Articles | Volume 15, issue 10
https://doi.org/10.5194/essd-15-4417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil water retention and hydraulic conductivity measured in a wide saturation range
Tobias L. Hohenbrink
CORRESPONDING AUTHOR
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Deutscher Wetterdienst (DWD), Agrometeorological Research Centre,
38116 Braunschweig, Germany
Conrad Jackisch
Interdisciplinary Environmental Research Centre, TU Bergakademie
Freiberg, 09599 Freiberg, Germany
Institute for Water and River Basin Management, Chair of Hydrology,
Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
Wolfgang Durner
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Kai Germer
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Thünen Institute of Agricultural Technology, 38116 Braunschweig,
Germany
Sascha C. Iden
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Janis Kreiselmeier
Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany
Institute of Soil Science and Site Ecology, TU Dresden, 01737 Tharandt, Germany
Frederic Leuther
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, 06120 Halle (Saale), Germany
Chair of Soil Physics, University of Bayreuth, 95447 Bayreuth,
Germany
Johanna C. Metzger
Institute of Soil Science, Center for Earth System Research and
Sustainability (CEN), Universität Hamburg, 20146 Hamburg, Germany
Institute of Geoscience, Group of Ecohydrology, Friedrich Schiller
University Jena, 07749 Jena, Germany
Mahyar Naseri
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Thünen Institute of Agricultural Technology, 38116 Braunschweig,
Germany
Andre Peters
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Related authors
Christian Lehr and Tobias Ludwig Hohenbrink
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-172, https://doi.org/10.5194/hess-2024-172, 2024
Revised manuscript under review for HESS
Short summary
Short summary
In hydrology, domain dependence (DD) of spatial Principal Component patterns is a rather unknown feature of the widely applied Principal Component Analysis. It easily leads to wrong hydrological interpretations. DD reference patterns enable to differentiate from the effect. Here, we (1) explore the DD effect, (2) present two methods to calculate DD reference patterns and (3) discuss considering DD. Scripts with an introduction to the DD effect and an implementation of both methods are provided.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Christian Lehr and Tobias Ludwig Hohenbrink
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-172, https://doi.org/10.5194/hess-2024-172, 2024
Revised manuscript under review for HESS
Short summary
Short summary
In hydrology, domain dependence (DD) of spatial Principal Component patterns is a rather unknown feature of the widely applied Principal Component Analysis. It easily leads to wrong hydrological interpretations. DD reference patterns enable to differentiate from the effect. Here, we (1) explore the DD effect, (2) present two methods to calculate DD reference patterns and (3) discuss considering DD. Scripts with an introduction to the DD effect and an implementation of both methods are provided.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024, https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023, https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Short summary
This study proposes a model to predict soil hydraulic properties (SHPs) of constructed Technosols for urban greening. The SHPs are determined by the Technosol composition and describe their capacity to store and supply water to plants. The model predicts SHPs of any binary mixture based on the SHPs of its two pure components, facilitating simulations of flow and transport processes before production. This can help create Technosols designed for efficient urban greening and water management.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Conrad Jackisch, Kai Germer, Thomas Graeff, Ines Andrä, Katrin Schulz, Marcus Schiedung, Jaqueline Haller-Jans, Jonas Schneider, Julia Jaquemotte, Philipp Helmer, Leander Lotz, Andreas Bauer, Irene Hahn, Martin Šanda, Monika Kumpan, Johann Dorner, Gerrit de Rooij, Stefan Wessel-Bothe, Lorenz Kottmann, Siegfried Schittenhelm, and Wolfgang Durner
Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, https://doi.org/10.5194/essd-12-683-2020, 2020
Short summary
Short summary
Soil water content and matric potential are central hydrological state variables. A large variety of automated probes and sensor systems for field monitoring exist. In a field experiment under idealised conditions we compared 15 systems for soil moisture and 14 systems for matric potential. The individual records of one system agree well with the others. Most records are also plausible. However, the absolute values of the different measuring systems span a very large range of possible truths.
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Erwin Zehe, Ralf Loritz, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Theresa Blume, Sibylle K. Hassler, and Hubert H. Savenije
Hydrol. Earth Syst. Sci., 23, 971–987, https://doi.org/10.5194/hess-23-971-2019, https://doi.org/10.5194/hess-23-971-2019, 2019
Ralf Loritz, Hoshin Gupta, Conrad Jackisch, Martijn Westhoff, Axel Kleidon, Uwe Ehret, and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3663–3684, https://doi.org/10.5194/hess-22-3663-2018, https://doi.org/10.5194/hess-22-3663-2018, 2018
Short summary
Short summary
In this study we explore the role of spatially distributed information on hydrological modeling. For that, we develop and test an approach which draws upon information theory and thermodynamic reasoning. We show that the proposed set of methods provide a powerful framework for understanding and diagnosing how and when process organization and functional similarity of hydrological systems emerge in time and, hence, when which landscape characteristic is important in a model application.
Conrad Jackisch and Erwin Zehe
Hydrol. Earth Syst. Sci., 22, 3639–3662, https://doi.org/10.5194/hess-22-3639-2018, https://doi.org/10.5194/hess-22-3639-2018, 2018
Short summary
Short summary
We present a Lagrangian model for non-uniform soil water dynamics. It handles 2-D diffusion (based on a spatial random walk and implicit pore space redistribution) and 1-D advection in representative macropores (as film flow with dynamic interaction with the soil matrix). The interplay between the domains is calculated based on an energy-balance approach which does not require any additional parameterisation. Model tests give insight into the evolution of the non-uniform infiltration patterns.
