Articles | Volume 15, issue 12
https://doi.org/10.5194/essd-15-5597-2023
https://doi.org/10.5194/essd-15-5597-2023
Data description paper
 | 
08 Dec 2023
Data description paper |  | 08 Dec 2023

GTWS-MLrec: global terrestrial water storage reconstruction by machine learning from 1940 to present

Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine

Related authors

Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Determining the threshold of issuing flash flood warnings based on people’s response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-130,https://doi.org/10.5194/hess-2024-130, 2024
Revised manuscript accepted for HESS
Short summary
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024,https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022,https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022,https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary

Related subject area

Domain: ESSD – Land | Subject: Hydrology
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024,https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024,https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024,https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024,https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024,https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary

Cited articles

Ahmed, M., Sultan, M., Elbayoumi, T., and Tissot, P.: Forecasting GRACE Data over the African Watersheds Using Artificial Neural Networks, Remote Sens., 11, 1769, https://doi.org/10.3390/rs11151769, 2019. 
Breiman, L.: Random Forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W., Forsberg, R., von Schuckmann, K., and Wada, Y.: Evaluation of the Global Mean Sea Level Budget Between 1993 and 2014, in: Integrative Study of the Mean Sea Level and Its Components, edited by: Cazenave, A., Champollion, N., Paul, F., and Benveniste, J., Springer International Publishing, Cham, 315–333, https://doi.org/10.1007/978-3-319-56490-6_14, 2017. 
Chen, Z., Jiang, W., Wang, W., Deng, Y., He, B., and Jia, K.: The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration, Remote Sens., 10, 4, https://doi.org/10.3390/rs10010004, 2018. 
Fang, L., Yin, J., Wang, Y., et al.: Machine learning and copula-based analysis of past changes in global droughts and socioeconomic exposures, J. Hydrol., 628, 130536, https://doi.org/10.1016/j.jhydrol.2023.130536, 2024. 
Download
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Altmetrics
Final-revised paper
Preprint