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Abstract. Terrestrial water storage (TWS) includes all forms of water stored on and below the land surface, and
is a key determinant of global water and energy budgets. However, TWS data from measurements by the Grav-
ity Recovery and Climate Experiment (GRACE) satellite mission are only available from 2002, limiting global
and regional understanding of the long-term trends and variabilities in the terrestrial water cycle under climate
change. This study presents long-term (i.e., 1940–2022) and relatively high-resolution (i.e., 0.25◦) monthly time
series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine
learning models with a large number of predictors, including climatic and hydrological variables, land use/land
cover data, and vegetation indicators (e.g., leaf area index). The outcome, machine-learning-reconstructed TWS
estimates (i.e., GTWS-MLrec), fits well with the GRACE/GRACE-FO measurements, showing high correlation
coefficients and low biases in the GRACE era. We also evaluate GTWS-MLrec with other independent prod-
ucts such as the land–ocean mass budget, atmospheric and terrestrial water budget in 341 large river basins,
and streamflow measurements at 10 168 gauges. The results show that our proposed GTWS-MLrec performs
overall as well as, or is more reliable than, previous TWS datasets. Moreover, our reconstructions successfully
reproduce the consequences of climate variability such as strong El Niño events. The GTWS-MLrec dataset
consists of three reconstructions based on (a) mascons of the Jet Propulsion Laboratory of the California In-
stitute of Technology, the Center for Space Research at the University of Texas at Austin, and the Goddard
Space Flight Center of NASA; (b) three detrended and de-seasonalized reconstructions; and (c) six global av-
erage TWS series over land areas, both with and without Greenland and Antarctica. Along with its extensive
attributes, GTWS_MLrec can support a wide range of geoscience applications such as better understanding the
global water budget, constraining and evaluating hydrological models, climate-carbon coupling, and water re-
sources management. GTWS-MLrec is available on Zenodo through https://doi.org/10.5281/zenodo.10040927
(Yin, 2023).
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1 Introduction

Information on global water cycle dynamics is crucial for
the monitoring of water-related programs as well as scien-
tific investigations such as understanding the spatiotemporal
variability in terrestrial freshwater availability (Lettenmaier
and Famiglietti, 2006). Terrestrial water storage (TWS) in-
cludes all components of water reservoirs (i.e., ice, snow,
wetlands, lakes, rivers, soil moisture, and groundwater) on
and below the continental land surface, and is a necessary el-
ement to close the terrestrial water budget, which enables to
balance evapotranspiration, precipitation, and runoff at both
regional and global scales (Pokhrel et al., 2012; Kusche et
al., 2016). As an essential driver of global water and en-
ergy budgets, TWS is also highly sensitive to global climate
change and therefore has been widely employed to assess the
impacts of large-scale hydrological extremes (e.g., droughts
and floods) on socioeconomic systems and ecosystem sus-
tainability across the warming planet (Yin et al., 2023a).

TWS fluctuations can be altered by natural processes, an-
thropogenic climate warming, and human activities (Pokhrel
et al., 2012; Felfelani et al., 2017). For example, the El
Niño–Southern Oscillation (ENSO), which represents natu-
ral variability in ocean and atmospheric circulation, can al-
ter the anomalies in atmospheric water vapor transport, thus
leading to regional precipitation deficit or excess (Ni et al.,
2018; Zhang et al., 2023). Anthropogenic climate warming
has intensified the global water cycle, with heavier precipita-
tion and diminishing snowmelt, resulting in significant spa-
tial heterogeneity of TWS fluctuations globally (Yin et al.,
2022a; Gu et al., 2023). Fluctuations in TWS have been
widely reported to correlate with a broad range of natural
phenomena such as changes in global ocean mass, alter-
nation of carbon uptake by terrestrial ecosystems, and the
movement of the rotational axis of earth (Kim et al., 2019;
Humphrey and Gudmundsson, 2019). In addition to the cli-
mate variability, TWS is also highly impacted by intense an-
thropogenic activities such as rapid urbanization, irrigation,
reservoir operation, groundwater depletion, water diversion
projects, and the recent ice/glacier retreat (Pokhrel et al.,
2012; Long et al., 2020; Jacob et al., 2012). Given the large
number of factors that are correlated with TWS, numerous
studies have been devoted to understanding TWS evolution
and drivers at a catchment, regional, or global scale (e.g.,
Wang et al., 2020; Zhao et al., 2021).

In March 2002, the Gravity Recovery and Climate Ex-
periment (GRACE) satellite was launched which started to
provide a continuously direct device to monitor the global
TWS variations with an unprecedented spatiotemporal reso-
lution (Wahr et al., 2004). After a 1-year cease of GRACE’s
monitoring mission, the successor satellite (i.e., GRACE
Follow-On (FO)) was launched in May 2018. Although
the GRACE/GRACE-FO satellites have effectively measured

global water cycle dynamics since 2002, there was very lim-
ited global understanding or monitoring of TWS beyond the
GRACE era or during the gap period between GRACE and
GRACE-FO. In recent years, long-term TWS data has be-
come a growing requirement for a wide range of climatic
or hydrological fields such as constraining the ocean mass
budget, improving global hydrological models, exploring cli-
mate signal fluctuations, and understanding hydrological ex-
tremes and their impacts on ecosystem productivity (e.g.,
Chambers et al., 2017; Markonis et al., 2018; Pokhrel et al.,
2021; Yin et al., 2023a).

Several statistical methods and hydrological models have
been used to retrospectively reconstruct TWS beyond
the GRACE era at either a catchment or regional scale
(Humphrey et al., 2017; Ahmed et al., 2019; Sun et al., 2020).
Among these methods, very few studies have been devoted
to reconstructing TWS at a global scale, and the GRACE-
REC product (0.5◦ resolution) reconstructed by Humphrey
and Gudmundsson (2019) has received the most attention in
hydrological studies. GRACE-REC exhibits an overall bet-
ter performance than a set of global hydrological models and
represents well the variations in water storage due to climate
change during the past century. However, GRACE-REC does
not include the seasonal TWS cycle, and most of the recon-
struction datasets do not extend prior to 1979. More recently,
Li et al. (2020, 2021) developed a three-stage approach to re-
construct a so-called GRACE-like TWS during 1979–2020
at a global scale and found that their reconstructions with
0.5◦ resolution agree reliably with the GRACE/GRACE-FO
measurements and represent strong water anomalies during
El Niño years. While these approaches have provided impor-
tant reference data linking TWS and multiple predictors, the
predictors have typically been restricted to climatic variables
and rarely consider land use/land cover data and vegetation
indicators such as leaf area index (LAI). Furthermore, to the
best of our knowledge, none of the previous studies has yet
reconstructed TWS prior to 1979 at a spatial resolution finer
than 0.5◦ at a global scale.