Tobias Karl David Weber, Sascha Christian Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 21, 6185–6200, https://doi.org/10.5194/hess-21-6185-2017, https://doi.org/10.5194/hess-21-6185-2017, 2017
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Simon Paul Seibert, Conrad Jackisch, Uwe Ehret, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 2817–2841, https://doi.org/10.5194/hess-21-2817-2017, https://doi.org/10.5194/hess-21-2817-2017, 2017
Short summary
Short summary
Runoff production mechanisms and their corresponding physiographic controls continue to pose major research challenges in catchment hydrology. We propose innovative data-driven diagnostic signatures for overcoming the prevailing status quo in inter-comparison studies. Specifically, we present dimensionless double mass curves which allow us to infer information on runoff generation at the seasonal and annual timescales. The method is based on commonly available data.
Ralf Loritz, Sibylle K. Hassler, Conrad Jackisch, Niklas Allroggen, Loes van Schaik, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 1225–1249, https://doi.org/10.5194/hess-21-1225-2017, https://doi.org/10.5194/hess-21-1225-2017, 2017
Short summary
Short summary
In this study we examine whether we can step beyond the qualitative character of perceptual models by using them as a blueprint for setting up representative hillslope models. Thereby we test the hypothesis of whether a single hillslope can represent the functioning of an entire lower mesoscale catchment in a spatially aggregated way.
Benjamin Müller, Matthias Bernhardt, Conrad Jackisch, and Karsten Schulz
Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016, https://doi.org/10.5194/hess-20-3765-2016, 2016
Short summary
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
Erwin Zehe and Conrad Jackisch
Hydrol. Earth Syst. Sci., 20, 3511–3526, https://doi.org/10.5194/hess-20-3511-2016, https://doi.org/10.5194/hess-20-3511-2016, 2016
Andre Peters, Thomas Nehls, and Gerd Wessolek
Hydrol. Earth Syst. Sci., 20, 2309–2315, https://doi.org/10.5194/hess-20-2309-2016, https://doi.org/10.5194/hess-20-2309-2016, 2016
Short summary
Short summary
The AWAT (Adaptive Window and Adaptive Threshold) filter routine for high-resolution lysimeter data is improved. The threshold scheme with original step interpolation yields unrealistic fluxes for high temporal resolution. Improvement applies linear and spline interpolation schemes so that fluxes in high temporal resolution are automatically calculated. The spline scheme allows continuous differentiability of filtered data so that any output resolution for the fluxes is sound.
S. Schlüter, F. Leuther, S. Vogler, and H.-J. Vogel
Solid Earth, 7, 129–140, https://doi.org/10.5194/se-7-129-2016, https://doi.org/10.5194/se-7-129-2016, 2016
Short summary
Short summary
A new protocol for digital volume correlation facilitates detailed insights into internal deformation of soil. Structure deformation during centrifugation is revealed by comparing X-ray CT images before and after centrifugation. Quantitative image analysis reveals that soil structure changes are driven by soil shrinkage due to drying and soil compaction due to compression.
M. Hannes, U. Wollschläger, F. Schrader, W. Durner, S. Gebler, T. Pütz, J. Fank, G. von Unold, and H.-J. Vogel
Hydrol. Earth Syst. Sci., 19, 3405–3418, https://doi.org/10.5194/hess-19-3405-2015, https://doi.org/10.5194/hess-19-3405-2015, 2015
B. Scharnagl, S. C. Iden, W. Durner, H. Vereecken, and M. Herbst
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-2155-2015, https://doi.org/10.5194/hessd-12-2155-2015, 2015
Preprint withdrawn
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
A. Peters, T. Nehls, H. Schonsky, and G. Wessolek
Hydrol. Earth Syst. Sci., 18, 1189–1198, https://doi.org/10.5194/hess-18-1189-2014, https://doi.org/10.5194/hess-18-1189-2014, 2014
Related subject area
Domain: ESSD – Land | Subject: Hydrology
GRILSS: opening the gateway to global reservoir sedimentation data curation
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
An in situ daily dataset for benchmarking temporal variability of groundwater recharge
CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking
Features of Italian large dams and their upstream catchments
Gridded rainfall erosivity (2014–2022) in mainland China using 1 min precipitation data from densely distributed weather stations
High-resolution hydrometeorological and snow data for the Dischma catchment in Switzerland
A 3-hour, 1-km surface soil moisture dataset for the contiguous United States from 2015 to 2023
CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India
LakeBeD-US: a benchmark dataset for lake water quality time series and vertical profiles
HERA: a high-resolution pan-European hydrological reanalysis (1951–2020)
BCUB – a large-sample ungauged basin attribute dataset for British Columbia, Canada
Comprehensive inventory of large hydropower systems in the Italian Alpine Region
Northern Hemisphere in situ snow water equivalent dataset (NorSWE, 1979–2021)
Lena River biogeochemistry captured by a 4.5-year high-frequency sampling program
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Observational partitioning of water and CO2 fluxes at National Ecological Observatory Network (NEON) sites: a 5-year dataset of soil and plant components for spatial and temporal analysis
An integrated high-resolution bathymetric model for the Danube Delta system
A benchmark dataset for global evapotranspiration estimation based on FLUXNET2015 from 2000 to 2022
Benchmark dataset for hydraulic simulations of flash floods in the French Mediterranean region
CIrrMap250: annual maps of China's irrigated cropland from 2000 to 2020 developed through multisource data integration
HANZE v2.1: an improved database of flood impacts in Europe from 1870 to 2020
A Copernicus-based evapotranspiration dataset at 100 m spatial resolution over four Mediterranean basins
Gridded dataset of nitrogen and phosphorus point sources from wastewater in Germany (1950–2019)
A 1985–2023 time series dataset of absolute reservoir storage in Mainland Southeast Asia (MSEA-Res)
One year of high frequency monitoring of groundwater physico-chemical parameters in the Weierbach Experimental Catchment, Luxembourg
A globally sampled high-resolution hand-labeled validation dataset for evaluating surface water extent maps
Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
Multivariate characterisation of a blackberry–alder agroforestry system in South Africa: hydrological, pedological, dendrological and meteorological measurements
CAMELS-AUS v2: updated hydrometeorological timeseries and landscape attributes for an enlarged set of catchments in Australia
SHIFT: a spatial-heterogeneity improvement in DEM-based mapping of global geomorphic floodplains
First comprehensive stable isotope dataset of diverse water units in a permafrost-dominated catchment on the Qinghai–Tibet Plateau
Mapping the world’s inland surface waters: an update to the Global Lakes and Wetlands Database (GLWD v2)
LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland
High-resolution mapping of monthly industrial water withdrawal in China from 1965 to 2020
Optimal feature selection for improved ML based reconstruction of Global Terrestrial Water Storage Anomalies
Evapotranspiration evaluation using three different protocols on a large green roof in the greater Paris area
Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti
CAMELE: Collocation-Analyzed Multi-source Ensembled Land Evapotranspiration Data
A hydrogeomorphic dataset for characterizing catchment hydrological behavior across the Tibetan Plateau
Discrete Global Grid System-based Flow Routing Datasets in the Amazon and Yukon Basins
Deriving a Transformation Rate Map of Dissolved Organic Carbon over the Contiguous U.S.
