. The data set was created using a combination of optimal estimation and neural net techniques. The data set was created as part of the ESA Climate Change Initiative program. The data set has been compared with active CALIOP lidar measurements and compared with MAC-LWP AND CERES-EBAF measurements and is shown to have good performance.
Yang Yang, Minqiang Zhou, Bavo Langerock, Mahesh Kumar Sha, Christian Hermans, Ting Wang, Denghui Ji, Corinne Vigouroux, Nicolas Kumps, Gengchen Wang, Martine De Mazière, and Pucai Wang
Earth Syst. Sci. Data, 12, 1679–1696, https://doi.org/10.5194/essd-12-1679-2020, https://doi.org/10.5194/essd-12-1679-2020, 2020
Short summary
Short summary
The column-averaged dry-air mole fractions of CO2 (XCO2), CH4 (XCH4) and CO (XCO) have been measured with a Bruker IFS 125HR Fourier-transform infrared spectrometer (FTIR) at Xianghe (39.75° N, 116.96° E, north China) since June 2018. The instrumental setup follows the guidelines of the Total Carbon Column Observing Network (TCCON). The site and the FTIR system are described in this study. The FTIR measurements are discussed and have been applied for satellite validations.
Nicolas Bellouin, Will Davies, Keith P. Shine, Johannes Quaas, Johannes Mülmenstädt, Piers M. Forster, Chris Smith, Lindsay Lee, Leighton Regayre, Guy Brasseur, Natalia Sudarchikova, Idir Bouarar, Olivier Boucher, and Gunnar Myhre
Earth Syst. Sci. Data, 12, 1649–1677, https://doi.org/10.5194/essd-12-1649-2020, https://doi.org/10.5194/essd-12-1649-2020, 2020
Short summary
Short summary
Quantifying the imbalance in the Earth's energy budget caused by human activities is important to understand and predict climate changes. This study presents new estimates of the imbalance caused by changes in atmospheric concentrations of carbon dioxide, methane, ozone, and particles of pollution. Over the period 2003–2017, the overall imbalance has been positive, indicating that the climate system has gained energy and will warm further.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Stefanie Kremser, Larry W. Thomason, and Leroy J. Bird
Earth Syst. Sci. Data, 12, 1419–1435, https://doi.org/10.5194/essd-12-1419-2020, https://doi.org/10.5194/essd-12-1419-2020, 2020
Short summary
Short summary
Since space-based measurements of stratospheric composition started, a plethora of
generally acceptedscreening methods have been developed and tailored to each measurement system and to each anticipated use of the data. These methods are often inconsistent, ad hoc, and untraceable and are seldom revised even after significant revisions to the data themselves. Here we developed new and simplified SAGE II ozone data usage rules that are based on how the measurements were made.
Max R. McGillen, William P. L. Carter, Abdelwahid Mellouki, John J. Orlando, Bénédicte Picquet-Varrault, and Timothy J. Wallington
Earth Syst. Sci. Data, 12, 1203–1216, https://doi.org/10.5194/essd-12-1203-2020, https://doi.org/10.5194/essd-12-1203-2020, 2020
Short summary
Short summary
The gas-phase reactions of organic compounds in the atmosphere are a crucial step in the degradation of anthropogenic and biogenic emissions and the formation of secondary pollutants. This work is an attempt to produce a dataset that is as comprehensive as possible regarding the multitude of chemicals that react in the atmosphere. We find that we are able to make substantial improvements upon previous compendia and that this progress will help improve our understanding of atmospheric chemistry.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Jianjun Li, Huangjian Wu, Qizhong Wu, Huansheng Chen, Lili Zhu, Wei Wang, Bing Liu, Qian Wang, Duohong Chen, Yuepeng Pan, Tao Song, Fei Li, Haitao Zheng, Guanglin Jia, Miaomiao Lu, Lin Wu, and Gregory R. Carmichael
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-100, https://doi.org/10.5194/essd-2020-100, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The China's air pollution has changed substantially since 2013. Here we developed a six-year long high-resolution air quality reanalysis dataset over china from 2013 to 2018 to illustrate such changes and to provide a basic dataset for relevant studies. Surface fields of PM2.5, PM10, SO2, NO2, CO and O3 concentrations are provided, and the evaluation results indicate that the reanalysis dataset has excellent performance in reproducing the magnitude and variation of air pollution in China.
Kaisa Lakkala, Margit Aun, Ricardo Sanchez, Germar Bernhard, Eija Asmi, Outi Meinander, Fernando Nollas, Gregor Hülsen, Tomi Karppinen, Veijo Aaltonen, Antti Arola, and Gerrit de Leeuw
Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, https://doi.org/10.5194/essd-12-947-2020, 2020
Short summary
Short summary
A GUV multi-filter radiometer was set up at Marambio, 64° S, 56° W, Antarctica, in 2017. The instrument continuously measures ultraviolet (UV) radiation, visible (VIS) radiation and photosynthetically active radiation (PAR). The measurements are designed for providing high-quality long-term time series that can be used to assess the impact of global climate change in the Antarctic region. The data from the last 5 d are plotted and updated daily.