The primary objective of this work is to fill the existing
gap in historical TWS data and provide long-term (i.e., 1940–
2022) and high-resolution (i.e., 0.25◦) monthly time series of
TWS anomalies over global land areas. The reconstruction is
achieved by a set of machine learning models using broad
input drivers, including climatic and hydrological variables,
land use/land cover data, and vegetation indicators. The ma-
chine learning models are trained by GRACE/GRACE-FO
measurements, and our reconstructions, named as GTWS-
MLrec, agree well with the observations. We also evaluate
GTWS-MLrec reconstructions with numerous independent
products/methods such as the land–ocean water mass budget,
atmospheric and terrestrial water budget over large catch-
ments, and in situ river streamflow observations at 10 168
gauges. In addition, our reconstructions accurately repro-
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duce the effects of climate anomalies such as strong El Niño
events. Overall, our proposed GTWS-MLrec performs as
well as, or better than, previous TWS reconstruction datasets
in most conditions.

2 Data and methods

2.1 GRACE/GRACE-FO measurements

Three different GRACE/GRACE-FO solutions, which cover
the monthly TWS series over the period 2002–2022 and
are based on a mass concentration technique, are employed.
This newly developed algorithm provides estimations of
mass variations over small and predefined regions, which
are briefly referred to as mascons (Watkins et al., 2015).
The mascon solutions are usually better than the spherical
harmonics-based products, for example, it reduces leakage
due to increased signal amplitude and it requires fewer or no
postprocessing procedures (Scanlon et al., 2016). We use the
latest mascon-based products from three international cen-
ters: the Jet Propulsion Laboratory (JPL) of California Insti-
tute of Technology, the Center for Space Research (CSR) at
the University of Texas at Austin, and the Goddard Space
Flight Center (GSFC) of NASA. The TWS products based
on the three mascon solutions are divergent, because they are
produced by different processing methods and different mod-
els are employed for correcting the effect of glacial isostatic
adjustment. The GRACE/GRACE-FO TWS estimates are
employed to train our machine learning model to obtain the
long-term reconstruction. The three mascon solutions have
different spatial resolution due to divergent processing meth-
ods (Table 1). Although the GRACE/GRACE-FO datasets
have some limitations, such as spatial and temporal coarse-
ness, they are the best available training data even if their
measurements can be further improved.

2.2 Inputs for the machine learning models

Numerous meteorological or hydrological variables have
been identified as important elements in TWS reconstruc-
tions by previous works (e.g., Sun et al., 2020; Li et al.,
2021). Here, we use four types of predictors to feed the
machine learning model, including (1) 11 meteorological
elements from the fifth generation European Centre for
Medium-Range Weather Forecasts reanalysis (ERA5), (2)
two hydrological variables from ERA5, (3) land use/land
cover data, and (4) vegetation indicators, i.e., LAI and solar-
induced fluorescence (SIF). The 11 meteorological variables
consist of 2 m temperature (◦), near-surface specific humid-
ity (kg kg−1) and relative humidity (%), snowfall (mm), ver-
tically integrated moisture convergence (kg m−2 s−1), pre-
cipitation (mm), 10 m wind speed (m s−1), surface down-
ward short-wave and long-wave radiation (W m−2), evapora-
tion (mm), and cloud cover (%). These variables are selected
due to their representation of water flux (e.g., precipitation

and moisture convergence), energy flux (e.g., temperature,
radiation and cloud cover), and other processes (i.e., wind
speed) involving water–energy transport. Moisture conver-
gence is represented by the negative value of vertically in-
tegrated moisture divergence in ERA5, and the cloud cover
data refer to the proportion of a grid covered by clouds oc-
curring in the lower levels of the troposphere.

The near-surface relative humidity (RH) and specific hu-
midity (SH) are not currently available in the ERA5 monthly
ensemble dataset, which can be estimated by using 2 m tem-
perature (T2 m), dewpoint temperature (Tdew), and air pres-
sure (pr). The Clausius–Clapeyron relationship describes the
dependence of atmospheric saturation vapor pressure on air
temperature as follows:

esat(T )= es0 exp
[

Lv

Rv

(
1
T0
−

1
T

)]
, (1)

where T and esat indicate the near-surface air temperature (◦)
and saturation vapor pressure (Pa), respectively; Lv and Rv
refer to the latent heat of vaporization (2.5× 106 J kg−1) and
vapor gas constant (461 J kg−1 K−1), respectively; and T0 =

273.15 K and es0 = 611 Pa are both integration constants.
The Tdew denotes the temperature above which the air

moisture will be saturated under constant water vapor con-
tent and pressure; therefore, it can characterize the actual
atmospheric water vapor availability. The RH can be cal-
culated by substituting T2 m and Tdew into Eq. (1) as RH=
esat(Tdew)/esat(T2m).

SH represents the mass contribution of water vapor to the
total air mixture, which can be derived by pr and Tdew:

SH= 0.622
esat(Tdew)

pr− 0.378esat(Tdew)
. (2)

Hydrological variables, such as runoff and soil moisture,
have been shown to be highly correlated with TWS (Sun et
al., 2020; Yang et al., 2023), and therefore these two vari-
ables also served as predictors in the reconstruction model.
For soil moisture, we use the average volumetric soil water
of four layers weighted by the layer depth. Numerous studies
have reported that land use/land cover change has substantial
impacts on TWS, for example, changes in impervious surface
area (ISA) due to urbanization play an essential role in driv-
ing TWS variability (Chen et al., 2018; Wang et al., 2020). To
constrain the TWS by considering the effects of urbanization,
we have extracted the ISA series from the latest FROM-GLC
Plus product using Google Earth Engine. The pixel-based
ISA is calculated from a multi-temporal (i.e., from daily to
annual) and multi-resolution (i.e., ranging from sub-meter to
30 m) global land cover product (Yu et al., 2022). We use ISA
to represent land cover changes to simplify the inputs of our
machine learning model, which enables more efficient infer-
ence beyond the training period. Vegetation and TWS also
have a feedback relationship due to water–energy exchange
through photosynthesis and respiration as well as vegeta-
tion’s regulation of soil moisture (Yin et al., 2023a, b; Liu et

https://doi.org/10.5194/essd-15-5597-2023 Earth Syst. Sci. Data, 15, 5597–5615, 2023



5600 J. Yin et al.: GTWS-MLrec

al., 2023). Therefore, we also use LAI from ERA5 and the re-
cent satellite-based machine-learning-generated SIF dataset
by Zhang et al. (2018) to train our machine learning mod-
els. (For detailed information about the inputs in our machine
learning model, see Table 1.)