A synthesis of Global Streamflow Characteristics, Hydrometeorology, and Catchment Attributes (GSHA) for large sample river-centric studies
FOCA: a new quality-controlled database of floods and catchment descriptors in Italy
Dams in the Mekong: a comprehensive database, spatiotemporal distribution, and hydropower potentials
A global dataset of the shape of drainage systems
An extensive spatiotemporal water quality dataset covering four decades (1980–2022) in China
Flood simulation with the RiverCure approach: the open dataset of the 2016 Águeda flood event
GloLakes: water storage dynamics for 27 000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025, https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
Short summary
Trustworthy and independently verifiable information on declining storage capacity or sedimentation rates worldwide is sparse and suffers from inconsistent metadata and curation to allow global-scale archiving and analyses. The Global Reservoir Inventory of Lost Storage by Sedimentation (GRILSS) dataset addresses this challenge by providing organized, well-curated, and open-source data on sedimentation rates and capacity loss for 1013 reservoirs in 75 major river basins across 54 countries.
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025, https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
Short summary
After reviewing 2519 literature and media reports, we compiled the first comprehensive global dataset of 555 debris flow barrier dams (DFBDs) from 1800 to 2023. Our dataset meticulously documents 38 attributes of DFBDs, and we have utilized Google Earth for validation. Additionally, we discussed the applicability of landslide dam stability and peak-discharge models to DFBDs. This dataset offers a rich foundation of data for future studies on DFBDs.
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025, https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary
Short summary
We developed a CAMELS-style dataset in Denmark, which contains hydrometeorological time series and landscape attributes for 3330 catchments (304 gauged). Many catchments in CAMELS-DK are small and at low elevations. The dataset provides information on groundwater characteristics and dynamics, as well as quantities related to the human impact on the hydrological system in Denmark. The dataset is especially relevant for developing data-driven and hybrid physically informed modeling frameworks.
Pragnaditya Malakar, Aatish Anshuman, Mukesh Kumar, Georgios Boumis, T. Prabhakar Clement, Arik Tashie, Hitesh Thakur, Nagaraj Bhat, and Lokendra Rathore
Earth Syst. Sci. Data, 17, 1515–1528, https://doi.org/10.5194/essd-17-1515-2025, https://doi.org/10.5194/essd-17-1515-2025, 2025
Short summary
Short summary
Groundwater dynamics depend on groundwater recharge, but daily benchmark data of recharge are scarce. Here we present a daily groundwater recharge per unit specified yield (RpSy) data at 485 US groundwater monitoring wells. RpSy can be used to validate the temporal consistency of recharge products from land surface and hydrologic models and facilitate assessment of recharge-driver functional relationships in them.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Giulia Evangelista, Paola Mazzoglio, Daniele Ganora, Francesca Pianigiani, and Pierluigi Claps
Earth Syst. Sci. Data, 17, 1407–1426, https://doi.org/10.5194/essd-17-1407-2025, https://doi.org/10.5194/essd-17-1407-2025, 2025
Short summary
Short summary
This paper presents the first comprehensive dataset of 528 large dams in Italy. It contains structural characteristics of the dams, such as coordinates, reservoir surface areas and volumes, together with a range of geomorphological, climatological, extreme rainfall, land cover and soil-related attributes of their upstream catchments.
Yueli Chen, Yun Xie, Xingwu Duan, and Minghu Ding
Earth Syst. Sci. Data, 17, 1265–1274, https://doi.org/10.5194/essd-17-1265-2025, https://doi.org/10.5194/essd-17-1265-2025, 2025
Short summary
Short summary
Rainfall erosivity maps are crucial for identifying key areas of water erosion. Due to the limited historical precipitation data, there are certain biases in rainfall erosivity estimates in China. This study develops a new rainfall erosivity map for mainland China using 1 min precipitation data from 60 129 weather stations, revealing that areas exceeding 4000 MJ mm ha−1 h−1yr−1 of annual rainfall erosivity are mainly concentrated in southern China and on the southern Tibetan Plateau.
