Articles | Volume 16, issue 2
https://doi.org/10.5194/essd-16-903-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-903-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurements of morphodynamics of a sheltered beach along the Dutch Wadden Sea
Marlies A. van der Lugt
CORRESPONDING AUTHOR
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Deltares, Delft, the Netherlands
Jorn W. Bosma
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Matthieu A. de Schipper
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Timothy D. Price
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Marcel C. G. van Maarseveen
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Pieter van der Gaag
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Gerben Ruessink
Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, the Netherlands
Ad J. H. M. Reniers
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Stefan G. J. Aarninkhof
Faculty of Civil Engineering and Geosciences, Department of Hydraulic Engineering, Delft University of Technology, Delft, the Netherlands
Related authors
Dano Roelvink, Maarten van Ormondt, Johan Reyns, and Marlies van der Lugt
EGUsphere, https://doi.org/10.5194/egusphere-2025-492, https://doi.org/10.5194/egusphere-2025-492, 2025
Short summary
Short summary
Existing wave models are often quite heavy for coastal applications. The SnapWave model simulates wave refraction (turning towards the coast), shoaling (steepening up) and dissipation (loss of energy by friction and wave breaking), and it uses an efficient computational mesh that you can refine where you need it. In the paper we show that the model can reproduce time series of waves anywhere in the world, using a depth map and wave data from a global model (ERA5) or a local wave buoy.
Floris F. van Rees, Laura L. Govers, Polina Guseva, Maarten P. A. Zwarts, Camille Tuijnman, Cornelis J. Camphuysen, Gerben Ruessink, and Valérie C. Reijers
EGUsphere, https://doi.org/10.5194/egusphere-2025-3265, https://doi.org/10.5194/egusphere-2025-3265, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Seabird guano enriches nitrogen-loving plants and boost plants to trap sediment, driving the gradual growth and reshaping of coastal islands. By pairing on-site plant surveys with satellite imagery and elevation data, we show these effects vary with elevation, soil type, and season. Birds thus engineer and sustain their own breeding habitats. For conservation managers, protecting colonies is key to preserving the dynamic island landscapes these and other species rely on.
Marco Schrijver, Maarten van der Vegt, Gerben Ruessink, and Maarten Kleinhans
EGUsphere, https://doi.org/10.5194/egusphere-2025-1202, https://doi.org/10.5194/egusphere-2025-1202, 2025
Short summary
Short summary
Mid-channel bars in estuaries are important habitats and bird foraging areas. We measured current velocities on and along the tidal flat of an estuarine mid-channel bar. Our analysis shows that the intertidal currents have a much more three-dimensional pattern than those on shore-connected tidal flats. Existing models for tidal flats underestimate flow velocities on the mid-channel bar, which has consequences for sediment transport and morphodynamics.
Dano Roelvink, Maarten van Ormondt, Johan Reyns, and Marlies van der Lugt
EGUsphere, https://doi.org/10.5194/egusphere-2025-492, https://doi.org/10.5194/egusphere-2025-492, 2025
Short summary
Short summary
Existing wave models are often quite heavy for coastal applications. The SnapWave model simulates wave refraction (turning towards the coast), shoaling (steepening up) and dissipation (loss of energy by friction and wave breaking), and it uses an efficient computational mesh that you can refine where you need it. In the paper we show that the model can reproduce time series of waves anywhere in the world, using a depth map and wave data from a global model (ERA5) or a local wave buoy.