2.3 Independent evaluation datasets

The two most widely used global TWS reconstruction
datasets (0.5◦ resolution) are used for comparison, i.e.,
the GRACE-REC dataset by Humphrey and Gudmunds-
son (2019) and the recent GRACE-like reconstructed TWS
dataset (i.e., denoted as GRL-REC dataset hereafter) by Li
et al. (2021). The GRACE-REC dataset is produced based
on two GRACE/GRACE-FO solutions and three meteoro-
logical forcing products, and therefore releases six recon-
structed datasets which includes 100 members within each
data scheme. To facilitate the comparison, we average these
six series to produce an ensemble average reconstructed
TWS product, as it has already been shown that the blended
product captures the GRACE-measured TWS dynamics well
(Yin et al., 2023a). To evaluate the performance of our
GTWS-MLrec reconstruction, we also try to close the ocean
mass budget by using the global mean sea level (GMSL)
from altimeter data (Nerem et al., 2018) and steric height
estimates (GMSL_ster) based on measurements of Argo pro-
filing floats (Levitus et al., 2012). In this study, we use total
steric level (i.e., the sum of thermosteric and halosteric sea
level) of the 0–700 m layer of the ocean. As the GMSL_ster
dataset only provides seasonal series after 2005, we com-
bine the seasonal GMSL_ster series and the running pentanal
(i.e., 5 years) series prior to 2005. We also use TWS vari-
ations from the basin-scale water-balance dataset (BSWB)
as an independent reference dataset. The BSWB dataset de-
rived monthly variations in large-scale TWS for 341 large
catchments (i.e., area >10000 km2) worldwide by employ-
ing a hybrid atmospheric and terrestrial water budget tech-
nique (Hirschi and Seneviratne, 2017).

As the BSWB only provides TWS variation estimates dur-
ing 1979–2015, we also try to evaluate the accuracy of TWS
reconstructions by exploring their relationship with annual
streamflow over a larger number of catchments. To achieve
this goal, we gather daily river streamflow records from 1940
to the present at 22, 538 hydrological gauges from multiple
sources. These records are sourced from a large combination
of national and global data archives: (1) the Global Runoff
Data Centre (GRDC); (2) the UK Centre for Ecology and Hy-
drology (UKCEH); (3) the Environment and Climate Change
Canada through the Water Survey of Canada (ECCC); (4) the
U.S. Geological Survey National Water Information System
(USGS); (5) the Australian Bureau of Meteorology (ABM);
(6) the Brazilian National Water Agency (ANA); (7) the Min-
istry of Water Resources of China (MWRC); (8) the water-
shed management agencies affiliated with the MWRC; (9)
the National Hydrological Information Centre of China; (10)

Guangdong Provincial Bureau of Beijing River Administra-
tion, China; and (11) Chaohu Lake Research Institute, China.
First, we omit those stations with a changing measurement
instrument or station datum to keep data consistency. Sec-
ond, we exclude gauges with less than 20 valid years of
data (with >90 % completeness for each year). Finally, we
screen the catchments, excluding those with a catchment area
larger than 10 000 km2. Using the daily streamflow records,
we calculate the monthly average runoff depth by consider-
ing streamflow observations and catchment area, where only
those months with >90 % daily data completeness are con-
sidered. For each year with 12 valid monthly values, we sum
the values to derive a yearly runoff depth by considering
catchment area. Overall, these filtering steps leave 10 168
catchments with complete 10-year annual streamflow, which
cover diverse climatic patterns and underlying surface condi-
tions across the globe.

2.4 Machine-learning-based TWS reconstruction
method

The workflow of this reconstruction approach contains five
modules, which are illustrated in Fig. 1. First, we employ five
different machine learning models as candidates for TWS re-
construction. Second, eight input schemes are built for each
machine learning model. Third, the random forest (RF) as-
sociated with a moving-windows approach is employed to
determine the dominant variables in each input scheme for
each machine learning model. Fourth, the best-performing
machine learning model is selected in terms of the TWS sim-
ulation performance in the test period. Finally, the simulation
performance of the eight input schemes is rated, and the eight
schemes are blended to produce the long-term TWS series at
each pixel.

The five data-driven (machine learning and statistical)
models employed to establish the TWS reconstruction model
are as follows: multivariate adaptive regression splines
(MARSs), Gaussian linear regression model (GLM), artifi-
cial neural network (ANN), Gaussian generalized additive
model (GAM), and an RF model. These five models em-
ploy the regression-based techniques to characterize the rela-
tionship between the predictors (i.e., dependent climate/veg-
etation variables) and the predictand (i.e., independent vari-
ables, TWS). The GLM is built within a parametric regres-
sion framework, while the other four models are based on
a non-parametric regression algorithm, where the functional
relationship has the feasibility of reliable adjustment to ex-
plore unusual or unexpected features (Shortridge et al., 2016;
Singh et al., 2023). (For a more detailed illustration of these
machine learning models, refer to the relevant references,
e.g., Ghimire et al., 2021; Herath et al., 2021; Li et al.,
2021.) For each machine learning model, eight different re-
construction schemes in terms of inputs are established: (1)
scheme 1, containing all variables; (2) scheme 2, excluding
LAI; (3) scheme 3, excluding SIF; (4) scheme 4, exclud-
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Table 1. Main data inputs for the machine learning models.