Jan Magnusson, Yves Bühler, Louis Quéno, Bertrand Cluzet, Giulia Mazzotti, Clare Webster, Rebecca Mott, and Tobias Jonas
Earth Syst. Sci. Data, 17, 703–717, https://doi.org/10.5194/essd-17-703-2025, https://doi.org/10.5194/essd-17-703-2025, 2025
Short summary
Short summary
In this study, we present a dataset for the Dischma catchment in eastern Switzerland, which represents a typical high-alpine watershed in the European Alps. Accurate monitoring and reliable forecasting of snow and water resources in such basins are crucial for a wide range of applications. Our dataset is valuable for improving physics-based snow, land surface, and hydrological models, with potential applications in similar high-alpine catchments.
Haoxuan Yang, Jia Yang, Tyson E. Ochsner, Erik S. Krueger, Mengyuan Xu, and Chris B. Zou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-55, https://doi.org/10.5194/essd-2025-55, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We developed a 3-hour, 1-km surface soil moisture dataset for the contiguous United States from 2015 to 2023 using the spatio-temporal fusion method. This dataset effectively combines the distinct advantages of two long-term SSM datasets, which is also the first hour-level 1-km soil moisture dataset at the continental US scale. The new dataset could provide new insight into the fast changes in soil moisture along with drought and wet spell occurrences.
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025, https://doi.org/10.5194/essd-17-461-2025, 2025
Short summary
Short summary
We introduce CAMELS-IND (Catchment Attributes and MEteorology for Large-sample Studies – India), which provides daily hydrometeorological time series and static catchment attributes representing the location, topography, climate, hydrological signatures, land use, land cover, soil, geology, and anthropogenic influences for 472 catchments in Peninsular India to foster large-sample hydrological studies in India and promote the inclusion of Indian catchments in global hydrological research.
Bennett J. McAfee, Aanish Pradhan, Abhilash Neog, Sepideh Fatemi, Robert T. Hensley, Mary E. Lofton, Anuj Karpatne, Cayelan C. Carey, and Paul C. Hanson
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-27, https://doi.org/10.5194/essd-2025-27, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
LakeBeD-US is a dataset of lake water quality data collected by multiple long-term monitoring programs around the United States. This dataset is designed to foster collaboration between lake scientists and computer scientists to improve predictions of water quality. By offering a way for computer models to be tested against real-world lake data, LakeBeD-US offers opportunities for both sciences to grow and to give new insights into the causes of water quality changes.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Daniel Kovacek and Steven Weijs
Earth Syst. Sci. Data, 17, 259–275, https://doi.org/10.5194/essd-17-259-2025, https://doi.org/10.5194/essd-17-259-2025, 2025
Short summary
Short summary
We made a dataset for British Columbia describing the terrain, soil, land cover, and climate of over 1 million watersheds. The attributes are often used in hydrology because they are related to the water cycle. The data are meant to be used for water resources problems that can benefit from lots of watersheds and their attributes. The data and instructions needed to build the dataset from scratch are freely available. The permanent home for the data is https://doi.org/10.5683/SP3/JNKZVT.
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-521, https://doi.org/10.5194/essd-2024-521, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We propose IAR-HP, a detailed inventory of large hydropower systems in Italy's Alpine Region, aimed at improving hydrological modeling for climate impact studies by providing the most relevant information with a consistent level of detail. It includes structural, geographical, and operational data for over 300 hydropower plants and their related reservoirs and water intakes. Validated through modeling, IAR-HP accurately reproduces observed hydropower, capturing 96.2 % of actual production.
Colleen Mortimer and Vincent Vionnet
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-602, https://doi.org/10.5194/essd-2024-602, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
In situ observations of snow water equivalent (SWE) are critical for climate applications and resource management. NorSWE is a dataset of in situ SWE observations covering North America, Finland and Russia over the period 1979–2021. It includes >11 million observations from >10 thousand different locations compiled from nine different sources. Snow depth and derived bulk snow density are included when available.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Einara Zahn and Elie Bou-Zeid
Earth Syst. Sci. Data, 16, 5603–5624, https://doi.org/10.5194/essd-16-5603-2024, https://doi.org/10.5194/essd-16-5603-2024, 2024
Short summary
Short summary
Quantifying water and CO2 exchanges through transpiration, evaporation, net photosynthesis, and soil respiration is essential for understanding how ecosystems function. We implemented five methods to estimate these fluxes over a 5-year period across 47 sites. This is the first dataset representing such large spatial and temporal coverage of soil and plant exchanges, and it has many potential applications, such as examining the response of ecosystems to weather extremes and climate change.
Lauranne Alaerts, Jonathan Lambrechts, Ny Riana Randresihaja, Luc Vandenbulcke, Olivier Gourgue, Emmanuel Hanert, and Marilaure Grégoire
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-529, https://doi.org/10.5194/essd-2024-529, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first comprehensive, high-resolution, and easily-accessible bathymetry dataset for the three main branches of the Danube Delta. By combining four data sources, we obtained a detailed representation of the riverbed, with resolutions ranging from 2 to 100 m. This dataset will support future studies on water and nutrient exchanges between the Danube and the Black Sea, and provide insights into the Delta’s buffer role within the understudied Danube-Black Sea continuum.
Wangyipu Li, Zhaoyuan Yao, Yifan Qu, Hanbo Yang, Yang Song, Lisheng Song, Lifeng Wu, and Yaokui Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-460, https://doi.org/10.5194/essd-2024-460, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Due to shortcomings such as extensive data gaps and limited observation durations in current ground-based latent heat flux (LE) datasets, we developed a novel gap-filling and prolongation framework for ground-based LE observations, establishing a benchmark dataset for global evapotranspiration (ET) estimation from 2000 to 2022 across 64 sites at various time scales. This comprehensive dataset can strongly support ET modelling, water-carbon cycle monitoring, and long-term climate change analysis.