Anna Karion, William Callahan, Michael Stock, Steve Prinzivalli, Kristal R. Verhulst, Jooil Kim, Peter K. Salameh, Israel Lopez-Coto, and James Whetstone
Earth Syst. Sci. Data, 12, 699–717, https://doi.org/10.5194/essd-12-699-2020, https://doi.org/10.5194/essd-12-699-2020, 2020
Short summary
Short summary
Our paper presents atmospheric concentrations of carbon dioxide and methane in the northeastern United States. We also describe the collection, quality control, and uncertainty estimation methods associated with the observations. The network is composed of 23 tower-based stations, including a dense sub-network in the Washington, DC, and Baltimore, Maryland, urban areas. Observations can be used to assess greenhouse gas emissions from these cities and regions.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Meinrat O. Andreae, Kazushi Aranami, Elliot Atlas, Max Berkelhammer, Heinz Bingemer, Dennis Booge, Gregory Cutter, Pau Cortes, Stefanie Kremser, Cliff S. Law, Andrew Marriner, Rafel Simó, Birgit Quack, Günther Uher, Huixiang Xie, and Xiaobin Xu
Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, https://doi.org/10.5194/essd-12-591-2020, 2020
Short summary
Short summary
Sulfur-containing trace gases in the atmosphere influence atmospheric chemistry and the energy budget of the Earth by forming aerosols. The ocean is an important source of the most abundant sulfur gas in the atmosphere, carbonyl sulfide (OCS) and its most important precursor carbon disulfide (CS2). In order to assess global variability of the sea surface concentrations of both gases to calculate their oceanic emissions, we have compiled a database of existing shipborne measurements.
Tia R. Scarpelli, Daniel J. Jacob, Joannes D. Maasakkers, Melissa P. Sulprizio, Jian-Xiong Sheng, Kelly Rose, Lucy Romeo, John R. Worden, and Greet Janssens-Maenhout
Earth Syst. Sci. Data, 12, 563–575, https://doi.org/10.5194/essd-12-563-2020, https://doi.org/10.5194/essd-12-563-2020, 2020
Short summary
Short summary
Methane, a potent greenhouse gas, is emitted through the exploitation of oil, gas, and coal resources, and many efforts to reduce emissions have targeted these sources. We have created a global inventory of oil, gas, and coal methane emissions based on country reporting to the United Nations. The inventory can be used along with satellite observations of methane to better understand the contribution of these sources to global emissions and to identify potential biases in emissions reporting.
André Ehrlich, Manfred Wendisch, Christof Lüpkes, Matthias Buschmann, Heiko Bozem, Dmitri Chechin, Hans-Christian Clemen, Régis Dupuy, Olliver Eppers, Jörg Hartmann, Andreas Herber, Evelyn Jäkel, Emma Järvinen, Olivier Jourdan, Udo Kästner, Leif-Leonard Kliesch, Franziska Köllner, Mario Mech, Stephan Mertes, Roland Neuber, Elena Ruiz-Donoso, Martin Schnaiter, Johannes Schneider, Johannes Stapf, and Marco Zanatta
Earth Syst. Sci. Data, 11, 1853–1881, https://doi.org/10.5194/essd-11-1853-2019, https://doi.org/10.5194/essd-11-1853-2019, 2019
Short summary
Short summary
During the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign, two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. The data set combines remote sensing and in situ measurement of cloud, aerosol, and trace gas properties, as well as turbulent and radiative fluxes, which will be used to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification.
Bo Zheng, Frederic Chevallier, Yi Yin, Philippe Ciais, Audrey Fortems-Cheiney, Merritt N. Deeter, Robert J. Parker, Yilong Wang, Helen M. Worden, and Yuanhong Zhao
Earth Syst. Sci. Data, 11, 1411–1436, https://doi.org/10.5194/essd-11-1411-2019, https://doi.org/10.5194/essd-11-1411-2019, 2019
Short summary
Short summary
We use a multi-species atmospheric Bayesian inversion approach to attribute satellite-observed atmospheric carbon monoxide (CO) variations to its sources and sinks in order to achieve a full closure of the global CO budget during 2000–2017. We identify a declining trend in the global CO budget since 2000, driven by reduced anthropogenic emissions in the US, Europe, and China, as well as by reduced biomass burning emissions globally, especially in equatorial Africa.
Gijs de Boer, Darielle Dexheimer, Fan Mei, John Hubbe, Casey Longbottom, Peter J. Carroll, Monty Apple, Lexie Goldberger, David Oaks, Justin Lapierre, Michael Crume, Nathan Bernard, Matthew D. Shupe, Amy Solomon, Janet Intrieri, Dale Lawrence, Abhiram Doddi, Donna J. Holdridge, Michael Hubbell, Mark D. Ivey, and Beat Schmid
Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019, https://doi.org/10.5194/essd-11-1349-2019, 2019
Short summary
Short summary
This paper provides a summary of observations collected at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. The Year of Polar Prediction (YOPP) is a multi-year concentrated effort to improve forecasting capabilities at high latitudes across a variety of timescales. POPEYE observations include atmospheric data collected using unmanned aircraft, tethered balloons, and radiosondes, made in parallel with routine measurements at the site.
Kevin R. Gurney, Risa Patarasuk, Jianming Liang, Yang Song, Darragh O'Keeffe, Preeti Rao, James R. Whetstone, Riley M. Duren, Annmarie Eldering, and Charles Miller
Earth Syst. Sci. Data, 11, 1309–1335, https://doi.org/10.5194/essd-11-1309-2019, https://doi.org/10.5194/essd-11-1309-2019, 2019
Short summary
Short summary
The
Hestia Projectis an effort to provide bottom-up fossil fuel (FFCO2) emissions at the urban scale with building, street, and hourly space–time resolution. Here, we report on the latest urban area for which a Hestia estimate has been completed – the Los Angeles megacity. We provide a complete description of the methods used to build the Hestia FFCO2 emissions data product and general analysis of the numerical results.
