Articles | Volume 5, issue 1
https://doi.org/10.5194/essd-5-101-2013
https://doi.org/10.5194/essd-5-101-2013
13 Mar 2013
 | 13 Mar 2013

Future Flows Hydrology: an ensemble of daily river flow and monthly groundwater levels for use for climate change impact assessment across Great Britain

C. Prudhomme, T. Haxton, S. Crooks, C. Jackson, A. Barkwith, J. Williamson, J. Kelvin, J. Mackay, L. Wang, A. Young, and G. Watts

Related authors

User-centred Evaluation of Cold Wave Forecasts for Disaster Risk Reduction in Lesotho
Katherine Egan, Calum Baugh, Rebecca Emerton, Christel Prudhomme, Daniele Castellana, and Sebongile Hlubi
Abstr. Int. Cartogr. Assoc., 9, 8, https://doi.org/10.5194/ica-abs-9-8-2025,https://doi.org/10.5194/ica-abs-9-8-2025, 2025
Error-correction across gauged and ungauged locations: A data assimilation-inspired approach to post-processing river discharge forecasts
Gwyneth Matthews, Hannah L. Cloke, Sarah L. Dance, and Christel Prudhomme
EGUsphere, https://doi.org/10.5194/hess-2024-3989,https://doi.org/10.5194/hess-2024-3989, 2025
Short summary
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022,https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary

Related subject area

Hydrology
Discrete global grid system flow routing datasets in the Amazon and Yukon basins
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025,https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025,https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025,https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025,https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: FAO irrigation and drainage paper 56 – Crop evapotranspiration – Guidelines for computing crop water requirements, Food and Agriculture Organisation of the United Nations, Rome, 300 pp., 1998.
Bell, V. A. and Moore, R. J.: An elevation-dependent snowmelt model for upland Britain, Hydrol. Process., 13, 1887–1903, 1999.
Charlton, M. B. and Arnell, N. W.: Adapting to climate change impacts on water resources in England – An assessment of draft Water Resources Management Plans, Global Environ. Change, 21, 238–248, https://doi.org/10.1016/j.gloenvcha.2010.07.012, 2011.
Christierson, B. v., Vidal, J.-P., and Wade, S. D.: Using UKCP09 probabilistic climate information for UK water resource planning, J. Hydrol., 424–425, 48–67, https://doi.org/10.1016/j.jhydrol.2011.12.020, 2012.
Crooks, S. M. and Naden, P. S.: CLASSIC: a semi-distributed rainfall-runoff modelling system, Hydrol. Earth Syst. Sci., 11, 516–531, https://doi.org/10.5194/hess-11-516-2007, 2007.
Download
Share
Altmetrics
Final-revised paper
Preprint