Articles | Volume 16, issue 9
https://doi.org/10.5194/essd-16-4119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-4119-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry
Zhen Li
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
Chengcheng Zhu
School of Surveying and Geo-informatics, Shandong Jianzhu University, Jinan 250101, China
Xin Liu
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
Cheinway Hwang
Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
Sergey Lebedev
Geophysical Center, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
Xiaotao Chang
Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
Anatoly Soloviev
Geophysical Center, Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
Heping Sun
State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China
Related authors
Jiajia Yuan, Jinyun Guo, Chengcheng Zhu, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 15, 155–169, https://doi.org/10.5194/essd-15-155-2023, https://doi.org/10.5194/essd-15-155-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is a relative steady-state sea level within a finite period with important applications in geodesy, oceanography, and other disciplines. In this study, the Shandong University of Science and Technology 2020 (SDUST2020), a new global MSS model, was established with a 19-year moving average method from multi-satellite altimetry data. Its global coverage is from 80 °S to 84 °N, the grid size is 1'×1', and the reference period is from January 1993 to December 2019.
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Ruichen Zhou, Jinyun Guo, Shaoshuai Ya, Heping Sun, and Xin Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-544, https://doi.org/10.5194/essd-2024-544, 2024
Preprint under review for ESSD
Short summary
Short summary
This study introduces SDUST2023VGGA, a high-resolution model of the ocean's vertical gravity gradient anomaly (VGGA). The model was developed using multi-directional mean sea surface data, providing detailed coverage of ocean gravity variations at a 1'×1' resolution. Freely available on Zenodo, SDUST2023VGGA serves as a valuable dataset for marine geophysics and oceanography research, offering insights into seafloor structures and ocean mass distribution.
Shuai Zhou, Jinyun Guo, Huiying Zhang, Yongjun Jia, Heping Sun, Xin Liu, and Dechao An
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-358, https://doi.org/10.5194/essd-2024-358, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our research focuses on using machine learning to enhance the accuracy and efficiency of bathymetric model. In this paper, the Multi-layer Perceptron (MLP) neural network is used to integrate multi-source marine geodetic data. And a new bathymetric model of the global ocean, spanning 0°–360° E and 80° S–80° N, has been constructed, known as the Shandong University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO), with a grid size of 1′.
Fengshun Zhu, Jinyun Guo, Huiying Zhang, Lingyong Huang, Heping Sun, and Xin Liu
Earth Syst. Sci. Data, 16, 2281–2296, https://doi.org/10.5194/essd-16-2281-2024, https://doi.org/10.5194/essd-16-2281-2024, 2024
Short summary
Short summary
We used multi-satellite altimeter data to construct a high-resolution marine gravity change rate (MGCR) model on 5′×5′ grids, named SDUST2020MGCR. The spatial distribution of SDUST2020MGCR and GRACE MGCR are similar, such as in the eastern seas of Japan (dipole), western seas of the Nicobar Islands (rising), and southern seas of Greenland (falling). The SDUST2020MGCR can provide a detailed view of long-term marine gravity change, which will help to study the seawater mass migration.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
Geosci. Model Dev., 17, 2039–2052, https://doi.org/10.5194/gmd-17-2039-2024, https://doi.org/10.5194/gmd-17-2039-2024, 2024
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography and bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E), based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Jiajia Yuan, Jinyun Guo, Chengcheng Zhu, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 15, 155–169, https://doi.org/10.5194/essd-15-155-2023, https://doi.org/10.5194/essd-15-155-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is a relative steady-state sea level within a finite period with important applications in geodesy, oceanography, and other disciplines. In this study, the Shandong University of Science and Technology 2020 (SDUST2020), a new global MSS model, was established with a 19-year moving average method from multi-satellite altimetry data. Its global coverage is from 80 °S to 84 °N, the grid size is 1'×1', and the reference period is from January 1993 to December 2019.
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Related subject area
Domain: ESSD – Ocean | Subject: Marine geology
SDUST2023BCO: a global seafloor model determined from multi-layer perceptron neural network using multi-source differential marine geodetic data
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Shuai Zhou, Jinyun Guo, Huiying Zhang, Yongjun Jia, Heping Sun, Xin Liu, and Dechao An
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-358, https://doi.org/10.5194/essd-2024-358, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our research focuses on using machine learning to enhance the accuracy and efficiency of bathymetric model. In this paper, the Multi-layer Perceptron (MLP) neural network is used to integrate multi-source marine geodetic data. And a new bathymetric model of the global ocean, spanning 0°–360° E and 80° S–80° N, has been constructed, known as the Shandong University of Science and Technology 2023 Bathymetric Chart of the Oceans (SDUST2023BCO), with a grid size of 1′.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Cited articles
Andersen, O. B. and Knudsen, P.: Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry, J. Geophys. Res., 103, 8129–8137, https://doi.org/10.1029/97JC02198, 1998.