Ryan Bares, Logan Mitchell, Ben Fasoli, David R. Bowling, Douglas Catharine, Maria Garcia, Byron Eng, Jim Ehleringer, and John C. Lin
Earth Syst. Sci. Data, 11, 1291–1308, https://doi.org/10.5194/essd-11-1291-2019, https://doi.org/10.5194/essd-11-1291-2019, 2019
Short summary
Short summary
We overview two near-surface trace gas measurement networks with the aim of describing procedures, locations, and data structure with sufficient detail to serve as an in-depth method reference. Additionally, we developed a novel method for quantifying measurement uncertainty produced by these networks providing insight into appropriate applications of the data and differences in data collection methods. This uncertainty metric is broadly applicable to many trace gas and air quality datasets.
Tomás Sherwen, Rosie J. Chance, Liselotte Tinel, Daniel Ellis, Mat J. Evans, and Lucy J. Carpenter
Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, https://doi.org/10.5194/essd-11-1239-2019, 2019
Short summary
Short summary
Iodine plays an important role in the Earth system, as a nutrient to the biosphere and by changing the concentrations of climate and air-quality species. However, there are uncertainties on the magnitude of iodine’s role, and a key uncertainty is our understanding of iodide in the global sea-surface. Here we take a data-driven approach using a machine learning algorithm to convert a sparse set of sea-surface iodide observations into a spatially and temporally resolved dataset for use in models.
Greet Janssens-Maenhout, Monica Crippa, Diego Guizzardi, Marilena Muntean, Edwin Schaaf, Frank Dentener, Peter Bergamaschi, Valerio Pagliari, Jos G. J. Olivier, Jeroen A. H. W. Peters, John A. van Aardenne, Suvi Monni, Ulrike Doering, A. M. Roxana Petrescu, Efisio Solazzo, and Gabriel D. Oreggioni
Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, https://doi.org/10.5194/essd-11-959-2019, 2019
Short summary
Short summary
In support of the Paris Agreement, EDGARv4.3.2 provides global annual estimates, broken down into IPCC-compliant source-sector levels, from 1970 to 2012. The anthropogenic CO2, CH4 and N2O emissions were calculated bottom up with international statistics and emission factors for 226 countries and spatially distributed. EDGARv4.3.2 is input for the top-down modelling of the Global Carbon Project and EU policy-making, needing GHG emission estimates for each country at the climate negotiations.
Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Osamu Uchino, Beata Bukosa, Masataka Ajiro, Akihide Kamei, Nicholas B. Jones, Clare Paton-Walsh, and David W. T. Griffith
Earth Syst. Sci. Data, 11, 935–946, https://doi.org/10.5194/essd-11-935-2019, https://doi.org/10.5194/essd-11-935-2019, 2019
Short summary
Short summary
We present ground-based measurements of atmospheric carbon dioxide columns from a portable spectrometer taken in a semiarid region of Australia. We compared these measurements to space-based retrievals from the Greenhouse Gases Observing Satellite (GOSAT) and calibrated them against a Total Carbon Column Observing Network (TCCON) instrument to ascertain a retrieval bias. We also present the unique opportunities that Central Australia could offer in the context of satellite product validation.
Mauro Rubino, David M. Etheridge, David P. Thornton, Russell Howden, Colin E. Allison, Roger J. Francey, Ray L. Langenfelds, L. Paul Steele, Cathy M. Trudinger, Darren A. Spencer, Mark A. J. Curran, Tas D. van Ommen, and Andrew M. Smith
Earth Syst. Sci. Data, 11, 473–492, https://doi.org/10.5194/essd-11-473-2019, https://doi.org/10.5194/essd-11-473-2019, 2019
Short summary
Short summary
The scientific community uses numerical models to predict future atmospheric levels of greenhouse gases causing global warming. This study presents the history of atmospheric concentration of the major greenhouse gases over the last 2000 years measured in ice core bubbles from the site of Law Dome (East Antarctica). The associated dataset is useful to test climate models and help provide accurate predictions of future climate change.
Shawn P. Urbanski, Matt C. Reeves, Rachel E. Corley, Robin P. Silverstein, and Wei Min Hao
Earth Syst. Sci. Data, 10, 2241–2274, https://doi.org/10.5194/essd-10-2241-2018, https://doi.org/10.5194/essd-10-2241-2018, 2018
Short summary
Short summary
Wildfires are a major source of air pollutants in the US that trigger pollution episodes and challenge air regulators’ efforts to meet air quality standards. Improved wildfire emission estimates are needed to quantify air pollution from fires to guide decision-making activities related to the control of anthropogenic sources. To address the need of air regulators for improved wildfire emission estimates, we developed an inventory of daily US wildfire pollutant emissions for 2003–2015.
Joshua L. Laughner, Qindan Zhu, and Ronald C. Cohen
Earth Syst. Sci. Data, 10, 2069–2095, https://doi.org/10.5194/essd-10-2069-2018, https://doi.org/10.5194/essd-10-2069-2018, 2018
Short summary
Short summary
This paper describes the upgrade of the BErkeley High Resolution (BEHR) NO2 retrieval from versions 2.1C to 3.0B. This retrieval measures NO2 over the continental US using input data at higher spatial and temporal resolution than global retrievals. We analyze how each part of the upgrade affected the measured NO2. Most interestingly, we find that using NO2 profiles at daily (rather than monthly) time resolution does lead to differences in multi-month averages for regions affected by lightning.