Bram C. van Prooijen, Marion F. S. Tissier, Floris P. de Wit, Stuart G. Pearson, Laura B. Brakenhoff, Marcel C. G. van Maarseveen, Maarten van der Vegt, Jan-Willem Mol, Frank Kok, Harriette Holzhauer, Jebbe J. van der Werf, Tommer Vermaas, Matthijs Gawehn, Bart Grasmeijer, Edwin P. L. Elias, Pieter Koen Tonnon, Giorgio Santinelli, José A. A. Antolínez, Paul Lodewijk M. de Vet, Ad J. H. M. Reniers, Zheng Bing Wang, Cornelis den Heijer, Carola van Gelder-Maas, Rinse J. A. Wilmink, Cor A. Schipper, and Harry de Looff
Earth Syst. Sci. Data, 12, 2775–2786, https://doi.org/10.5194/essd-12-2775-2020, https://doi.org/10.5194/essd-12-2775-2020, 2020
Short summary
Short summary
To protect the Dutch coastal zone, sand is nourished and disposed at strategic locations. Simple questions like where, how, how much and when to nourish the sand are not straightforward to answer. This is especially the case around the Wadden Sea islands where sediment transport pathways are complicated. Therefore, a large-scale field campaign has been carried out on the seaward side of Ameland Inlet. Sediment transport, hydrodynamics, morphology and fauna in the bed were measured.
Cited articles
Bergillos, R. J., López-Ruiz, A., Medina-López, E., Moñino, A., and Ortega-Sánchez, M.: The Role of Wave Energy Converter Farms on Coastal Protection in Eroding Deltas, Guadalfeo, Southern Spain, J. Clean. Product., 171, 356–367, https://doi.org/10.1016/j.jclepro.2017.10.018, 2018. a
Bernabeu, A., Medina, R., and Vidal, C.: A Morphological Model of the Beach Profile Integrating Wave and Tidal Influences, Mar. Geol., 197, 95–116, https://doi.org/10.1016/S0025-3227(03)00087-2, 2003. a
Blott, S. J. and Pye, K.: GRADISTAT: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments, Earth Surf. Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001. a, b
Brand, E., Ramaekers, G., and Lodder, Q.: Dutch Experience with Sand Nourishments for Dynamic Coastline Conservation – An Operational Overview, Ocean Coast. Manage., 217, 106008, https://doi.org/10.1016/j.ocecoaman.2021.106008, 2022. a
Colosimo, I., Van Maren, D. S., De Vet, P. L. M., Winterwerp, J. C., and Van Prooijen, B. C.: Winds of Opportunity: The Effects of Wind on Intertidal Flat Accretion, Geomorphology, 439, 108840, https://doi.org/10.1016/j.geomorph.2023.108840, 2023. a
Cooper, J. A. G., Pilkey, O. H., and Lewis, D. A.: Islands behind Islands: An Unappreciated Coastal Landform Category, J. Coast. Res., 50, 907–911, 2007. a
Donelan, M., Hamilton, J., and Hui, W.: Directional Spectra of Wind Generated Waves, Philos. T. Roy. Soc. Lond. A-Math., 315, 509–562, 1985. a
Elgar, S., Raubenheimer, B., and Guza, R. T.: Quality Control of Acoustic Doppler Velocimeter Data in the Surfzone, Meas. Sci. Technol., 16, 1889–1893, https://doi.org/10.1088/0957-0233/16/10/002, 2005. a
Ewans, K. C.: Observations of the Directional Spectrum of Fetch-Limited Waves, J. Phys. Oceanogr., 28, 495–512, https://doi.org/10.1175/1520-0485(1998)028<0495:OOTDSO>2.0.CO;2, 1998. a
Feddersen, F.: Effect of Wave Directional Spread on the Radiation Stress: Comparing Theory and Observations, Coast. Eng., 51, 473–481, https://doi.org/10.1016/j.coastaleng.2004.05.008, 2004. a
Folk, R. L. and Ward, W. C.: Brazos River Bar [Texas]; a Study in the Significance of Grain Size Parameters, J. Sediment. Res., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957. a