Products Data period Spatial resolution Reference

GRACE/GRACE-FO TWS JPL-RL06M mascons April 2002 to
November 2022

0.5◦ Watkins et al. (2015)

GSFC RL06 v1.0 mascon
solution

April 2002 to
November 2022

0.5◦ Loomis et al. (2019)

CSR RL06 v02 mascon
solution

April 2002 to
December 2022

0.25◦ Save et al. (2016)

Meteorological variables
(EAR5)

2 m temperature January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

2 m dewpoint temperature January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Surface air pressure January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Snowfall January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Vertically integrated moisture
divergence

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Precipitation January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

10 m wind speed January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Surface downward short-wave
radiation

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Surface downward long-wave
radiation

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Evaporation January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Low cloud cover January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Hydrological variables
(ERA5)

Volumetric soil water
(0–289 cm)

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Runoff January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Land use/land cover data Impervious surface area January 1982 to
December 2020

1 km Yu et al. (2022)

Vegetation indicators Leaf area index, high
vegetation (ERA5)

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Leaf area index, low
vegetation (ERA5)

January 1940 to
December 2022

0.25◦ Hersbach et al. (2020)

Solar-induced chlorophyll
fluorescence

January 2000 to
December 2022

0.05◦ Zhang et al. (2018)

ing LAI and SIF; (5) scheme 5, excluding land use and land
cover (LULC); (6) scheme 6, excluding LULC and LAI; (7)
scheme 7, excluding LULC and SIF; and (8) scheme 8, ex-
cluding LULC, LAI and SIF. We establish eight different
data schemes because some variables might be missing dur-
ing some periods, and by blending different data schemes we
will be able to achieve a more complete long-term series. In

all eight construction schemes, a time lag of 3 months is con-
sidered for the inputs, i.e., the data at the current time step
and in the previous 1–3 months are both employed to feed
the machine learning model. For example, in scheme 1, the
input variables contain 64 time series of predictors as well as
the GRACE/GRACE-FO TWS observations.
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Figure 1. Flowchart of the machine-learning-based TWS reconstruction approach.

As TWS is governed by divergent physical mechanisms
under different underlying surface conditions and climate
patterns, the dominant variables for explaining the TWS may
differ across different climatic regions (Yin et al., 2022a).
Before establishing the TWS reconstruction model at each
pixel, a moving-window nearest-neighbor approach is em-
ployed to select the most important variables for each pixel
and its immediate neighbors. The moving-window nearest-
neighbor approach is a good method to improve the ro-
bustness of machine learning methods, and it can also im-
prove the training dataset for calibrating the machine learn-
ing model by assimilating richer information from nearby
points. To balance data sample size and model complexity,
we use a moving-window size of as 5× 5 for each pixel.
(We also tried a 3× 3 moving-window size and found it was

slightly less robust than the 5× 5 scheme.) The RF is em-
ployed to select the most important 60 % of all candidate
variables in each data scheme. The use of a moving window
allows the model to be trained on a larger sample of data
and to identify the most important candidate variables with
greater consistency.

The eight data schemes for the five machine learning mod-
els are trained with GRACE/GRACE-FO data and multi-
source inputs during 2002–2022 at each pixel, and their per-
formance in simulating TWS is compared across the model–
scheme combinations. Prior to building the machine learning
models, all the data are normalized by using standard nor-
malization techniques to standardize the features on a com-
mon numerical scale. To evaluate the performance of the re-
construction models, a cross-validation method is employed

Earth Syst. Sci. Data, 15, 5597–5615, 2023 https://doi.org/10.5194/essd-15-5597-2023
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and the entire dataset is randomly split into training and test-
ing parts. The training dataset (60 %) is employed to fit the
models, while the remaining 40 % of data are used to test
the model accuracy (40 %). The R package “randomForest”
is adopted to implement the RF-based analysis (Breiman,
2001).

In the reconstruction procedure, we first select the best-
performing machine learning model based on the evaluation
index (see Sect. S1 in the Supplement) in scheme 8 during the
test period, and then rate the simulation performance of the
eight data schemes within the best-simulating machine learn-
ing model. We select scheme 8 for the best-simulating ma-
chine learning model, because this scheme contains the least
volume of inputs and is more suitable for data extrapolation.
After determining the best-performing model, we reconstruct
the long-term TWS series by considering the scores of all
the eight data schemes. In cases where variables might be
missing for certain time periods, the best-performing scheme
cannot be applied. To solve this issue, we make full use of
the eight data schemes. For example, the best-performing
scheme of the selected machine learning model is used to
produce the TWS reconstructions, and then the second-best-
performing scheme for the same model is used to fill any
missing gaps of the former one. To improve the capacity of
the machine learning models to extrapolate TWS series be-
yond the calibration period, we employ all the observations
to train our model in the reconstruction process. However, we
also evaluate the performance of extrapolation by splitting
train and test periods in Sect. 3.3. By blending the different
data schemes with consideration of their simulation perfor-
mance, the TWS series for the long-term period (i.e., 1940–
2022) is fully reconstructed. Using three different training
GRACE/GRACE-FO datasets (i.e., JPL, CSR, and GSFC),
we produce three different GTWS-MLrec datasets. As many
studies focus on exploring climate-driven TWS variability,
we also produce three detrended and de-seasonalized TWS
reconstruction series. To achieve this goal, we first employ
the seasonal-trend decomposition method based on Loess
(Rojo et al., 2017) to partition the GRACE-measured series
into linear, seasonal, and residual trends. The residual com-
ponent from the GRACE-measured temporal series is then
reconstructed separately by using their empirical relation-
ships as related to the potential predictors (i.e., components
after detrending and de-seasoning from the input variables).
Therefore, we produce three full-component TWS datasets
as well as three detrended and de-seasonalized TWS datasets
across all global land areas for the period 1940–2022.

3 Data description and machine learning evaluation

3.1 Six GTWS-MLrec datasets

The GTWS-MLrec provides monthly TWS anomalies in
units of millimeters of water (mm) during 1940–2022, with
a spatial resolution of 0.25◦ across global land areas (includ-

ing Greenland and Antarctica). Using three different training
GRACE/GRACE-FO mascon solutions (Table 1), we pro-
duce three different GTWS-MLrec datasets. We also pro-
vide de-seasonalized and detrended TWS anomalies, which
are independently reconstructed by using the de-seasonalized
and detrended GRACE/GRACE-FO dataset and inputs. It is
informative to note that these de-seasonalized and detrended
TWS reconstructions are not necessarily systematically con-
sistent with the reconstructed TWS datasets after the de-
seasonalizing and detrending processes, because they are re-
constructed by using independent machine learning models.
Therefore, we provide a total of six reconstructed GTWS-
MLrec datasets trained by three GRACE/GRACE-FO solu-
tions.

