Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5597-2023
https://doi.org/10.5194/essd-15-5597-2023
Data description paper
 | 
08 Dec 2023
Data description paper |  | 08 Dec 2023

GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present

Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine

Related authors

Impacts of Inter-basin Water Diversion Projects on the Feedback Loops of Water Supply-Hydropower Generation-Environment Conservation Nexus
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-399,https://doi.org/10.5194/hess-2024-399, 2025
Revised manuscript under review for HESS
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025,https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025,https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025,https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Features of Italian large dams and their upstream catchments
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025,https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary

Cited articles

Ahmed, M., Sultan, M., Elbayoumi, T., and Tissot, P.: Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks, Remote Sens., 11, 1769, https://doi.org/10.3390/rs11151769, 2019. 
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., von Schuckmann, K., and Wada, Y.: Evaluation of the Global Mean Sea Level Budget Between 1993 and 2014, in: Integrative Study of the Mean Sea Level and Its Components, edited by: Cazenave, A., Champollion, N., Paul, F., and Benveniste, J., Springer International Publishing, Cham, 315–333, https://doi.org/10.1007/978-3-319-56490-6_14, 2017. 
Chen, Z., Jiang, W., Wang, W., Deng, Y., He, B., and Jia, K.: The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration, Remote Sens., 10, 4, https://doi.org/10.3390/rs10010004, 2018. 
Fang, L., Yin, J., Wang, Y., et al.: Machine learning and copula-based analysis of past changes in global droughts and socioeconomic exposures, J. Hydrol., 628, 130536, https://doi.org/10.1016/j.jhydrol.2023.130536, 2024. 
Download
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Share
Altmetrics
Final-revised paper
Preprint