Articles | Volume 16, issue 5
https://doi.org/10.5194/essd-16-2465-2024
https://doi.org/10.5194/essd-16-2465-2024
Data description paper
 | 
24 May 2024
Data description paper |  | 24 May 2024

National forest carbon harvesting and allocation dataset for the period 2003 to 2018

Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan

Related authors

TROLL 4.0: representing water and carbon fluxes, leaf phenology, and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 2: Model evaluation for two Amazonian sites
Sylvain Schmitt, Fabian J. Fischer, James G. C. Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy W. Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
Geosci. Model Dev., 18, 5205–5243, https://doi.org/10.5194/gmd-18-5205-2025,https://doi.org/10.5194/gmd-18-5205-2025, 2025
Short summary
Importance of plant functional type, dynamic vegetation, and fire interactions for process-based modeling of gross carbon uptake across the drylands of western North America
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841,https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Remote sensing of young leaf photosynthetic capacity in tropical and subtropical evergreen broadleaved forests
Xueqin Yang, Qingling Sun, Liusheng Han, Jie Tian, Wenping Yuan, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data, 17, 3293–3314, https://doi.org/10.5194/essd-17-3293-2025,https://doi.org/10.5194/essd-17-3293-2025, 2025
Short summary
A global daily seamless 9 km vegetation optical depth (VOD) product from 2010 to 2021
Die Hu, Yuan Wang, Han Jing, Linwei Yue, Qiang Zhang, Lei Fan, Qiangqiang Yuan, Huanfeng Shen, and Liangpei Zhang
Earth Syst. Sci. Data, 17, 2849–2872, https://doi.org/10.5194/essd-17-2849-2025,https://doi.org/10.5194/essd-17-2849-2025, 2025
Short summary
CCD-Rice: a long-term paddy rice distribution dataset in China at 30 m resolution
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025,https://doi.org/10.5194/essd-17-2193-2025, 2025
Short summary

Cited articles

Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., and Silva, J. N.: Selective logging in the Brazilian Amazon, Science, 310, 480–482, https://doi.org/10.1126/science.1118051, 2005. 
Brunet-Navarro, P., Jochheim, H., and Muys, B.: Modelling carbon stocks and fluxes in the wood product sector: a comparative review, Glob. Change Biol., 22, 2555–2569, https://doi.org/10.1111/gcb.13235, 2016. 
Brunet-Navarro, P., Jochheim, H., and Muys, B.: The effect of increasing lifespan and recycling rate on carbon storage in wood products from theoretical model to application for the European wood sector, Mitig. Adapt. Strateg. Glob. Change, 22, 1193–1205, https://doi.org/10.1007/s11027-016-9722-z, 2017. 
Cai, B., Lou, Z., Wang, J., Geng, Y., Sarkis, J., Liu, J., and Gao, Q.: CH4 mitigation potentials from China landfills and related environmental co-benefits, Sci. Adv., 4, eaar8400, https://doi.org/10.1126/sciadv.aar8400, 2018. 
Chang, Z., Fan, L., Wigneron, J.-P., Wang, Y.-P., Ciais, P., Chave, J., Fensholt, R., Chen, J. M., Yuan, W., Ju, W., Li, X., Jiang, F., Wu, M., Chen, X., Qin, Y., Frappart, F., Li, X., Wang, M., Liu, X., Tang, X., Hobeichi, S., Yu, M., Ma, M., Wen, J., Xiao, Q., Shi, W., Liu, D., and Yan, J.: Estimating aboveground carbon dynamic of China using optical and microwave remote sensing datasets from 2013 to 2019, J. Remote Sens., 3, 0005, https://doi.org/10.34133/remotesensing.0005, 2023. 
Download
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Share
Altmetrics
Final-revised paper
Preprint