3.2 Global land mean TWS datasets

To provide data reference for a global-scale application, we
also estimate a global average time series of the GTWS-
MLrec TWS anomalies. The global mean TWS series is es-
timated by considering the area weight (i.e., the area of grid
in different latitudes is considered), which includes all land
areas with or without considering the Greenland and Antarc-
tica (i.e., two schemes are available). These global average
TWS datasets can provide rich information as references in
constraining a global-scale water dynamic, which is partic-
ularly suited for quantifying a global land–ocean water bud-
get. The global average TWS has a unit of millimeters of
water. To convert millimeters to gigatons of water for mass
budget applications, total land areas of 148 940 000 km2 and
132 773 914 km2 can be used for each scheme, respectively.

3.3 Performance of machine learning model in
extrapolating TWS beyond the calibration period

Before using the machine learning models for the TWS re-
construction, we evaluate their extrapolation performance by
randomly splitting the datasets into train and test periods
during the GRACE/GRACE-FO era. Eight metrics are used
(Sect. S1), including Pearson’s correlation coefficient (PCC),
Nash–Sutcliffe efficiency coefficient (NSE), Kling–Gupta ef-
ficiency coefficient (KGE), coefficient of determination (R2),
root mean square error (RMSE, in millimeters), normalized
root mean square error (nRMSE), mean absolute percentage
error (MAPE), and percent bias (Pbias, in percent). Figure 2
presents the performance of the JPL-based reconstruction in
data scheme 8 during the test period in comparison with the
GRACE/GRACE-FO measurements. The PCC, NSE, KGE,
and the R2 approach 0.9 in most areas of the globe for the
test period, and the average nRMSE over the global land
areas is about 0.1. The MAPE, RMSE, and Pbias also sug-
gest a good performance. Comparing the five machine learn-
ing models, we find that the non-linear models (i.e., RF and
ANN) show better performance than the linear models (i.e.,
GLM, GAM, and MARSs). The GAM, MARSs, and ANN
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also show a relatively reliable performance in extrapolating
TWS anomalies, with the global average PCC of about 0.7,
and the GLM shows the worst performance in most areas
of the globe (Fig. S1 in the Supplement). We also compare
the extrapolation performance for GSFC and CSR solutions
and find similar conclusions, namely that the RF and ANN
show better capacity in simulating TWS anomalies in most
areas of the globe. Overall, we are confident that the best-
simulating machine learning model allows us to reliably ex-
trapolate TWS series beyond the calibration period.

4 Performance evaluation of the GTWS-MLrec
datasets

4.1 Comparison with GRACE/GRACE-FO observations

The final reconstructed long-term GTWS-MLrec datasets
under the best-performing model are compared with
GRACE/GRACE-FO observations. Unlike the comparison
in Sect. 3.3 focusing on the test period, this section evaluates
the performance of GTWS-MLrec datasets in simulating the
observations. The PCC, NSE, KGE, and R2 are larger than
0.9 in most land areas of the globe, and the nRMSE, MAPE,
RMSE, and Pbias also suggest low biases in most land ar-
eas (Figs. 3, S2, and S3). We compare the values of these
evaluation metrics with the scores achieved from previous
reconstruction datasets (i.e., GRACE-REC and GRL-REC),
which are also evaluated with respect to the corresponding
training GRACE/GRACE-FO solutions (Figs. S4 and S5).
Across all the metrics, GTWS-MLrec typically achieves bet-
ter scores than the previous two datasets. GTWS-MLrec,
in particular, shows substantially lower values of nRMSE,
MAPE, RMSE, and Pbias than GRACE-REC and GRL-
REC. It is informative to emphasize that unlike the GRACE-
REC and GRL-REC datasets, which only reconstruct de-
trended and/or de-seasonalized TWS components, the three
products of GTWS-MLrec provide the total components of
TWS like GRACE/GRACE-FO observations. Therefore, it
is not surprising that this reconstruction dataset shows such
better performance when comparing with the observations.

The global yearly maps of reconstructed TWS fields are
shown during the most recent strong El Niño years, i.e.,
2015–2016. We find that GTWS-MLrec is able to capture
the water storage anomalies due to the strong El Niño events.
For example, eastern South America witnessed strong wa-
ter deficits while most regions of South America suffered
from severe flooding events during the onset period of El
Niño in 2015 (Fig. S6). By the wakening period of El Niño
events in 2016, western and northern South America sud-
denly switched from pluvial floods to water deficit condi-
tions (Fig. S7). The El Niño–Southern Oscillation (ENSO) is
one of the leading climate oscillations and often leads to ex-
treme hydrological hazards over tropical regions (Fang et al.,
2024); therefore, the anomalies in TWS over South America
could be related to the strong El Niño events from the hydro-

logical perspective (Ni et al., 2018; Li et al., 2021). From the
GRACE/GRACE-FO observations and our reconstructions,
we also find that the 2015–2016 El Niño brought strong plu-
vial floods in southern China and most areas of Australia,
and brought droughts to India, the Middle East, central Eu-
rope, and western America. The yearly TWSA map of the
previous two reconstruction datasets (i.e., GRACE-REC and
GRL-REC) are also depicted. We find that these two previous
datasets also captured the El Niño event, but the GRACE-
REC dataset failed to capture the fluvial signal in some re-
gions such as southern Australia. In addition, GTWS-MLrec
can also capture water deficit or wetness conditions in other
strong El Niño events such as in 1983 and 1998 (Fig. S8).
Overall, all the above results suggest that our reconstruc-
tions reliably characterize the anomalies induced by strong
El Niño events, which is in line with the GRACE/GRACE-
FO measurements.