Birgit Hassler, Stefanie Kremser, Greg E. Bodeker, Jared Lewis, Kage Nesbit, Sean M. Davis, Martyn P. Chipperfield, Sandip S. Dhomse, and Martin Dameris
Earth Syst. Sci. Data, 10, 1473–1490, https://doi.org/10.5194/essd-10-1473-2018, https://doi.org/10.5194/essd-10-1473-2018, 2018
M. Louise Jeffery, Johannes Gütschow, Robert Gieseke, and Ronja Gebel
Earth Syst. Sci. Data, 10, 1427–1438, https://doi.org/10.5194/essd-10-1427-2018, https://doi.org/10.5194/essd-10-1427-2018, 2018
Short summary
Short summary
Developed countries are required to report detailed greenhouse gas emissions data to the UN on an annual basis. The reporting tables are complex, do not fit well with existing hierarchical reporting guidelines, and are not machine-readable. We present a processed version of the reported data in a consistent hierarchy, and in a format that is machine-readable and easy-to-use. The emissions data are also aggregated into
basketsof gases using global warming equivalency metrics from IPCC reports.
Ronald G. Prinn, Ray F. Weiss, Jgor Arduini, Tim Arnold, H. Langley DeWitt, Paul J. Fraser, Anita L. Ganesan, Jimmy Gasore, Christina M. Harth, Ove Hermansen, Jooil Kim, Paul B. Krummel, Shanlan Li, Zoë M. Loh, Chris R. Lunder, Michela Maione, Alistair J. Manning, Ben R. Miller, Blagoj Mitrevski, Jens Mühle, Simon O'Doherty, Sunyoung Park, Stefan Reimann, Matt Rigby, Takuya Saito, Peter K. Salameh, Roland Schmidt, Peter G. Simmonds, L. Paul Steele, Martin K. Vollmer, Ray H. Wang, Bo Yao, Yoko Yokouchi, Dickon Young, and Lingxi Zhou
Earth Syst. Sci. Data, 10, 985–1018, https://doi.org/10.5194/essd-10-985-2018, https://doi.org/10.5194/essd-10-985-2018, 2018
Short summary
Short summary
We present the data and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment). At high frequency and at multiple sites, AGAGE measures all the important chemicals in the Montreal Protocol for the protection of the ozone layer and the non-carbon-dioxide gases assessed by the Intergovernmental Panel on Climate Change. AGAGE uses these data to estimate sources and sinks of all these gases and has operated since 1978.
Manfred Ern, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III, and Martin Riese
Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, https://doi.org/10.5194/essd-10-857-2018, 2018
Short summary
Short summary
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE) is a global data set of gravity wave (GW) distributions in the stratosphere and the mesosphere observed by the infrared limb sounding satellite instruments HIRDLS and SABER. Typical distributions of multiple GW parameters are provided. Possible applications are scientific studies, comparison with other observations, or comparison with resolved or parametrized GW distributions in models.
Marie Opálková, Martin Navrátil, Vladimír Špunda, Philippe Blanc, and Lucien Wald
Earth Syst. Sci. Data, 10, 837–846, https://doi.org/10.5194/essd-10-837-2018, https://doi.org/10.5194/essd-10-837-2018, 2018
Short summary
Short summary
Files with irradiances of a few spectral regions of incident solar radiation and some meteorological variables including concentrations of some air pollutants measured for 2.5 years at 3 stations in Ostrava (CZ) were prepared. Special attention was given to the data quality and the process of quality check was described. This database offers an ensemble of data with high temporal resolution and creates a source on radiation in relation with environment and vegetation in polluted areas of cities.
Larry W. Thomason, Nicholas Ernest, Luis Millán, Landon Rieger, Adam Bourassa, Jean-Paul Vernier, Gloria Manney, Beiping Luo, Florian Arfeuille, and Thomas Peter
Earth Syst. Sci. Data, 10, 469–492, https://doi.org/10.5194/essd-10-469-2018, https://doi.org/10.5194/essd-10-469-2018, 2018
Short summary
Short summary
We describe the construction of a continuous 38-year record of stratospheric aerosol optical properties. The Global Space-based Stratospheric Aerosol Climatology, or GloSSAC, provided the input data to the construction of the Climate Model Intercomparison Project stratospheric aerosol forcing data set (1979 to 2014) and is now extended through 2016. GloSSAC focuses on the the SAGE series of instruments through mid-2005 and on OSIRIS and CALIPSO after that time.
Kerry Anderson, Al Pankratz, Curtis Mooney, and Kelly Fleetham
Earth Syst. Sci. Data, 10, 325–337, https://doi.org/10.5194/essd-10-325-2018, https://doi.org/10.5194/essd-10-325-2018, 2018
Short summary
Short summary
A field project was conducted to measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometers and photos taken at fire lookout towers. Observations of 222 plumes were collected from 2010 to 2015.
Unanticipated issues were uncovered including instrument limitations, environmental conditions, and subjectivity of observations. Despite these problems, the data set showed responses to fire behaviour conditions consistent with processes leading to plume rise.
