Articles | Volume 10, issue 4
Earth Syst. Sci. Data, 10, 2311–2328, 2018
https://doi.org/10.5194/essd-10-2311-2018

Special issue: Water, ecosystem, cryosphere, and climate data from the interior...

Earth Syst. Sci. Data, 10, 2311–2328, 2018
https://doi.org/10.5194/essd-10-2311-2018
 
21 Dec 2018
21 Dec 2018

A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA

Kang Wang et al.

Related authors

Frozen-soil hydrological modeling for a mountainous catchment at northeast of the Tibetan Plateau
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-98,https://doi.org/10.5194/hess-2022-98, 2022
Revised manuscript accepted for HESS
Short summary
Diagnosing the impacts of permafrost on catchment hydrology: field measurements and model experiments in a mountainous catchment in western China
Hongkai Gao, Chuntan Han, Rensheng Chen, Zijing Feng, Kang Wang, Fabrizio Fenicia, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-264,https://doi.org/10.5194/hess-2021-264, 2021
Manuscript not accepted for further review
Short summary
Recent changes in pan-Antarctic region surface snowmelt detected by AMSR-E and AMSR2
Lei Zheng, Chunxia Zhou, Tingjun Zhang, Qi Liang, and Kang Wang
The Cryosphere, 14, 3811–3827, https://doi.org/10.5194/tc-14-3811-2020,https://doi.org/10.5194/tc-14-3811-2020, 2020
Short summary
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
Xinyue Zhong, Tingjun Zhang, Shichang Kang, Kang Wang, Lei Zheng, Yuantao Hu, and Huijuan Wang
The Cryosphere, 12, 227–245, https://doi.org/10.5194/tc-12-227-2018,https://doi.org/10.5194/tc-12-227-2018, 2018
Response of seasonal soil freeze depth to climate change across China
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017,https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary

Related subject area

Permafrost
Long-term energy balance measurements at three different mountain permafrost sites in the Swiss Alps
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022,https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Permafrost, active layer, and meteorological data (2010–2020) at the Mahan Mountain relict permafrost site of northeastern Qinghai–Tibet Plateau
Tonghua Wu, Changwei Xie, Xiaofan Zhu, Jie Chen, Wu Wang, Ren Li, Amin Wen, Dong Wang, Peiqing Lou, Chengpeng Shang, Yune La, Xianhua Wei, Xin Ma, Yongping Qiao, Xiaodong Wu, Qiangqiang Pang, and Guojie Hu
Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022,https://doi.org/10.5194/essd-14-1257-2022, 2022
Short summary
New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere
Youhua Ran, Xin Li, Guodong Cheng, Jingxin Che, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, Huijun Jin, Jaroslav Obu, Masahiro Hori, Qihao Yu, and Xiaoli Chang
Earth Syst. Sci. Data, 14, 865–884, https://doi.org/10.5194/essd-14-865-2022,https://doi.org/10.5194/essd-14-865-2022, 2022
Short summary
A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021,https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
An integrated observation dataset of the hydrological and thermal deformation in permafrost slopes and engineering infrastructure in the Qinghai–Tibet Engineering Corridor
Lihui Luo, Yanli Zhuang, Mingyi Zhang, Zhongqiong Zhang, Wei Ma, Wenzhi Zhao, Lin Zhao, Li Wang, Yanmei Shi, Ze Zhang, Quntao Duan, Deyu Tian, and Qingguo Zhou
Earth Syst. Sci. Data, 13, 4035–4052, https://doi.org/10.5194/essd-13-4035-2021,https://doi.org/10.5194/essd-13-4035-2021, 2021
Short summary

Cited articles

Abbott, B. W., Jones, J. B., Schuur, E. A. G., Chapin, F. S., Bowden, W. B., Bret-Harte, M. S., Epstein, H. E., Flannigan, M. D., Harms, T. K., Hollingsworth, T. N., Mack, M. C., McGuire, A. D., Natali, S. M., Rocha, A. V., Tank, S. E., Turetsky, M. R., Vonk, J. E., Wickland, K. P., Aiken, G. R., Alexander, H. D., Amon, R. M. W., Benscoter, B. W., Bergeron, Y., Bishop, K., Blarquez, O., Bond-Lamberty, B., Breen, A. L., Buffam, I., Cai, Y. H., Carcaillet, C., Carey, S. K., Chen, J. M., Chen, H. Y. H., Christensen, T. R., Cooper, L. W., Cornelissen, J. H. C., de Groot, W. J., DeLuca, T. H., Dorrepaal, E., Fetcher, N., Finlay, J. C., Forbes, B. C., French, N. H. F., Gauthier, S., Girardin, M. P., Goetz, S. J., Goldammer, J. G., Gough, L., Grogan, P., Guo, L. D., Higuera, P. E., Hinzman, L., Hu, F. S., Hugelius, G., Jafarov, E. E., Jandt, R., Johnstone, J. F., Karlsson, J., Kasischke, E. S., Kattner, G., Kelly, R., Keuper, F., Kling, G. W., Kortelainen, P., Kouki, J., Kuhry, P., Laudon, H., Laurion, I., Macdonald, R. W., Mann, P. J., Martikainen, P. J., McClelland, J. W., Molau, U., Oberbauer, S. F., Olefeldt, D., Pare, D., Parisien, M. A., Payette, S., Peng, C. H., Pokrovsky, O. S., Rastetter, E. B., Raymond, P. A., Raynolds, M. K., Rein, G., Reynolds, J. F., Robards, M., Rogers, B. M., Schadel, C., Schaefer, K., Schmidt, I. K., Shvidenko, A., Sky, J., Spencer, R. G. M., Starr, G., Striegl, R. G., Teisserenc, R., Tranvik, L. J., Virtanen, T., Welker, J. M., and Zimov, S.: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment, Environ. Res. Lett., 11, 34014–34014, https://doi.org/10.1088/1748-9326/11/3/034014, 2016. a
Bellingham, B. K.: Comprehensive Stevens Hydra Probe Users Manual, Report, Steven Water Monitoring System, Inc., 63 pp., 2015. a
Bieniek, P. A., Walsh, J. E., Thoman, R. L., and Bhatt, U. S.: Using Climate Divisions to Analyze Variations and Trends in Alaska Temperature and Precipitation, J. Climate, 27, 2800–2818, https://doi.org/10.1175/Jcli-D-13-00342.1, 2014. a
Biskaborn, B. K., Lanckman, J.-P., Lantuit, H., Elger, K., Streletskiy, D. A., Cable, W. L., and Romanovsky, V. E.: The new database of the Global Terrestrial Network for Permafrost (GTN-P), Earth Syst. Sci. Data, 7, 245–259, https://doi.org/10.5194/essd-7-245-2015, 2015. a
Box, G., Hunter, J. S., and Hunter, W. G.: Statistics for experimenters: design, innovation, and discovery, vol. 2, Wiley-Interscience New York, 2005. a
Download
Short summary
Ground thermal and moisture data are important indicators of the rapid permafrost changes in the Arctic. To better understand the changes, we need a comprehensive dataset across various sites. We synthesize permafrost-related data in the state of Alaska. It should be a valuable permafrost dataset that is worth maintaining in the future. On a wider level, it also provides a prototype of basic data collection and management for permafrost regions in general.