To evaluate the performance of GTWS-MLrec in captur-
ing the global average TWS anomalies, we also present the
long-term monthly TWS anomalies over global land areas
with and without Greenland and Antarctica (Fig. 4). Dur-
ing the GRACE era (2002–2022), the reconstructed TWS
products do capture the inter-annual and seasonal cycle of
GRACE/GRACE-FO observations well. Our three GTWS-
MLrec products show similar long-term trends, which all
indicate a decreasing change in the global average TWS
anomalies. By comparing GTWS-MLrec with the GRACE-
REC and GRL-REC datasets, we find that the reconstruc-
tion captures the inter-annual pattern of GRACE-REC well,
while the GRL-REC dataset shows a slight overestimation
phenomenon relative to our reconstruction and the GRACE-
REC. Overall, the evaluations between GTWS-MLrec and
GRACE/GRACE-FO observations indicate that our prod-
ucts achieve a good simulation performance at both grid and
global scale.

4.2 Performance evaluation based on ocean–land water
budget

Although the atmosphere holds moisture and thus can con-
tribute to ocean mass changes by precipitation/evapotranspi-
ration alternations, variations in ocean mass usually coin-
cide with a comparable and opposite change of land water
storage at a relatively long temporal scale (Chambers et al.,
2017; Seo et al., 2023). Therefore, the sea level-based land–
ocean mass budget provides an independent way to evalu-
ate estimates of global average TWS variability. Here we as-
sess the capacity of observed and reconstructed TWS prod-
ucts (GRACE/GRACE-FO, GTWS-MLrec, GRACE-REC,
and GRL-REC) to constrain the sea level budget. The GMSL
is employed to present ocean mass changes after subtract-
ing the steric thermosteric and halosteric sea level. From
the sea level budget-based analysis, we derive the time se-
ries of de-seasonalized and detrended changes in ocean mass,
which we compare with converted global average TWS esti-
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Figure 2. Performance of random forest in simulating JPL TWS anomalies under scheme 8 during the test period: (a) PCC, (b) NSE,
(c) KGE, (d) (R2), (e) nRMSE, (f) MAPE, (g) RMSE, and (h) Pbias. Insets in each panel show the histogram of these metrics, with the
vertical red line showing the median value. Data-sparse areas without reconstruction are marked in gray.

mates with consideration of land–ocean area (estimated af-
ter removing the trend and seasonal signal from the pri-
mary datasets). To ensure a consistent comparison among
all candidate products, Greenland and Antarctica are ex-
cluded when calculating the global average land TWS se-
ries. The comparison results show that, although all can-
didate datasets are well correlated with the ocean-mass-
based water budget, GTWS-MLrec and the GRL-REC prod-

uct exhibit the strongest correlation with GMSL, with PCC
values of >0.7 during 2006–2020 (Fig. 5). Surprisingly,
the reconstruction datasets also yield better results than the
original GRACE/GRACE-FO datasets. This phenomenon
has also been reported in previous studies (Humphrey and
Gudmundsson, 2019), probably because the global aver-
age GRACE/GRACE-FO TWS is more susceptible to non-
compensating continental-scale errors (e.g., caused by bi-
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Figure 3. Comparison of our JPL-based GTWS-MLrec reconstructions with the GRACE/GRACE-FO observations: (a) PCC, (b) NSE,
(c) KGE, (d) (R2), (e) nRMSE, (f) MAPE, (g) RMSE, and (h) Pbias. Insets in each panel show the histograms of that evaluation metric, with
the vertical red line showing the median value. Data-sparse areas without reconstruction are marked in gray.

ases from residual longitudinal stripes) compared with the
data-driven reconstructions, which achieve smoother global
average series. To evaluate our independent detrended and
de-seasonalized GTWS-MLrec datasets, we also compare
their converted TWS series with the GMSL. This con-
verted dataset is different from directly excluding the trend
and seasonal cycles from the full-component reconstruction
datasets. The three detrended and depersonalized GTWS-

MLrec datasets also show a good agreement with the global
ocean mass changes, with a PCC ranging from 0.61 to 0.66
(Fig. 6). All the results suggest that both of our reconstruc-
tion types are able to constrain the ocean–land water budget.
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Figure 4. Global mean monthly terrestrial water storage anomaly derived by eight different datasets (including GRACE/GRACE-FO ob-
servations). Panel (a) shows the global average TWS anomaly weighted by land area excluding Greenland and Antarctica. Panel (b) shows
global average TWS anomaly over land areas.

4.3 Performance evaluation based on water balance
over large river basins

It is challenging to directly evaluate the performance of
the TWS reconstructions prior to 2002 due to lack of
GRACE/GRACE-FO observations. However, as TWS is a
key element linking the atmospheric and terrestrial water
balance budget, it is possible to independently evaluate the
reconstructions by combining land and atmospheric mois-
ture fluxes (Oki et al., 1995; Yin et al., 2022a). Hirschi
and Seneviratne (2017) presented the BSWB dataset, which
assimilated in situ streamflow observations and reanalysis-
based moisture convergence in the atmosphere, and pro-
vided monthly variations in TWS during 1979–2015 in 341
moderately large river basins (>100000 km2) covering a
variety of climate conditions. To provide a more compre-
hensive evaluation of our reconstructions, we extracted the
variations in TWS from our reconstructions over the same

basins as the BSWB dataset. As a caveat, we note that the
BSWB is derived from the predecessor of the ERA5 dataset
(i.e., ERA-Interim), which is not entirely consistent with
the main drivers of GTWS-MLrec products. Overall, both
the GRACE/GRACE-FO and the reconstructed datasets do
agree with the BSWB-based TWS variations well (Fig. 7a–
h). For the JPL-, CSR-, and GSFC-based mascons, these
products show a PCC with BSWB ranging from 0.4 to 0.7
over most basins, and the global average PCC is about 0.58.
The larger catchments typically show higher PCC than the
smaller catchments, which can be explained by the fact that
the basin-averaged TWS series of larger catchments have
been smoothed by using more gridded data. For GTWS-
MLrec, the three reconstructed datasets show a relatively
similar pattern of PCC over the moderately large global river
basins, further verifying the robust performance of our recon-
structions.
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Figure 5. Comparison of the global average TWS variations (converted to equivalent sea level, in millimeters) against ocean mass changes
derived from the sea level budget. Panel (a) shows the temporal dynamics of the global average sea level and TWS. Panels (b–g) show the
regression plots of the sea level and converted TWS. The redder colors indicate higher, and the bluer colors lower, density of points. The
black line denotes the linear regression. The converted TWS is estimated after extracting the trend and seasonal signals from the negative
values of primary datasets by considering the land–ocean area ratio.