Andersen, O. B. and Knudsen, P.: The DTU17 global marine gravity field: first validation results, in: Fiducial Reference Measurements for Altimetry, edited by: Mertikas, S. and Pail, R., Int. Assoc. Geod. Symp. 150, Springer, Cham, https://doi.org/10.1007/1345_2019_65, pp 83–87, 2019.
Andersen, O. B., Knudsen, P., and Berry, P. A.: The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geodesy, 84, 191–199, https://doi.org/10.1007/s00190-009-0355-9, 2010.
Andersen, O. B., Zhang, S., Sandwell, D. T., Dibarboure, G., Smith, W. H. F., and Abulaitijiang, A.: The unique role of the Jason geodetic missions for high-resolution gravity field and mean sea surface modelling, Remote Sens.-Basel, 13, 646, https://doi.org/10.3390/rs13040646, 2021.
Annan, R. F. and Wan, X.: Recovering marine gravity over the Gulf of Guinea from multi-satellite sea surface heights, Front. Earth Sci., 9, 700873, https://doi.org/10.3389/feart.2021.700873, 2021.
Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.: Sea surface height anomalies of the Arctic Ocean from ICESat-2: a first examination and comparisons with CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155. https://doi.org/10.1029/2021GL093155, 2021.
Bao, L., Xu, H., and Li, Z.: Towards a 1 mGal accuracy and 1 min resolution altimetry gravity field, J. Geodesy, 87, 961–969, https://doi.org/10.1007/s00190-013-0660-1, 2013.
Bidel, Y., Zahzam, N., Blanchard, C., Bonnin, A., Cadoret, M., Bresson, A., Rouxel, D., and Lequentrec-Lalancette, M. F.: Absolute marine gravimetry with matter-wave interferometry, Nat. Commun., 9, 627, https://doi.org/10.1038/s41467-018-03040-2, 2018.
Buzzanga, B., Heijkoop, E., Hamlington, B. D., Nerem, R. S., Gardner, A.: An assessment of regional ICESat-2 sea-level trends, Geophys. Res. Lett., 48, e2020GL092327, https://doi.org/10.1029/2020GL092327, 2021.
Carrere, L., Lyard, F., Cancet, M., Guillot, A., Picot, N., and Dupuy, S.: FES2014: a new global tidal model, Presented at the Ocean Surface Topography Science Team meeting, Reston, Vienna, Austia, 12–17 April 2015, https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/global-tide-fes/description-fes2014.html (last access: 9 September 2024), 2015.
Che, D., Li, H., Zhang, S., and Ma, B.: Calculation of deflection of vertical and gravity anomalies over the South China Sea derived from ICESat-2 data, Front. Earth Sci., 9, 670256, https://doi.org/10.3389/feart.2021.670256, 2021.
CNES: Along track Level-2+(L2P) product handbook, SALP-MU-P-EA-23150-CLS, https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_L2P_all_missions_except_S3_S6.pdf, last access: 9 September 2024.
Egido, A. and Smith, W. H.: Fully focused SAR altimetry: Theory and applications, IEEE T. Geosci. Remote, 55, 392–406, https://doi.org/10.1109/TGRS.2016.2607122, 2016.
Escudier, P., Couhert, A., Mercier, F., Mallet, A., Thibaut, P., Tran, N., Amarouche, L., Picard, B., Carrere, L., and Dibarboure, G.: Satellite radar altimetry: Principle, accuracy, and precision, in: Satellite Altimetry over Oceans and Land Surfaces, edited by: Stammer, D. and Cazenave, A., CRC Press, Taylor and Francis Group, Boca Raton, FL, USA, New York, NY, USA, London, UK, 1–62, ISBN 9781315151779, 2018.
Fernandes, M. J., Lázaro, C., and Vieira, T.: On the role of the troposphere in satellite altimetry, Remote Sens. Environ., 252, 112149, https://doi.org/10.1016/j.rse.2020.112149, 2021.
Huang, M., Zhai, G., Ouyang, Y., Lu, X., Liu, C., and Wang, R.: Integrated data processing for multi-satellite missions and recovery of the marine gravity field, TAO: Terrestrial, Atmos. Ocean Sci., 19, 103–109, https://doi.org/10.3319/TAO.2008.19.1-2.103(SA), 2008.
Hwang, C.: Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea, J. Geodesy, 72, 304–312, https://doi.org/10.1007/s001900050169, 1998.
Hwang, C. and Chang, E. T. Y.: Seafloor secrets revealed, Science, 346, 32–33, https://doi.org/10.1126/science.1260459, 2014.