Freire, P., Ferreira, O., Taborda, R., Oliveira, F., Carrasco, A., Silva, A., Vargas, C., Capitao, R., Fortes, C., Coli, A., and Santon, J.: Morphodynamics of Fetch-Limited Beaches in Contrasting Environments, J. Coast. Res., 56, 183–187, 2009. a
Grunnet, N. M., Ruessink, B., and Walstra, D.-J. R.: The Influence of Tides, Wind and Waves on the Redistribution of Nourished Sediment at Terschelling, The Netherlands, Coast. Eng., 52, 617–631, https://doi.org/10.1016/j.coastaleng.2005.04.001, 2005. a
Guillén, J. and Hoekstra, P.: The “Equilibrium” Distribution of Grain Size Fractions and Its Implications for Cross-Shore Sediment Transport: A Conceptual Model, Mar. Geol., 135, 15–33, https://doi.org/10.1016/S0025-3227(96)00051-5, 1996. a
Guo, J.: Simple and Explicit Solution of Wave Dispersion Equation, Coast. Eng., 45, 71–74, https://doi.org/10.1016/S0378-3839(02)00039-X, 2002. a
Hallermeier, R. J.: A Profile Zonation for Seasonal Sand Beaches from Wave Climate, Coast. Eng., 4, 253–277, https://doi.org/10.1016/0378-3839(80)90022-8, 1980. a
Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R., and Kalra, T. S.: Modeling of Barrier Breaching During Hurricanes Sandy and Matthew, J. Geophys. Res.-Earth, 127, e2021JF006307, https://doi.org/10.1029/2021JF006307, 2022. a
Hegge, B. A., Eliot, M. J., and Hsu, J.: Sheltered Sandy Beaches of Southwestern Australia, J. Coast. Res., 12, 748–760, 1996. a
Héquette, A., Hemdane, Y., and Anthony, E. J.: Sediment Transport under Wave and Current Combined Flows on a Tide-Dominated Shoreface, Northern Coast of France, Mar. Geol., 249, 226–242, https://doi.org/10.1016/j.margeo.2007.12.003, 2008. a
Hoefel, F. and Elgar, S.: Wave-Induced Sediment Transport and Sandbar Migration, Science, 299, 1885–1887, https://doi.org/10.1126/science.1081448, 2003. a
Hopkins, J., Elgar, S., and Raubenheimer, B.: Observations and Model Simulations of Wave-current Interaction on the Inner Shelf, J. Geophys. Res.-Oceans, 121, 198–208, https://doi.org/10.1002/2015JC010788, 2016. a
Hopkins, J., Elgar, S., and Raubenheimer, B.: Flow Separation Effects on Shoreline Sediment Transport, Coast. Eng., 125, 23–27, https://doi.org/10.1016/j.coastaleng.2017.04.007, 2017. a
Huisman, B., De Schipper, M., and Ruessink, B.: Sediment Sorting at the Sand Motor at Storm and Annual Time Scales, Mar. Geol., 381, 209–226, https://doi.org/10.1016/j.margeo.2016.09.005, 2016. a
Huisman, B., Walstra, D.-J., Radermacher, M., de Schipper, M., and Ruessink, G.: Observations and Modelling of Shoreface Nourishment Behaviour, J. Mar. Sci. Eng., 7, 59, https://doi.org/10.3390/jmse7030059, 2019. a
Jackson, N. L. and Nordstrom, K. F.: Site Specific Controls on Wind and Wave Processes and Beach Mobility on Estuarine Beaches in New Jersey, U.S.A., J. Coast. Res., 8, 88–98, 1992. a
Jackson, N. L., Nordstrom, K. F., Eliot, I., and Masselink, G.: “Low Energy” Sandy Beaches in Marine and Estuarine Environments: A Review, Geomorphology, 48, 147–162, https://doi.org/10.1016/S0169-555X(02)00179-4, 2002. a, b, c
Kleinhans, M. G.: Grain-Size Sorting in Grainflows at the Lee Side of Deltas: Grain Flow Size Sorting, Sedimentology, 52, 291–311, https://doi.org/10.1111/j.1365-3091.2005.00698.x, 2005. a
Kleinhans, M. G. and Grasmeijer, B. T.: Bed Load Transport on the Shoreface by Currents and Waves, Coast. Eng., 53, 983–996, https://doi.org/10.1016/j.coastaleng.2006.06.009, 2006. a
