Articles | Volume 16, issue 3
https://doi.org/10.5194/essd-16-1475-2024
https://doi.org/10.5194/essd-16-1475-2024
Data description paper
 | 
15 Mar 2024
Data description paper |  | 15 Mar 2024

A Lagrangian coherent eddy atlas for biogeochemical applications in the North Pacific Subtropical Gyre

Alexandra E. Jones-Kellett and Michael J. Follows

Related authors

Dimensions of marine phytoplankton diversity
Stephanie Dutkiewicz, Pedro Cermeno, Oliver Jahn, Michael J. Follows, Anna E. Hickman, Darcy A. A. Taniguchi, and Ben A. Ward
Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020,https://doi.org/10.5194/bg-17-609-2020, 2020
Short summary
Biogeochemical versus ecological consequences of modeled ocean physics
Sophie Clayton, Stephanie Dutkiewicz, Oliver Jahn, Christopher Hill, Patrick Heimbach, and Michael J. Follows
Biogeosciences, 14, 2877–2889, https://doi.org/10.5194/bg-14-2877-2017,https://doi.org/10.5194/bg-14-2877-2017, 2017
Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model
S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows
Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015,https://doi.org/10.5194/bg-12-4447-2015, 2015
Short summary
Understanding predicted shifts in diazotroph biogeography using resource competition theory
S. Dutkiewicz, B. A. Ward, J. R. Scott, and M. J. Follows
Biogeosciences, 11, 5445–5461, https://doi.org/10.5194/bg-11-5445-2014,https://doi.org/10.5194/bg-11-5445-2014, 2014
Flexible C : N ratio enhances metabolism of large phytoplankton when resource supply is intermittent
D. Talmy, J. Blackford, N. J. Hardman-Mountford, L. Polimene, M. J. Follows, and R. J. Geider
Biogeosciences, 11, 4881–4895, https://doi.org/10.5194/bg-11-4881-2014,https://doi.org/10.5194/bg-11-4881-2014, 2014

Related subject area

Domain: ESSD – Ocean | Subject: Physical oceanography
Global marine gravity gradient tensor inverted from altimetry-derived deflections of the vertical: CUGB2023GRAD
Richard Fiifi Annan, Xiaoyun Wan, Ruijie Hao, and Fei Wang
Earth Syst. Sci. Data, 16, 1167–1176, https://doi.org/10.5194/essd-16-1167-2024,https://doi.org/10.5194/essd-16-1167-2024, 2024
Short summary
Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024,https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
3D reconstruction of horizontal and vertical quasi-geostrophic currents in the North Atlantic Ocean
Sarah Asdar, Daniele Ciani, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 16, 1029–1046, https://doi.org/10.5194/essd-16-1029-2024,https://doi.org/10.5194/essd-16-1029-2024, 2024
Short summary
Laboratory data linking the reconfiguration of and drag on individual plants to the velocity structure and wave dissipation over a meadow of salt marsh plants under waves with and without current
Xiaoxia Zhang and Heidi Nepf
Earth Syst. Sci. Data, 16, 1047–1062, https://doi.org/10.5194/essd-16-1047-2024,https://doi.org/10.5194/essd-16-1047-2024, 2024
Short summary
Exploring multi-decadal time series of temperature extremes in Australian coastal waters
Michael Hemming, Moninya Roughan, and Amandine Schaeffer
Earth Syst. Sci. Data, 16, 887–901, https://doi.org/10.5194/essd-16-887-2024,https://doi.org/10.5194/essd-16-887-2024, 2024
Short summary

Cited articles

Abernathey, R. and Haller, G.: Transport by Lagrangian Vortices in the Eastern Pacific, J. Phys. Oceanogr., 48, 667–685, https://doi.org/10.1175/JPO-D-17-0102.1, 2018. a, b, c, d, e, f, g, h
Andrade-Canto, F., Karrasch, D., and Beron-Vera, F.: Genesis, evolution, and apocalypse of Loop Current rings, Physics of Fluids, 32, 116603, https://doi.org/10.1063/5.0030094, 2020. a
Andrade-Canto, F., Beron-Vera, F., Goni, G., Karrasch, D., Olascoaga, M., and Triñanes, J.: Carriers of Sargassum and mechanism for coastal inundation in the Caribbean Sea, Phys. Fluids, 34, 016602, https://doi.org/10.1063/5.0079055, 2022. a
Artale, V., Boffetta, G., Celani, A., Cencini, M., and Vulpiani, A.: Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient, Phys. Fluids, 9, 3162–3171, https://doi.org/10.1063/1.869433, 1997. a
Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., and Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent, J. Phys. A-Math. Gen., 30, 1, https://doi.org/10.1088/0305-4470/30/1/003, 1997. a
Download
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Altmetrics
Final-revised paper
Preprint