Hwang, C. and Parsons, B.: Gravity anomalies derived from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge, Geophys. J. Int., 122, 551–568, https://doi.org/10.1111/j.1365-246X.1995.tb07013.x, 1995.
Hwang, C., Kao, E. C., and Parsons, B.: Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data, Geophys. J. Int., 134, 449–459, https://doi.org/10.1111/j.1365-246X.1998.tb07139.x, 1998.
Hwang, C., Guo, J., Deng, X., Hsu, H. Y., and Liu, Y.: Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data, J. Geodesy, 80, 204–216, https://doi.org/10.1007/s00190-006-0052-x, 2006.
Hwang, C. W., Hsu, H. Y., and Jang, R. J.: Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae, J. Geodesy, 76, 407–418, https://doi.org/10.1007/s00190-002-0265-6, 2002.
Jin, T., Zhou, M., Zhang, H., Li, J., Jiang, W., Zhang, S., and Hu, M.: Analysis of vertical deflections determined from one cycle of simulated SWOT wide-swath altimeter data, J. Geodesy, 96, 30, https://doi.org/10.1007/s00190-022-01619-8, 2022.
Li, Z., Guo, J., Ji, B., and Zhang, S.: A review of marine gravity field recovery from satellite altimetry, Remote Sens.-Basel, 14, 4790, https://doi.org/10.3390/rs14194790, 2022.
Li, Z., Guo, J., Zhu, C., Liu, X., Hwang, C., Lebedev, S., Chang, X., Soloviev, A., and Sun, H.: The global marine free air gravity anomaly model SDUST2022GRA [Data set], Zenodo, https://doi.org/10.5281/zenodo.8337387, 2023.
Ling, Z., Zhao, L., Zhang, T., Zhai, G., and Yang, F.: Comparison of marine gravity measurements from shipborne and satellite altimetry in the Arctic Ocean, Remote Sens.-Basel, 14, 41, https://doi.org/10.3390/rs14010041, 2021.
Marks, K. M. and Smith, W. H. F.: Detecting small seamounts in AltiKa repeat cycle data, Mar. Geophys. Res., 37, 349–359, https://doi.org/10.1007/s11001-016-9293-0, 2016.
Markus, T., Neumann, T. Martino, A., Abdalati, W., Brunt, K., Csatho, B., and Zwally, J.: The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation, Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Morison, J. H., Hancock, D., Dickinson, S., Robbins, J., Roberts, L., Kwok, R., Palm, S. P., Smith, B., Jasinski, M. F., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A ocean surface height, version 5, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/ATLAS/ATL12.005, 2021.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Passaro, M., Rose, S. K., Andersen, O. B., Boergens, E., Calafat, F. M., Dettmering, D., and Benveniste, J.: ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters, Remote Sens. Environ., 211, 456–471, https://doi.org/10.1016/j.rse.2018.02.074, 2018.
Rapp, R. H., Yi, Y., and Wang, Y. M.: Mean sea surface and geoid gradient comparisons with Topex altimeter data, J. Geophys. Res., 99, 24657–24668, https://doi.org/10.1029/94JC00918, 1994.
Ray, R. D.: Precise comparisons of bottom-pressure and altimetric ocean tides, J. Geophys. Res.-Ocean, 118, 4570–4584, https://doi.org/10.1002/jgrc.20336, 2013.
Sandwell, D. T. and Smith, W. H. F.: Marine gravity anomaly from Geosat and ERS-1 satellite altimetry, J. Geophys. Res.-Sol. Ea., 102, 10039–10054, https://doi.org/10.1029/96JB03223, 1997.
Sandwell, D. T., Müller, R. D., Smith, W. H., Garcia, E., and Francis, R.: New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science, 346, 65–67. https://doi.org/10.1126/science.1258213, 2014.
Sandwell, D. T., Harper, H., Tozer, B., and Smith, W. H. F.: Gravity field recovery from geodetic altimeter missions, Adv. Space Res., 68, 1059–1072, https://doi.org/10.1016/j.asr.2019.09.011, 2021.
Tscherning, C. C. and Rapp, R. H.: Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models, Ohio State University, Columbus, https://www.researchgate.net/publication/245673286_Closed_covariance_expres-sions_for_gravity_anomalies (last access: 9 September 2024) 1974.
Vignudelli, S., Kostianoy, A. G., Cipollini, P., and Benveniste, J.: Coastal altimetry, Springer, Heidelberg Dordrecht, Germany, London, UK, New York, NY, USA, ISBN 978-3-642-12796-0, https://doi.org/10.1007/978-3-642-12796-0, 2011.