Juliette Godet, Pierre Nicolle, Nabil Hocini, Eric Gaume, Philippe Davy, Frederic Pons, Pierre Javelle, Pierre-André Garambois, Dimitri Lague, and Olivier Payrastre
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-472, https://doi.org/10.5194/essd-2024-472, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper describes a dataset that includes input, output, and validation data for the simulation of flash flood hazards and three specific flash flood events in the French Mediterranean region. This dataset is particularly valuable as flood mapping methods often lack sufficient benchmark data. Additionally, we demonstrate how the hydraulic method we used, named Floodos, produces highly satisfactory results.
Ling Zhang, Yanhua Xie, Xiufang Zhu, Qimin Ma, and Luca Brocca
Earth Syst. Sci. Data, 16, 5207–5226, https://doi.org/10.5194/essd-16-5207-2024, https://doi.org/10.5194/essd-16-5207-2024, 2024
Short summary
Short summary
This study presented new annual maps of irrigated cropland in China from 2000 to 2020 (CIrrMap250). These maps were developed by integrating remote sensing data, irrigation statistics and surveys, and an irrigation suitability map. CIrrMap250 achieved high accuracy and outperformed currently available products. The new irrigation maps revealed a clear expansion of China’s irrigation area, with the majority (61%) occurring in the water-unsustainable regions facing severe to extreme water stress.
Dominik Paprotny, Paweł Terefenko, and Jakub Śledziowski
Earth Syst. Sci. Data, 16, 5145–5170, https://doi.org/10.5194/essd-16-5145-2024, https://doi.org/10.5194/essd-16-5145-2024, 2024
Short summary
Short summary
Knowledge about past natural disasters can help adaptation to their future occurrences. Here, we present a dataset of 2521 riverine, pluvial, coastal, and compound floods that have occurred in 42 European countries between 1870 and 2020. The dataset contains available information on the inundated area, fatalities, persons affected, or economic loss and was obtained by extensive data collection from more than 800 sources ranging from news reports through government databases to scientific papers.
Paulina Bartkowiak, Bartolomeo Ventura, Alexander Jacob, and Mariapina Castelli
Earth Syst. Sci. Data, 16, 4709–4734, https://doi.org/10.5194/essd-16-4709-2024, https://doi.org/10.5194/essd-16-4709-2024, 2024
Short summary
Short summary
This paper presents the Two-Source Energy Balance evapotranspiration (ET) product driven by Copernicus Sentinel-2 and Sentinel-3 imagery together with ERA5 climate reanalysis data. Daily ET maps are available at 100 m spatial resolution for the period 2017–2021 across four Mediterranean basins: Ebro (Spain), Hérault (France), Medjerda (Tunisia), and Po (Italy). The product is highly beneficial for supporting vegetation monitoring and sustainable water management at the river basin scale.
Fanny J. Sarrazin, Sabine Attinger, and Rohini Kumar
Earth Syst. Sci. Data, 16, 4673–4708, https://doi.org/10.5194/essd-16-4673-2024, https://doi.org/10.5194/essd-16-4673-2024, 2024
Short summary
Short summary
Nitrogen (N) and phosphorus (P) contamination of water bodies is a long-term issue due to the long history of N and P inputs to the environment and their persistence. Here, we introduce a long-term and high-resolution dataset of N and P inputs from wastewater (point sources) for Germany, combining data from different sources and conceptual understanding. We also account for uncertainties in modelling choices, thus facilitating robust long-term and large-scale water quality studies.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-259, https://doi.org/10.5194/essd-2024-259, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. This data helps predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behavior and serves as a resource for future environmental studies.
Rohit Mukherjee, Frederick Policelli, Ruixue Wang, Elise Arellano-Thompson, Beth Tellman, Prashanti Sharma, Zhijie Zhang, and Jonathan Giezendanner
Earth Syst. Sci. Data, 16, 4311–4323, https://doi.org/10.5194/essd-16-4311-2024, https://doi.org/10.5194/essd-16-4311-2024, 2024
Short summary
Short summary
Global water resource monitoring is crucial due to climate change and population growth. This study presents a hand-labeled dataset of 100 PlanetScope images for surface water detection, spanning diverse biomes. We use this dataset to evaluate two state-of-the-art mapping methods. Results highlight performance variations across biomes, emphasizing the need for diverse, independent validation datasets to enhance the accuracy and reliability of satellite-based surface water monitoring techniques.
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data, 16, 3993–4019, https://doi.org/10.5194/essd-16-3993-2024, https://doi.org/10.5194/essd-16-3993-2024, 2024
Short summary
Short summary
Timely global terrestrial evapotranspiration (ET) data are crucial for water resource management and drought forecasting. This study introduces the VISEA algorithm, which integrates satellite data and shortwave radiation to provide daily 0.05° gridded near-real-time ET estimates. By employing a vegetation index–temperature method, this algorithm can estimate ET without requiring additional data. Evaluation results demonstrate VISEA's comparable accuracy with accelerated data availability.
Sibylle Kathrin Hassler, Rafael Bohn Reckziegel, Ben du Toit, Svenja Hoffmeister, Florian Kestel, Anton Kunneke, Rebekka Maier, and Jonathan Paul Sheppard
Earth Syst. Sci. Data, 16, 3935–3948, https://doi.org/10.5194/essd-16-3935-2024, https://doi.org/10.5194/essd-16-3935-2024, 2024
Short summary
Short summary
Agroforestry systems (AFSs) combine trees and crops within the same land unit, providing a sustainable land use option which protects natural resources and biodiversity. Introducing trees into agricultural systems can positively affect water resources, soil characteristics, biomass and microclimate. We studied an AFS in South Africa in a multidisciplinary approach to assess the different influences and present the resulting dataset consisting of water, soil, tree and meteorological variables.