Luijendijk, A. P., Ranasinghe, R., de Schipper, M. A., Huisman, B. A., Swinkels, C. M., Walstra, D. J., and Stive, M. J.: The Initial Morphological Response of the Sand Engine: A Process-Based Modelling Study, Coast. Eng., 119, 1–14, https://doi.org/10.1016/j.coastaleng.2016.09.005, 2017. a
Lygre, A. and Krogstadt, H.: Maximum Entropy Estimation of the Directional Distribution in Ocean Wave Spectra, J. Phys. Oceanogr., 16, 2052–2060, 1986. a
Martins, K., Bonneton, P., Lannes, D., and Michallet, H.: Relation between Orbital Velocities, Pressure and Surface Elevation in Non-Linear Nearshore Water Waves, J. Phys. Oceanogr., 51, 3539–3556, https://doi.org/10.1175/JPO-D-21-0061.1, 2021. a
Masselink, G. and Short, A. D.: The Effect of Tide Range on Beach Morphodynamics and Morphology: A Conceptual Beach Model, J. Coast. Res., 9, 785–800, 1993. a
Masselink, G., Russell, P., Blenkinsopp, C., and Turner, I.: Swash Zone Sediment Transport, Step Dynamics and Morphological Response on a Gravel Beach, Mar. Geol., 274, 50–68, https://doi.org/10.1016/j.margeo.2010.03.005, 2010. a
McCarron, C. J., Van Landeghem, K. J., Baas, J. H., Amoudry, L. O., and Malarkey, J.: The Hiding-Exposure Effect Revisited: A Method to Calculate the Mobility of Bimodal Sediment Mixtures, Mar. Geol., 410, 22–31, https://doi.org/10.1016/j.margeo.2018.12.001, 2019. a
Neumeier, U. and Amos, C. L.: The Influence of Vegetation on Turbulence and Flow Velocities in European Salt-marshes, Sedimentology, 53, 259–277, https://doi.org/10.1111/j.1365-3091.2006.00772.x, 2006. a
Nordstrom, K. F. and Jackson, N. L.: Physical Processes and Landforms on Beaches in Short Fetch Environments in Estuaries, Small Lakes and Reservoirs: A Review, Earth-Sci. Rev., 111, 232–247, https://doi.org/10.1016/j.earscirev.2011.12.004, 2012. a, b, c
Pearson, S. G., Verney, R., Van Prooijen, B. C., Tran, D., Hendriks, E., Jacquet, M., and Wang, Z. B.: Characterizing the Composition of Sand and Mud Suspensions in Coastal and Estuarine Environments using Combined Optical and caoustic Measurements, J. Geophys. Res.-Oceans, 126, e2021JC017354, https://doi.org/10.1029/2021JC017354, 2021. a
Perk, L., van Rijn, L., Koudstaal, K., and Fordeyn, J.: A Rational Method for the Design of Sand Dike/Dune Systems at Sheltered Sites; Wadden Sea Coast of Texel, The Netherlands, J. Mar. Sci. Eng., 7, 324, https://doi.org/10.3390/jmse7090324, 2019. a, b, c, d
Puleo, J. A., Johnson, R. V., Butt, T., Kooney, T. N., and Holland, K. T.: The Effect of Air Bubbles on Optical Backscatter Sensors, Mar. Geol., 230, 87–97, https://doi.org/10.1016/j.margeo.2006.04.008, 2006. a
Richmond, B. M. and Sallenger, A. H.: Cross-Shore Transport of Bimodal Sands, in: Coastal Engineering 1984, American Society of Civil Engineers, Houston, Texas, United States, 1997–2008, ISBN 978-0-87262-438-2, 978-0-7844-7957-5, https://doi.org/10.1061/9780872624382.135, 1985. a
Sonu, C. J.: Bimodal Composition and Cyclic Characteristics of Beach Sediment in Continuously Changing Profiles, J. Sediment. Res., 42, 852–857, https://doi.org/10.1306/74D72653-2B21-11D7-8648000102C1865D, 1972. a
Splinter, K. D. and Palmsten, M. L.: Modeling Dune Response to an East Coast Low, Mar. Geol., 329–331, 46–57, https://doi.org/10.1016/j.margeo.2012.09.005, 2012. a