Unanticipated issues were uncovered including instrument limitations, environmental conditions, and subjectivity of observations. Despite these problems, the data set showed responses to fire behaviour conditions consistent with processes leading to plume rise.
David F. Pollard, Vanessa Sherlock, John Robinson, Nicholas M. Deutscher, Brian Connor, and Hisako Shiona
Earth Syst. Sci. Data, 9, 977–992, https://doi.org/10.5194/essd-9-977-2017, https://doi.org/10.5194/essd-9-977-2017, 2017
Matthew Toohey and Michael Sigl
Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, https://doi.org/10.5194/essd-9-809-2017, 2017
Short summary
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Owen A. Sherwood, Stefan Schwietzke, Victoria A. Arling, and Giuseppe Etiope
Earth Syst. Sci. Data, 9, 639–656, https://doi.org/10.5194/essd-9-639-2017, https://doi.org/10.5194/essd-9-639-2017, 2017
Short summary
Short summary
Multiple natural and anthropogenic emissions sources contribute to the global atmospheric methane budget. Methane emissions are constrained, in part, by inverse (top-down) models that incorporate data on the concentration and stable carbon and hydrogen isotopic ratios of methane from different sources. To aid in these modeling efforts, we present a geochemical database comprising over 10 000 discrete samples from fossil and non-fossil fuel sources of methane.
Martin Wild, Atsumu Ohmura, Christoph Schär, Guido Müller, Doris Folini, Matthias Schwarz, Maria Zyta Hakuba, and Arturo Sanchez-Lorenzo
Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, https://doi.org/10.5194/essd-9-601-2017, 2017
Short summary
Short summary
The Global Energy Balance Archive (GEBA) is a database for the central storage of worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 database, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and to date contains around 500 000 monthly mean entries from 2500 locations.
Nikos Benas, Stephan Finkensieper, Martin Stengel, Gerd-Jan van Zadelhoff, Timo Hanschmann, Rainer Hollmann, and Jan Fokke Meirink
Earth Syst. Sci. Data, 9, 415–434, https://doi.org/10.5194/essd-9-415-2017, https://doi.org/10.5194/essd-9-415-2017, 2017
Short summary
Short summary
This study focuses on an evaluation of CLAAS-2 (Cloud property dAtAset using SEVIRI, Edition 2), which was created based on observations from geostationary Meteosat satellites. Using a variety of reference datasets, very good overall agreement is found. This suggests the usefulness of CLAAS-2 in applications ranging from high spatial and temporal resolution cloud process studies to the evaluation of regional climate models.
Clare Paton-Walsh, Élise-Andrée Guérette, Dagmar Kubistin, Ruhi Humphries, Stephen R. Wilson, Doreena Dominick, Ian Galbally, Rebecca Buchholz, Mahendra Bhujel, Scott Chambers, Min Cheng, Martin Cope, Perry Davy, Kathryn Emmerson, David W. T. Griffith, Alan Griffiths, Melita Keywood, Sarah Lawson, Suzie Molloy, Géraldine Rea, Paul Selleck, Xue Shi, Jack Simmons, and Voltaire Velazco
Earth Syst. Sci. Data, 9, 349–362, https://doi.org/10.5194/essd-9-349-2017, https://doi.org/10.5194/essd-9-349-2017, 2017
Short summary
Short summary
The MUMBA campaign provides a detailed snapshot of the atmospheric composition in an urban coastal environment with strong biogenic sources nearby. This campaign involved collaboration between several institutes and was undertaken to provide a case study for atmospheric models in a poorly sampled region of the globe.
Niall J. Ryan, Mathias Palm, Uwe Raffalski, Richard Larsson, Gloria Manney, Luis Millán, and Justus Notholt
Earth Syst. Sci. Data, 9, 77–89, https://doi.org/10.5194/essd-9-77-2017, https://doi.org/10.5194/essd-9-77-2017, 2017
Short summary
Short summary
We present a self-consistent data set of carbon monoxide (CO) in the Arctic middle atmosphere above Kiruna, Sweden, between 2008 and 2015. The data are retrieved from measurements made by the ground-based radiometer, KIMRA, and are compared to coincident CO data measured by the satellite instrument MLS. KIMRA shows agreement with MLS over the altitude range in which KIMRA is sensitive (48–84 km) and the data show the signatures of dynamic processes such as sudden stratospheric warmings.
Cited articles
Asefi-Najafabady, S., Rayner, P. J., Gurney, K. R., McRobert, A., Song, Y., Coltin, K., Huang, J., Elvidge, C., and Baugh, K.: A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results, J. Geophys. Res.-Atmos., 119, 17, https://doi.org/10.1002/2013JD021296, 2014.
Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Pétron, G., Joordan, S. M., Tans, P., Wilcox, J., Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardly, D., and Harriss, R.: Methane Leaks from North American Natural Gas Systems, Science, 343, 733–735, https://doi.org/10.1126/science.1247045, 2014.
California Energy Commission (CEC): California Natural Gas Pipeline, available at: https://cecgis-caenergy.opendata.arcgis.com/ (last access: 31 March 2017), 2012.
CalRecycle: SWIS Facility/Site Search, available at: http://www.calrecycle.ca.gov/SWFacilities/Directory/Search.aspx, last access: 31 December, 2015.
Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R., Stirm, B., Sweeney, C., Montzka, S. A., Gurney, K. R., Spokas, K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K., Turnbull, J., Miller, B. R., Lauvaux, T., Davis, K., Karion, A., Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K., Miles, N., and Richardson, S.: Quantification and source apportionment of the methane emission flux from the city of Indianapolis, Elementa, 3, 37, 2015.
CARB: California's 2000–2012 Greenhouse Gas Emissions Inventory Technical Support Document, State of California Air Resources Board, Air Quality Planning and Science Division, 2014.
CARB: California Greenhouse Gas Inventory for 2000–2013 – by Sector and Activity Electricity Generation (In State) California Greenhouse Gas Inventory for 2000–2013 – by Sector and Activity, 2015.
CARB: Documentation of California's 2000–2015 GHG Inventory – Index, available at: http://www.arb.ca.gov/cc/inventory/doc/doc_index.php, last access: 10 August, 2016.
Carranza, V., Rafiq, T., Frausto-Vicencio, I., Hopkins, F., Verhulst, K. R., Rao, P., Duren, R. M., and Miller, C. E.: Sources of Methane Emissions (Vista-LA), South Coast Air Basin, California, USA, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1525, 2018.
Castelluccio, M., Poggi, G., Sansone, C., and Verdoliva, L.: Land Use Classification in Remote Sensing Images by Convolutional Neural Networks, available at: https://arxiv.org/abs/1508.00092 (last access: 20 July 2016), 2015.
Chamberlain, S. D., Ingraffea, A. R., and Sparks, J. P.: Sourcing methane and carbon dioxide emissions from a small city: Influence of natural gas leakage and combustion, Environ. Pollut., 218, 102–110, https://doi.org/10.1016/j.envpol.2016.08.036, 2016.
Chilingar, G. and Endres, B.: Environmental hazards posed by the Los Angeles Basin urban oilfields: an historical perspective of lessons learned, Environ. Geol., 47, 302–317, https://doi.org/10.1007/s00254-004-1159-0, 2005.
Clark, N. N., McKain, D. L., Johnson, D. R., Wayne, W. S., Li, H., Akkerman, V., Sandoval, C., Covington, A. N., Mongold, R. A., Hailer, J. T., and Ugarte, O. J.: Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector, Environ. Sci. Technol., 51, 968–976, https://doi.org/10.1021/acs.est.5b06059, 2017.
Conley, S., Franco, G., Faloona, I., Blake, D., Peischl, J., and Ryerson, T.: Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA, Science, 351, 1317–1320, https://doi.org/10.1126/science.aaf2348, 2016.
Dlugokencky, E. J., Nisbet, E. G., Fisher, R., and Lowry, D.: Global atmospheric methane: budget, changes and dangers, Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci., 369, 2058–2072, https://doi.org/10.1098/rsta.2010.0341, 2011.
DOE: Alternative Fuels Data Center, available at: http://www.afdc.energy.gov/, last access: 31 March, 2017.
DOGGR: GIS Mapping, available at: http://www.conservation.ca.gov/dog/maps/Pages/GISMapping2.aspx, last access: 18 June, 2016.
Duren, R. and Miller, C.: Measuring the carbon emissions of megacities, Nat. Clim. Change, 2, 560–562, 2012.
EIA: Office of Oil & Gas, Natural Gas Division Gas, Gas Transportation Information System, available at: https://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/undrgrndstor_map.html (last access: 31 March 2017), 2008.
EIA: Maps: Layer Information for Interactive State Maps, available at: https://www.eia.gov/maps/layer_info-m.cfm (last access: 31 March 2017), 2016.
EPA: FLIGHT: 2015 Greenhouse Gas Emissions from Large Facilities, available at: https://ghgdata.epa.gov/ghgp/main.do (last access: 18 April 2017), 2015.
EPA: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014, National Service Center for Environmental Publications, 2016.
European Commission Joint Research Centre: Netherlands Environmental Assessment Agency (2010) Emission Database for Global Atmospheric Research (EDGAR), Release Version 4.2., available at: http://edgar.jrc.ec.europa.eu (last access: 31 March 2017), 2010.
Farrell, P., Culling, D., and Leifer, I.: Transcontinental methane measurements: Part 1. A mobile surface platform for source investigations, Atmos. Environ., 74, 422–431, https://doi.org/10.1016/j.atmosenv.2013.02.014, 2013.
Gioli, B., Toscano, P., Lugato, E., Matese, A., Miglietta, F., Zaldei, A., and Vaccari, F. P.: Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy, Environ. Pollut., 164, 125–131, https://doi.org/10.1016/j.envpol.2012.01.019, 2012.
Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., and Abdul-Massih, M.: Quantification of fossil fuel CO2 emissions on the building/street scale for a large US city, Environ. Sci. Technol., 46, 12194–12202, https://doi.org/10.1021/es3011282, 2012.
Gurney, K. R., Romero-Lankao, P., Seto, K. C., Hutyra, L. R., Duren, R., Kennedy, C., Grimm, N. B., Ehleringer, J. R., Marcotullio, P., Hughes, S., Pincetl, S., Chester, M. V., Runfola, D. M., Feddema, J. J., and Sperling, J.: Climate change: Track urban emissions on a human scale, Nature, 525, 179–181, https://doi.org/10.1038/525179a, 2015.
Helfter, C., Tremper, A. H., Halios, C. H., Kotthaus, S., Bjorkegren, A., Grimmond, C. S. B., Barlow, J. F., and Nemitz, E.: Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK, Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, 2016.