Keirnan J. A. Fowler, Ziqi Zhang, and Xue Hou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-263, https://doi.org/10.5194/essd-2024-263, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents Version 2 of the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS v2 comprises data for an increased number (561) of catchments, each with with long-term monitoring, combining hydrometeorological time series with attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://zenodo.org/doi/10.5281/zenodo.12575680.
Kaihao Zheng, Peirong Lin, and Ziyun Yin
Earth Syst. Sci. Data, 16, 3873–3891, https://doi.org/10.5194/essd-16-3873-2024, https://doi.org/10.5194/essd-16-3873-2024, 2024
Short summary
Short summary
We develop a globally applicable thresholding scheme for DEM-based floodplain delineation to improve the representation of spatial heterogeneity. It involves a stepwise approach to estimate the basin-level floodplain hydraulic geometry parameters that best respect the scaling law while approximating the global hydrodynamic flood maps. A ~90 m resolution global floodplain map, the Spatial Heterogeneity Improved Floodplain by Terrain analysis (SHIFT), is delineated with demonstrated superiority.
Yuzhong Yang, Qingbai Wu, Xiaoyan Guo, Lu Zhou, Helin Yao, Dandan Zhang, Zhongqiong Zhang, Ji Chen, and Guojun Liu
Earth Syst. Sci. Data, 16, 3755–3770, https://doi.org/10.5194/essd-16-3755-2024, https://doi.org/10.5194/essd-16-3755-2024, 2024
Short summary
Short summary
We present the temporal data of stable isotopes in different waterbodies in the Beiluhe Basin in the hinterland of the Qinghai–Tibet Plateau (QTP) produced between 2017 and 2022. In this article, the first detailed stable isotope data of 359 ground ice samples are presented. This first data set provides a new basis for understanding the hydrological effects of permafrost degradation on the QTP.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Hordur Bragi Helgason and Bart Nijssen
Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, https://doi.org/10.5194/essd-16-2741-2024, 2024
Short summary
Short summary
LamaH-Ice is a large-sample hydrology (LSH) dataset for Iceland. The dataset includes daily and hourly hydro-meteorological time series, including observed streamflow and basin characteristics, for 107 basins. LamaH-Ice offers most variables that are included in existing LSH datasets and additional information relevant to cold-region hydrology such as annual time series of glacier extent and mass balance. A large majority of the basins in LamaH-Ice are unaffected by human activities.
Chengcheng Hou, Yan Li, Shan Sang, Xu Zhao, Yanxu Liu, Yinglu Liu, and Fang Zhao
Earth Syst. Sci. Data, 16, 2449–2464, https://doi.org/10.5194/essd-16-2449-2024, https://doi.org/10.5194/essd-16-2449-2024, 2024
Short summary
Short summary
To fill the gap in the gridded industrial water withdrawal (IWW) data in China, we developed the China Industrial Water Withdrawal (CIWW) dataset, which provides monthly IWWs from 1965 to 2020 at a spatial resolution of 0.1°/0.25° and auxiliary data including subsectoral IWW and industrial output value in 2008. This dataset can help understand the human water use dynamics and support studies in hydrology, geography, sustainability sciences, and water resource management and allocation in China.
Nehar Mandal, Prabal Das, and Kironmala Chanda
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-109, https://doi.org/10.5194/essd-2024-109, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Optimal features among hydroclimatic variables and land surface model (LSM) outputs are selected using a novel Bayesian network (BN) approach for simulating Terrestrial Water Storage Anomalies (TWSA). TWSA is simulated using ML models (CNN, SVR, ETR, and Stacking Ensemble Regression), and gridwise leader models are identified globally. TWSA is reconstructed (BNML_TWSA) with the selected leader models from January 1960 to December 2022 to generate a continuous global gridded dataset.
Pierre-Antoine Versini, Leydy Alejandra Castellanos-Diaz, David Ramier, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 16, 2351–2366, https://doi.org/10.5194/essd-16-2351-2024, https://doi.org/10.5194/essd-16-2351-2024, 2024
Short summary
Short summary
Nature-based solutions (NBSs), such as green roofs, have appeared as relevant solutions to mitigate urban heat islands. The evapotranspiration (ET) process allows NBSs to cool the air. To improve our knowledge about ET assessment, this paper presents some experimental measurement campaigns carried out during three consecutive summers. Data are available for three different (large, small, and point-based) spatial scales.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Changming Li, Ziwei Liu, Wencong Yang, Zhuoyi Tu, Juntai Han, Sien Li, and Hanbo Yang
Earth Syst. Sci. Data, 16, 1811–1846, https://doi.org/10.5194/essd-16-1811-2024, https://doi.org/10.5194/essd-16-1811-2024, 2024
Short summary
Short summary
Using a collocation-based approach, we developed a reliable global land evapotranspiration product (CAMELE) by merging multi-source datasets. The CAMELE product outperformed individual input datasets and showed satisfactory performance compared to reference data. It also demonstrated superiority for different plant functional types. Our study provides a promising solution for data fusion. The CAMELE dataset allows for detailed research and a better understanding of land–atmosphere interactions.
Yuhan Guo, Hongxing Zheng, Yuting Yang, Yanfang Sang, and Congcong Wen
Earth Syst. Sci. Data, 16, 1651–1665, https://doi.org/10.5194/essd-16-1651-2024, https://doi.org/10.5194/essd-16-1651-2024, 2024
Short summary
Short summary
We have provided an inaugural version of the hydrogeomorphic dataset for catchments over the Tibetan Plateau. We first provide the width-function-based instantaneous unit hydrograph (WFIUH) for each HydroBASINS catchment, which can be used to investigate the spatial heterogeneity of hydrological behavior across the Tibetan Plateau. It is expected to facilitate hydrological modeling across the Tibetan Plateau.