We also compare the BSWB-based TWS variations with
the GRACE-REC and GRL-REC products, and find a
slightly higher PCC of GRACE-REC and GRL-REC than
GTWS-MLrec reconstructions. This phenomenon might be
due to two reasons. First, our GTWS-MLrec is reconstructed
by assimilating the latest ERA5 dataset, which has substan-
tial updates relative to ERA-Interim (i.e., inputs of BSWB).
Second, the BSWB and two previous reconstruction datasets
both mainly focused on climate-driven changes in TWS but
neglected underlying surface condition changes such as veg-

etation greening due to increases in LAI and human-made
infrastructures such as reservoirs. GTWS-MLrec not only
assimilates climate variables but also captures changes in
underlying surface conditions; therefore, these results may
cause biases when comparing with the BSWB dataset. For
example, the basins in China’s Yangtze River usually show a
higher PCC of previous reconstruction datasets than GTWS-
MLrec. The Yangtze River has experienced rapid urbaniza-
tion and reservoir constructions in recent decades (Gu et al.,
2019), where the BSWB and previous reconstruction datasets
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Figure 6. Global land–ocean mass budget based on our reconstructed detrended and de-seasonalized GTWS-MLrec datasets. Panel (a)
shows temporal dynamics of global average sea level and TWS. Panels (b–d) show regression plots of sea level and converted TWS. The
redder colors indicate higher, and the bluer colors lower, density of points. The black line denotes the linear regression. The converted TWS
is estimated as the negative values of primary detrended and de-seasonalized reconstruction datasets by considering the land–ocean area
ratio.

have a similar TWS pattern. We also compare the TWS
variations of uncorrected and drift-corrected series from the
BSWB with GTWS-MLrec, and find that the drift-corrected
version of BSWB shows a slightly higher PCC with GTWS-
MLrec (Fig. 7i–j), suggesting that the temporal smoothing
improves TWS estimates by constraining the basin-scale wa-
ter budget. Overall, our GTWS-MLrec achieves a relatively
good agreement with the BSWB-based TWS variations in
most large basins over most large basins of the globe.

4.4 Comparison with annual streamflow measurements

As the BSWB dataset only provides TWS variations over
large basins after 1979, we obtained streamflow data extend-
ing to 1940 from multiple sources, including the GRDC,
USGS, and MWRC. After strict data quality control and
screening of the data records from 22 538 stations, we re-
tained 10 168 hydrological stations in basins smaller than
100 000 km2 with at least 10-year complete monthly stream-
flow series (see Sect. 2.3). River streamflow and TWS of
course represent different hydrological elements with diver-
gent units; however, their temporal dynamics at a longer
timescale (i.e., yearly) might be correlated because runoff is

an important water flux component in the total water stor-
age (Rodell and Li, 2023; Yin et al., 2023b). In addition, a
drier (or wetter) river streamflow state at an annual scale is
usually related to anomalies in large-scale atmospheric cir-
culation, which is also represented by a similar signal indi-
cated by annual TWS variations (Kang et al., 2023; Yin et al.,
2023a). To provide a better comparison with the basin-scale
streamflow, the TWS from different reconstruction datasets
were aggregated at the watershed scale to obtain the catch-
ment mean annual series in each basin using the Thiessen
polygon method. The mismatch in resolution between large-
scale mass changes and local basin streamflow dynamics
can be partly alleviated by the spatial coherence of annual
anomalies in weather/climate patterns. First, we compare the
basin-scale TWS against streamflow during 1979–2022 and
find that GTWS-MLrec agrees well with the observational
streamflow dynamics at a yearly scale (Fig. 8). The JPL- and
GSFC-based GTWS-MLrec datasets both show a global av-
erage PCC of 0.58, whereas the CSR-based reconstruction
achieves a higher global average PCC of 0.60. The slightly
better performance of the CSR-based GTWS-MLrec product
may be due to the fact that the primary CSR mascon solu-
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Figure 7. Comparison between variations in TWS derived from the atmospheric basin-scale water balance (BSWB) dataset,
GRACE/GRACE-FO measurements, and reconstructions. Panels (a–h) show the PCC of drift-corrected BSWB-based TWS and observa-
tion/reconstruction datasets. Panels (i–j) show boxplots of global PCC between BSCB and different TWS datasets for uncorrected (i) and
drift-corrected (j) BSWB datasets. In panels (i) and (j), the JPL (or CSR, GSFC) denotes GRACE/GRACE-FO observations, and the JPL-ML
(or CSR-ML, GSFC-ML) denotes GTWS-MLrec reconstructions. The REC denotes GRACE-REC.

tion has a finer spatial resolution than the other two products.
The previous GRACE-REC and GRL-REC reconstruction
datasets show poorer performance than GTWS-MLrec prod-
ucts in terms of the PCC. The GRACE-REC and GRL-REC
datasets show a global average PCC of 0.56 and 0.47, respec-

tively. These results suggest that GTWS-MLrec achieves the
best performance relative to streamflow in terms of reproduc-
ing past water cycle variability. In addition, the streamflow
and TWS from our three reconstructions are compared dur-
ing 1940–1980 (Fig. 9). Our GTWS-MLrec products show a
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global average PCC of 0.55–0.57, and the CSR-based dataset
still shows the best performance, suggesting a good agree-
ment with the temporal streamflow dynamics.

5 Code and data availability

The GTWS-MLrec dataset is archived on Zenedo at the link:
https://doi.org/10.5281/zenodo.10040927 (Yin, 2023). It is
distributed with a CC-BY license. The uploaded data pro-
vided are (a) JPL-based GTWS-MLrec TWS series, (b) CSR-
based GTWS-MLrec TWS series, (c) GSFC-based GTWS-
MLrec TWS series, (d) JPL-based GTWS-MLrec TWS con-
structions after removing trend and seasonal signals, (e)
CSR-based GTWS-MLrec TWS series after removing trend
and seasonal signals, (f) GSFC-based GTWS-MLrec TWS
series after removing trend and seasonal signals, (g) global
average TWS series over land areas, and (h) global average
TWS series over land areas after excluding Greenland and
Antarctica.