Hirsch, J.: Dairies Moving Out of Inland Empire, Los Angeles Times, 2006.
Hopkins, F. M., Ehleringer, J. R., Bush, S. E., Duren, R. M., Miller, C. E., Lai, C., Hsu, Y., Carranza, V., and Randerson, J. T.: Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies, Earth's Future, 4, 408–425, https://doi.org/10.1002/2016EF000381, 2016a.
Hopkins, F. M., Kort, E. A., Bush, S. E., Ehleringer, J., Lai, C., Blake, D., and Randerson, J. T.: Spatial patterns and source attribution of urban methane in the Los Angeles Basin, J. Geophys. Res.-Atmos., 121, 2490–2507, https://doi.org/10.1002/2015JD024429, 2016b.
Hsu, Y. K., VanCuren, T., Park, S., Jakober, C., Herner, J., FitzGibbon, M., Blake, D. R., and Parrish, D. D.: Methane emissions inventory verification in southern California, Atmos. Environ., 44, 1–7, https://doi.org/10.1016/j.atmosenv.2009.10.002, 2009.
Hulley, G. C., Duren, R. M., Hopkins, F. M., Hook, S. J., Vance, N., Guillevic, P., Johnson, W. R., Eng, B. T., Mihaly, J. M., Jovanovic, V. M., Chazanoff, S. L., Staniszewski, Z. K., Kuai, L., Worden, J., Frankenberg, C., Rivera, G., Aubrey, A. D., Miller, C. E., Malakar, N. K., Sánchez Tomás, J. M., and Holmes, K. T.: High spatial resolution imaging of methane and other trace gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES), Atmos. Meas. Tech., 9, 2393–2408, https://doi.org/10.5194/amt-9-2393-2016, 2016.
IPCC: Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories, 2001.
IPCC: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Ch. 4, Table 4.1., 2006.
Jeong, S., Hsu, Y. K., Andrews, A. E., Bianco, L., Vaca, P., Wilczak, J. M., and Fischer, M. L.: A multitower measurement network estimate of California's methane emissions, J. Geophys. Res.-Atmos., 118, 11339–11351, https://doi.org/10.1002/jgrd.50854, 2013.
Jeong, S., Newman, S., Zhang, J., Andrews A. E., Bianco, L., Bagley, J., Cui, X., Graven, H., Kim, J., Salameh, P., LaFranchi, B. W., Priest, C., Campos-Pineda, M., Novakovskaia, E., Sloop, C. D., Michelsen, H. A., Bambha, R. P., Weiss, R. F., Keeling, R., and Fischer, M. L.: Estimating methane emissions in California's urban and rural regions using multi-tower observations, J. Geophys. Res.-Atmos., 121, 13031–13049, https://doi.org/10.1002/2016JD025404, 2016.
Jeong, S., Cui, X., Blake, D. R., Miller, B., Montzka, S. A., Andrews, A., Guha, A., Martien, P., Bambha, R. P., LaFranchi, B., Michelsen, H. A., Clements, C. B., Glaize, P., and Fischer, M. L.: Estimating methane emissions from biological and fossil-fuel sources in the San Francisco Bay Area, Geophys. Res. Lett., 44, 486–495, https://doi.org/10.1002/2016GL071794, 2017.
Kaffka, S., Barzee, T., El-Mashad, H., Williams, R., Zicari, S., and Zhang, R.: Evaluation of Dairy Manure Management Practices for Greenhouse Gas Emissions Mitigation in California, available at: http://biomass.ucdavis.edu/wp-content/uploads/2016/06/ARB-Report-Final-Draft-Transmittal-Feb-26-2016.pdf (last access: 18 April 2017), 2016.
Kennedy, C., Steinberger, J., Gasson, B., Hansen, Y., Hillman, T., Havránek, M., Pataki, D., Phdungsilp, A., Ramaswami, A., and Villalba Mendez, G.: Greenhouse gas emissions from global cities, Environ. Sci. Technol., 43, 7297–7302, https://doi.org/10.1021/es900213p, 2009.
Lyon, D. R., Zavala-Araiza, D., Alvarez, R. A., Harriss, R., Palacios, V., Lan, X., Talbot, R., Lavoie, T., Shepson, P., Yacovitch, T. I., Herndon, S. C., Marchese, A. J., Zimmerle, D., Robinson, A. L., and Hamburg, S. P.: Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region, Environ. Sci. Technol., 49, 8147–8157, https://doi.org/10.1021/es506359c, 2015.
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.: Gridded National Inventory of U.S. Methane Emissions, Environ. Sci. Technol., 50, 13123–13133, https://doi.org/10.1021/acs.est.6b02878, 2016.
McKain, K., Down, A., Raciti, S. M., Budney, J., Hutyra, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. S., Jackson, R. B., Phillips, N., and Wofsy, S. C.: Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, P. Natl. Acad. Sci., 112, 1941–1946, https://doi.org/10.1073/pnas.1416261112, 2015.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhan, H.: Anthropogenic and Natural Radiative Forcing: In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740., 2013.
National Pipeline Mapping System (NPMS): Pipeline and Hazardous Materials Safety Administration; U.S. Department of Transportation: National Pipeline Mapping System, available at: https://www.npms.phmsa.dot.gov/ (last access: 31 March 2017), 2013.
Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O'Keefe, D., Patarasuk, R., Wong, K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843–3863, https://doi.org/10.5194/acp-16-3843-2016, 2016.