Chang Liao, Darren Engwirda, Matthew Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-398, https://doi.org/10.5194/essd-2023-398, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Discrete Global Grid systems, or DGGs, are digital frameworks that help us organize information about our planet. Although scientists have used DGGs in areas like weather and nature, using them in the water cycle has been challenging because some core datasets are missing. We created a way to generate these datasets. We then developed the datasets in the Amazon Basin, which plays an important role in our planet's climate. These datasets may help us improve our water cycle models.
Lingbo Li, Hong-Yi Li, Guta Abeshu, Jinyun Tang, L. Ruby Leung, Chang Liao, Zeli Tan, Hanqin Tian, Peter Thornton, and Xiaojuan Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-43, https://doi.org/10.5194/essd-2024-43, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We have developed a new map that reveals how organic carbon from soil leaches into headwater streams over the contiguous United States. We use advanced artificial intelligence techniques and a massive amount of data, including observations at over 2,500 gauges and a wealth of climate and environmental information. The map is a critical step in understanding and predicting how carbon moves through our environment, hence a useful tool for tackling climate challenges.
Ziyun Yin, Peirong Lin, Ryan Riggs, George H. Allen, Xiangyong Lei, Ziyan Zheng, and Siyu Cai
Earth Syst. Sci. Data, 16, 1559–1587, https://doi.org/10.5194/essd-16-1559-2024, https://doi.org/10.5194/essd-16-1559-2024, 2024
Short summary
Short summary
Large-sample hydrology (LSH) datasets have been the backbone of hydrological model parameter estimation and data-driven machine learning models for hydrological processes. This study complements existing LSH studies by creating a dataset with improved sample coverage, uncertainty estimates, and dynamic descriptions of human activities, which are all crucial to hydrological understanding and modeling.
Pierluigi Claps, Giulia Evangelista, Daniele Ganora, Paola Mazzoglio, and Irene Monforte
Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, https://doi.org/10.5194/essd-16-1503-2024, 2024
Short summary
Short summary
FOCA (Italian FlOod and Catchment Atlas) is the first systematic collection of data on Italian river catchments. It comprises geomorphological, soil, land cover, NDVI, climatological and extreme rainfall catchment attributes. FOCA also contains 631 peak and daily discharge time series covering the 1911–2016 period. Using this first nationwide data collection, a wide range of applications, in particular flood studies, can be undertaken within the Italian territory.
Wei Jing Ang, Edward Park, Yadu Pokhrel, Dung Duc Tran, and Ho Huu Loc
Earth Syst. Sci. Data, 16, 1209–1228, https://doi.org/10.5194/essd-16-1209-2024, https://doi.org/10.5194/essd-16-1209-2024, 2024
Short summary
Short summary
Dams have burgeoned in the Mekong, but information on dams is scattered and inconsistent. Up-to-date evaluation of dams is unavailable, and basin-wide hydropower potential has yet to be systematically assessed. We present a comprehensive database of 1055 dams, a spatiotemporal analysis of the dams, and a total hydropower potential of 1 334 683 MW. Considering projected dam development and hydropower potential, the vulnerability and the need for better dam management may be highest in Laos.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Ana M. Ricardo, Rui M. L. Ferreira, Alberto Rodrigues da Silva, Jacinto Estima, Jorge Marques, Ivo Gamito, and Alexandre Serra
Earth Syst. Sci. Data, 16, 375–385, https://doi.org/10.5194/essd-16-375-2024, https://doi.org/10.5194/essd-16-375-2024, 2024
Short summary
Short summary
Floods are among the most common natural disasters responsible for severe damages and human losses. Agueda.2016Flood, a synthesis of locally sensed data and numerically produced data, allows complete characterization of the flood event that occurred in February 2016 in the Portuguese Águeda River. The dataset was managed through the RiverCure Portal, a collaborative web platform connected to a validated shallow-water model.
Jiawei Hou, Albert I. J. M. Van Dijk, Luigi J. Renzullo, and Pablo R. Larraondo
Earth Syst. Sci. Data, 16, 201–218, https://doi.org/10.5194/essd-16-201-2024, https://doi.org/10.5194/essd-16-201-2024, 2024
Short summary
Short summary
The GloLakes dataset provides historical and near-real-time time series of relative (i.e. storage change) and absolute (i.e. total stored volume) storage for more than 27 000 lakes worldwide using multiple sources of satellite data, including laser and radar altimetry and optical remote sensing. These data can help us understand the influence of climate variability and anthropogenic activities on water availability and system ecology over the last 4 decades.
Cited articles
Ad-hoc-Arbeitsgruppe Boden: Bodenkundliche Kartieranleitung: mit 41
Abbildungen, 103 Tabellen und 31 Listen, edited by: Eckelmann, W., E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und
Obermiller), Stuttgart, ISBN 978-3-510-95920-4, 2005.
Assouline, S. and Or, D.: Conceptual and Parametric Representation of Soil
Hydraulic Properties: A Review, Vadose Zone J., 12, 1–20,
https://doi.org/10.2136/vzj2013.07.0121, 2013.
Assouline, S. and Or, D.: The concept of field capacity revisited: Defining
intrinsic static and dynamic criteria for soil internal drainage dynamics,
Water Resour. Res., 50, 4787–4802,
https://doi.org/10.1002/2014wr015475, 2014.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrol. Paper 3, 1–27, Colorado State University, Fort Collins, Colorado, 1964.