6 Summary, applications, and outlook

TWS – which encompasses all water storage or fluxes on
the land, such as groundwater, soil moisture, snow/ice cover,
and surface water – is a key element affecting the hydro-
logical cycle at both global and regional scales. TWS also
plays an essential role in the global water and energy bud-
get balance, which is highly correlated with underlying sur-
face conditions (e.g., vegetation) and climate fluctuations
(e.g., El Niño events). Thus, to improve our understanding
of changes in the hydrological cycle under climate change,
a long-term TWS dataset is urgently needed. However, di-
rect remote sensing-based observations of TWS from the
GRACE/GRACE-FO only go back to 2002. Therefore, re-
cent works have retrospectively reconstructed TWS at global
or regional scales (e.g., Humphrey and Gudmundsson 2019;
Sun et al., 2020; Li et al., 2020, 2021). Despite being useful
for various purposes, these studies have been usually con-
strained by the short time period (e.g., starting from 1979)
or coarse spatial resolution (≥ 0.5◦). Furthermore, previ-
ous studies have often focused primarily on climate-driven
changes in TWS and have not fully assimilated information
about vegetation conditions such as LAI. GTWS-MLrec, the
new TWS product presented here, provides a monthly TWS
dataset from 1940 to the present at 0.25◦ and is reconstructed
by assimilating a large number of meteorological, hydrolog-
ical, human-relevant, and vegetation variables. By compar-
ing GTWS-MLrec with GRACE/GRACE-FO observations,
we find that GTWS-MLrec usually achieves a higher corre-
lation coefficient and lower biases than previous reconstruc-
tion datasets. We also evaluate the performance of different
reconstruction datasets by using the land–ocean mass bud-
get, basin-scale water balance, and temporal streamflow dy-
namics, as well as their ability to capture El Niño events.

These independent evaluations all suggest that our GTWS-
MLrec achieves better performance than previous datasets
under most conditions.

We envision that GTWS-MLrec, with its comprehensive
and extensive attributes, could provide rich information as
references across a broad range of geoscience-relevant ap-
plications. First, the long-term TWS series can provide rich
information for understanding changes in the global and re-
gional hydrological cycle under climate change. For exam-
ple, the TWS-based drought index has shown great potential
for monitoring and assessing large-scale droughts in numer-
ous regions of the globe (Long et al., 2014; Yin et al., 2022a).
Second, the TWS anomalies of GTWS-MLrec could be used
as an independent benchmark to evaluate the performance
of a set of hydrological/climate models. Numerous studies
have compared the TWS produced by GRACE/GRACE-FO
and hydrological models, and have found that many phys-
ical models tend to simulate an earlier peak of TWS in
seasonal cycle, which may be related to an underestima-
tion of the overall water storage capacity (Schellekens et
al., 2017; Long et al., 2017). However, these comparisons
were conducted over a short time period, whereas GTWS-
MLrec will be helpful to achieve a more robust long-term as-
sessment. Third, GTWS-MLrec will provide more useful in-
formation for understanding terrestrial carbon–climate feed-
backs. As TWS reflects the water condition needed for veg-
etation growth, TWS variability is tightly coupled to the at-
mospheric CO2 growth rate (Liu et al., 2023). Therefore, our
GTWS-MLrec could contribute to understanding the possi-
ble shifts in terrestrial climate–carbon coupling under cli-
mate change. Finally, GTWS-MLrec can also improve the
understanding of the dynamic relationship between climate
change and human activities, such as groundwater deple-
tion (Long et al., 2020; Seo et al., 2023), irrigation (Lv et
al., 2019), urbanization (Huang et al., 2023), compound haz-
ards (Yin et al., 2022b), and reservoir operation (Shah et al.,
2019).

Although GTWS-MLrec presents substantial improve-
ments over previous TWS reconstructions and holds po-
tential for a broad range of geoscience applications, a few
caveats should be acknowledged. The main inputs for feed-
ing the machine learning model are sourced from the ERA5
dataset, which provides hourly and monthly climatic vari-
ables at 0.25◦ spatial resolution. Many basin-scale hydrolog-
ical studies may need a TWS dataset at a finer spatial resolu-
tion, where GTWS-MLrec may be too coarse to constrain the
water budget balance. The ERA5-Land dataset is available
at 0.1◦resolution but is not considered in this study because
it lacks some key variables such as cloud cover and mois-
ture divergence. The estimation accuracy of the TWS recon-
struction relies on the quality of the ERA5 datasets, and next
generations/versions of the TWS data could potentially be
improved as ERA5 itself improves over time. We have eval-
uated the relationship between our reconstructed TWS and
streamflow measurements at 10 168 gauges in terms of PCC.
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Figure 8. Correlation of annual streamflow and aggregated basin-scale TWS from the different reconstruction datasets during 1979–2022.
Panels (a–e) show global distribution of PCC for the different datasets, and (f) shows a boxplot of the PCC for all stations globally. The REC
denotes GRACE-REC. Insets in (a–e) show the histogram of these metrics and the vertical red line shows the median value.

Figure 9. Correlation of annual streamflow and aggregated basin-scale TWS from different reconstruction datasets during 1940–1980.
Panel (a) shows JPL-based GTWS-MLrec, (b) CSR-based GTWS-MLrec, and (c) GSFC-based GTWS-MLrec. Insets in each panel show
the histogram of these metrics and the vertical red line shows the median value.
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TWS and streamflow might have a non-linear relationship
due to their different generating mechanisms. However, it is
difficult to quantify their physical non-linear relationship due
to observational data limitations. Previous studies also eval-
uated the performance of TWS reconstructions by exploring
their linear relationship with streamflow (e.g., Humphrey and
Gudmundsson, 2019; Li et al., 2021, 2022). In future works,
a more complicated non-linear relationship between TWS
and streamflow might further evaluate the performance of
TWS reconstructions. Although we have tried to assimilate
information of underlying surface conditions and vegetation
states, the series of SIF and ISA cannot be extended to 1940
because they are constrained by the availability of histori-
cal satellite records. To address this issue, we have designed
eight different data schemes in the machine learning models,
and the long-term LAI series can also provide information
about vegetation. The human-made hydraulic infrastructures,
such as reservoirs, may play an important role in regulating
TWS, but these effects have not been fully considered in the
GTWS-MLrec. Future work may seek to incorporate more
predictors in the long-term TWS reconstruction and to pro-
vide more systematic independent evaluations.
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