Stive, M. J., De Schipper, M. A., Luijendijk, A. P., Aarninkhof, S. G., Van Gelder-Maas, C., Van Thiel De Vries, J. S., De Vries, S., Henriquez, M., Marx, S., and Ranasinghe, R.: A New Alternative to Saving Our Beaches from Sea-Level Rise: The Sand Engine, J. Coast. Res., 290, 1001–1008, https://doi.org/10.2112/JCOASTRES-D-13-00070.1, 2013. a
Strypsteen, G., van Rijn, L., Hoogland, M., Rauwoens, P., Fordeyn, J., Hijma, M., and Lodder, Q.: Reducing Aeolian Sand Transport and Beach Erosion by Using Armour Layer of Coarse Materials, Coast. Eng., 166, 103871, https://doi.org/10.1016/j.coastaleng.2021.103871, 2021. a, b
Ton, A. M.: Sandy Beaches in Low-Energy, Ph.D. thesis, Delft University of Technology, Delft, https://doi.org/10.4233/uuid:5978034d-f9e5-4094-99dc-dd8591828125, 2023. a
Ton, A. M., Vuik, V., and Aarninkhof, S. G.: Sandy Beaches in Low-Energy, Non-Tidal Environments: Linking Morphological Development to Hydrodynamic Forcing, Geomorphology, 374, 107522, https://doi.org/10.1016/j.geomorph.2020.107522, 2021. a, b
Valiente, N. G., Masselink, G., Scott, T., Conley, D., and McCarroll, R. J.: Role of Waves and Tides on Depth of Closure and Potential for Headland Bypassing, Mar. Geol., 407, 60–75, https://doi.org/10.1016/j.margeo.2018.10.009, 2019. a
Van der Lugt, M. A., Bosma, J. W., De Schipper, M. A., Price, T. D., Van Maarseveen, M. C., Van der Gaag, P., Reniers, A. J. H. M., Ruessink, B. G., and Aarninkhof, S. G.: SEDMEX: Measurements of Morphodynamics of a Sheltered Beach along the Dutch Wadden Sea, 4TU.ResearchData [data set], https://doi.org/10.4121/19c5676c-9cea-49d0-b7a3-7c627e436541, 2023. a, b
Van IJzendoorn, C. O., Hallin, C., Cohn, N., Reniers, A. J. H. M., and De Vries, S.: Novel Sediment Sampling Method Provides New Insights into Vertical Grain Size Variability Due to Marine and Aeolian Beach Processes, Earth Surf. Proc. Land., 48, 782–800, https://doi.org/10.1002/esp.5518, 2023. a
Van Kouwen, N. C., Ton, A. M., Vos, S. E., Vijverberg, T., Reniers, A. J., and Aarninkhof, S. G.: Quantifying Spit Growth and Its Hydrodynamic Drivers in Wind-Dominated Lake Environments, Geomorphology, 437, 108799, https://doi.org/10.1016/j.geomorph.2023.108799, 2023. a
Vila-Concejo, A., Hughes, M. G., Short, A. D., and Ranasinghe, R.: Estuarine Shoreline Processes in a Dynamic Low-Energy System, Ocean Dynam., 60, 285–298, https://doi.org/10.1007/s10236-010-0273-7, 2010. a, b
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 'T Hoen, P. A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for Scientific Data Management and Stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a
Young, I., Verhagen, L., and Khatri, S.: The Growth of Fetch Limited Waves in Water of Finite Depth. Part 3. Directional Spectra, Coast. Eng., 29, 101–121, https://doi.org/10.1016/S0378-3839(96)00026-9, 1996. a
Short summary
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch Wadden Sea with the aim of gaining new insights into the driving processes behind sheltered beach morphodynamics. Detailed measurements of the local hydrodynamics, bed-level changes and sediment composition were collected. The morphological evolution on this sheltered site is the result of the subtle interplay between waves, currents and bed composition.
A 6-week field campaign was carried out at a sheltered sandy beach on Texel along the Dutch...
Altmetrics
Final-revised paper
Preprint