Oda, T. and Maksyutov, S.: A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543–556, https://doi.org/10.5194/acp-11-543-2011, 2011.
Olivier, J. and Peters, J.: CO2 from non-energy use of fuels: A global, regional and national perspective based on the IPCC Tier 1 approach, Resour. Conserv. Recycl., 45, 210–225, 2005.
Patarasuk, R., Gurney, K. R., O'Keeffe, D., Song, Y., Huang, J., Rao, P., Buchert, M., Lin, J. C., Mendoza, D., and Ehleringer, J. R.: Urban high-resolution fossil fuel CO2 emissions quantification and exploration of emission drivers for potential policy applications, Urban Ecosyst., 19, 1013–1039, https://doi.org/10.1007/s11252-016-0553-1, 2016.
Perata: Senate Bill No. 1368, Chapter 598, available at: http://www.energy.ca.gov/emission_standards/documents/sb_1368_bill_20060929_chaptered.pdf (last access: 31 March 2017), 2006.
Rao, P., Gurney, K. R., Patarasuk, R., Yang, S., Miller, C. E., Duren, R. M., and Eldering, A.: Spatio-temporal variations in on-road CO2 emissions in the Los Angeles Megacity, AIMS Geosci., 3, 239–267, https://doi.org/10.3934/geosci.2017.2.239, 2017.
State Water Resources Control Board (SWRCB), Regulated Facility Report 2016, available at: https://ciwqs.waterboards.ca.gov/ciwqs/readOnly/CiwqsReportServlet?inCommand=reset&reportName=RegulatedFacility (last access: 22 June 2017), 2016.
Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E.: Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions, J. Geophys. Res.-Atmos., 117, 1–11, https://doi.org/10.1029/2011JD016826, 2012.
U.S. Energy Information Administration: Refinery Capacity Report, U.S. Energy Information Administration, 2015.
U.S. Environmental Protection Agency: EPA Facility Registry Service (FRS): Wastewater Treatment Plants, Data.Gov, available at: https://catalog.data.gov/dataset/epa-facility-registry-service-frs-wastewater-treatment-plants, last access: 31 December, 2016.
Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao, P., Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty estimates, Atmos. Chem. Phys., 17, 8313–8341, https://doi.org/10.5194/acp-17-8313-2017, 2017.
Viatte, C., Lauvaux, T., Hedelius, J. K., Parker, H., Chen, J., Jones, T., Franklin, J. E., Deng, A. J., Gaudet, B., Verhulst, K., Duren, R., Wunch, D., Roehl, C., Dubey, M. K., Wofsy, S., and Wennberg, P. O.: Methane emissions from dairies in the Los Angeles Basin, Atmos. Chem. Phys., 17, 7509–7528, https://doi.org/10.5194/acp-17-7509-2017, 2017.
Wennberg, P. O., Mui, W., Wunch, D., Kort, E. A., Blake, D. R., Atlas, E. L., Santoni, G. W., Wofsy, S. C., Diskin, G. S., Jeong, S., and Fischer, M. L.: On the sources of methane to the Los Angeles atmosphere, Environ. Sci. Technol., 46, 9282–9289, https://doi.org/10.1021/es301138y, 2012.
Wong, C. K., Pongetti, T. J., Oda, T., Rao, P., Gurney, K. R., Newman, S., Duren, R. M., Miller, C. E., Yung, Y. L., and Sander, S. P.: Monthly trends of methane emissions in Los Angeles from 2011 to 2015 inferred by CLARS-FTS observations, Atmos. Chem. Phys., 16, 13121–13130, https://doi.org/10.5194/acp-16-13121-2016, 2016.
Wong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A., Duren, R., Hsu, Y.-K., Miller, C. E., Yung, Y. L., and Sander, S. P.: Mapping CH4 : CO2 ratios in Los Angeles with CLARS-FTS from Mount Wilson, California, Atmos. Chem. Phys., 15, 241–252, https://doi.org/10.5194/acp-15-241-2015, 2015.
Wunch, D., Wennberg, P. O., Toon, G. C., Keppel-Aleks, G., and Yavin, Y. G.: Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL039825, 2009.
Yuan, J.: Automatic Building Extraction in Aerial Scenes Using Convolutional Networks, available at: https://arxiv.org/abs/1602.06564 (last access: 31 March 2017), 2016.
Zavala-Araiza, D., Lyon, D. R., Alvarez, R. A., Davis, K. J., Harriss, R., Herndon, S. C., Karion, A., Kort, E. A., Lamb, B. K., Lan, X., Marchese, A. J., Pacala, S. W., Robinson, A. L., Shepson, P. B., Sweeney, C., Talbot, R., Townsend-Small, A., Yacovitch, T. I., Zimmerle, D. J., and Hamburg, S. P.: Reconciling divergent estimates of oil and gas methane emissions, P. Natl. Acad. Sci., 112, 15597–15602, https://doi.org/10.1073/pnas.1522126112, 2015.
Short summary
We present a GIS-based approach to mapping methane emissions in areas with dense, complex source mixtures. The Vista-LA database classifies >33 000 potential methane-emitting features concentrated on <1% of the land area in California's South Coast Air Basin. The database is used for planning and analysis of atmospheric measurements, including airborne remote sensing campaigns and on-road mobile surveys focused on methane "hot-spot" detection, and development of a regional emissions inventory.
We present a GIS-based approach to mapping methane emissions in areas with dense, complex source...