Vignudelli, S., Birol, F., Benveniste, J., Fu, L. L., Picot, N., Raynal, M., and Roinard, H.: Satellite altimetry measurements of sea level in the coastal zone, Surv. Geophys., 40, 1319–1349, https://doi.org/10.1007/s10712-019-09569-1, 2019.
Wan, X., Hao, R., Jia, Y., Wu, X., Wang, Y., and Feng, L.: Global marine gravity anomalies from multi-satellite altimeter data, Earth Planets Space, 74, 1–14, https://doi.org/10.1186/s40623-022-01720-4, 2022.
Wang, B. and Sneeuw, N.: Crossover adjustment of ICESat-2 satellite altimetry for the Arctic region, Adv. Space Res., 73, 376–385 https://doi.org/10.1016/j.asr.2023.07.041, 2024.
Wang, C., Wang, B., Deng, Z., Fu, M.: A Delaunay triangulation-based matching area selection algorithm for underwater gravity-aided inertial navigation, IEEE/ASME Transactions on Mechatronics, 26, 908–917, https://doi.org/10.1109/TMECH.2020.3012499, 2020.
Wang, T., Fang, Y., Zhang, S., Cao, B., and Wang, Z.: Biases Analysis and Calibration of ICESat-2/ATLAS Data Based on Crossover Adjustment Method, Remote Sens.-Basel, 14, 5125, https://doi.org/10.3390/rs14205125, 2022.
Watts, A. B., Tozer, B., Harper, H., Boston, B., Shillington, D. J., and Dunn, R.: Evaluation of shipboard and satellite-derived bathymetry and gravity data over seamounts in the Northwest Pacific Ocean, J. Geophys. Res.-Sol. Ea., 125, 1–18, https://doi.org/10.1029/2020JB020396, 2020.
Wu, Y., Abulaitijiang, A., Featherstone, W. E., McCubbine, J. C., and Andersen, O. B.: Coastal gravity field refinement by combining airborne and ground-based data, J. Geodesy, 93, 2569–2584, https://doi.org/10.1007/s00190-019-01320-3, 2019.
Yu, D. and Hwang, C.: Calibrating error variance and scaling global covariance function of geoid gradients for optimal determinations of gravity anomaly and gravity gradient from altimetry, J. Geodesy, 96, 61, https://doi.org/10.1007/s00190-022-01647-4, 2022.
Yu, D., Hwang, C., Andersen, O. B., Chang, E. T., and Gaultier, L.: Gravity recovery from SWOT altimetry using geoid height and geoid gradient, Remote Sens. Environ., 265, 112650, https://doi.org/10.1016/j.rse.2021.112650, 2021.
Yu, Y., Sandwell, D. T., Gille, S. T., and Villas Bôas, A. B.: Assessment of ICESat-2 for the recovery of ocean topography, Geophys. J. Int., 226, 456–467, https://doi.org/10.1093/gji/ggab084, 2021.
Yuan, J., Guo, J., Zhu, C., Li, Z., Liu, X., and Gao, J.: SDUST2020 MSS: a global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data, Earth Syst. Sci. Data, 15, 155–169, https://doi.org/10.5194/essd-15-155-2023, 2023.
Zaki, A., Magdy, M., Rabah, M., and Saber, A.: Establishing a marine gravity database around Egypt from satellite altimetry-derived and shipborne gravity data, Mar. Geod., 45, 101–120, https://doi.org/10.1080/01490419.2021.2020185, 2022.
Zhang, S., Abulaitijiang, A., Andersen, O. B., Sandwell, D. T., and Beale, J. R.: Comparison and evaluation of high-resolution marine gravity recovery via sea surface heights or sea surface slopes, J. Geodesy, 95, 66, https://doi.org/10.1007/s00190-021-01506-8, 2021.
Zhang, S., Zhou, R., Jia, Y. Jin, T., and Kong, X.: Performance of HaiYang-2 altimetric data in marine gravity research and a new global marine gravity model NSOAS22, Remote Sens.-Basel, 14, 4322, https://doi.org/10.3390/rs14174322, 2022.
Zhu, C., Guo, J., Gao, J., Liu, X., Hwang, C., Yu, S., Yuan, J., Ji, B., and Guan, B.: Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0, J. Geodesy, 94, 50, https://doi.org/10.1007/s00190-020-01378-4, 2020.
Zhu, C., Guo, J., Yuan, J., Li, Z., Liu, X., and Gao, J.: SDUST2021GRA: global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data, Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, 2022.
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The combined global gravity field model XGM2019e, J. Geodesy, 94, 66, https://doi.org/10.1007/s00190-020-01398-0, 2020.
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of other models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly superior to other models. These assessments suggest that SDUST2022GRA is a reliable global marine gravity anomaly model.
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter...
Altmetrics
Final-revised paper
Preprint