Campbell, G. S., Smith, D. M., and Teare, B. L.: Application of a Dew Point
Method to Obtain the Soil Water Characteristic, in: Experimental unsaturated
soil mechanics, Springer, 71–77,
https://doi.org/10.1007/3-540-69873-6_7, 2007.
Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions
of soil water retention characteristics, Water Resour. Res., 24, 755–769,
https://doi.org/10.1029/WR024i005p00755, 1988.
Dane, J. H. and Topp G. C. (Eds.): Methods of Soil Analysis: Part 4 Physical
Methods, John Wiley & Sons., https://doi.org/10.2136/sssabookser5.4,
2002.
DIN ISO 11277: Soil quality – Determination of particle size distribution in
mineral soil material – Method by sieving and sedimentation (ISO 11277:1998
+ ISO 11277:1998 Corrigendum 1:2002), DIN Deutsches Institut für
Normung e.V., https://doi.org/10.31030/9283499, 2002.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28,
1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous
pore structure, Water Resour. Res., 30, 211–223,
https://doi.org/10.1029/93WR02676, 1994.
Durner, W. and Iden, S. C.: The improved integral suspension pressure method
(ISP+) for precise particle size analysis of soil and sedimentary
materials, Soil Till. Res., 213, 105086,
https://doi.org/10.1016/j.still.2021.105086, 2021.
Durner, W., Iden, S. C., and von Unold, G.: The integral suspension pressure
method (ISP) for precise particle-size analysis by gravitational
sedimentation, Water Resour. Res., 53, 33–48,
https://doi.org/10.1002/2016WR019830, 2017.
Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T.
A., Hengl, T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an
important omission in Earth System Models, Nat. Commun., 11, 1–11,
https://doi.org/10.1038/s41467-020-14411-z, 2020.
Germer, K. and Braun, J.: Multi-step outflow and evaporation
experiments–Gaining large undisturbed samples and comparison of the two
methods, J Hydrol., 577, 123914,
https://doi.org/10.1016/j.jhydrol.2019.123914, 2019.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.:
Global Soil Hydraulic Properties dataset based on legacy site observations
and robust parameterization, Sci. Data, 9, 1–15,
https://doi.org/10.1038/s41597-022-01481-5, 2022.
Hohenbrink, T. L., Jackisch, C., Durner, W., Germer, K., Iden, S. C.,
Kreiselmeier, J., Leuther, F., Metzger, J. C., Naseri, M., and Peters, A.: Soil
hydraulic characteristics in a wide range of saturation and soil properties,
GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2023.012, 2023.
Iden, S. C., Peters, A., and Durner, W.: Improving prediction of hydraulic
conductivity by constraining capillary bundle models to a maximum pore size,
Adv. Water Resour., 85, 86–92,
https://doi.org/10.1016/j.advwatres.2015.09.005, 2015.
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.
Jackisch, C., Germer, K., Graeff, T., Andrä, I., Schulz, K., Schiedung, M., Haller-Jans, J., Schneider, J., Jaquemotte, J., Helmer, P., Lotz, L., Bauer, A., Hahn, I., Šanda, M., Kumpan, M., Dorner, J., de Rooij, G., Wessel-Bothe, S., Kottmann, L., Schittenhelm, S., and Durner, W.: Soil moisture and matric potential – an open field comparison of sensor systems, Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, 2020.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport
in soil macropores: principles, controlling factors and consequences for
water quality, Soil Sci., 58, 523–546,
https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007.
Kirste, B., Iden, S. C., and Durner, W.: Determination of the Soil Water
Retention Curve around the Wilting Point: Optimized Protocol for the
Dewpoint Method, Soil Sci. Soc. Am. J., 83, 288–299,
https://doi.org/10.2136/sssaj2018.08.0286, 2019.
Köhn, M.: Die mechanische Analyse des Bodens mittels Pipettmethode, Z
Pflanz. Bodenkunde, 21, 211–222,
https://doi.org/10.1002/jpln.19310210206, 1931.
Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S.,
Feger, K.-H., and Schwärzel, K.: Quantification of soil pore dynamics
during a winter wheat cropping cycle under different tillage regimes, Soil
Till. Res., 192, 222–232, https://doi.org/10.1016/j.still.2019.05.014, 2019.
Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S.,
Feger, K.-H., and Schwärzel, K.: Temporal variations of the hydraulic
conductivity characteristic under conventional and conservation tillage,
Geoderma, 362, 114127, https://doi.org/10.1016/j.geoderma.2019.114127, 2020.
Leuther, F., Schlüter, S., Wallach, R., and Vogel, H.-J.: Structure and
hydraulic properties in soils under long-term irrigation with treated
wastewater, Geoderma, 333, 90–98,
https://doi.org/10.1016/j.geoderma.2018.07.015, 2019.
Meter Group AG: Operation Manual KSAT,
https://library.metergroup.com/Manuals/UMS/KSAT_Manual.pdf, last access: 16 August 2023.
Metzger, J. C., Filipzik, J., Michalzik, B., and Hildebrandt, A.: Stemflow
Infiltration Hotspots Create Soil Microsites Near Tree Stems in an Unmanaged
Mixed Beech Forest, Front. For. Glob. Change, 4, 701293,
https://doi.org/10.3389/ffgc.2021.701293, 2021.
Moeys, J.: soiltexture: Functions for Soil Texture Plot, Classification and
Transformation, R package version 1.5.1 [code],
https://CRAN.R-project.org/package=soiltexture (last access: 16 August 2023), 2018.
Moshrefi, N.: A new method of sampling soil suspension for particle-size
analysis, Soil Sci., 155, 245–248,
https://doi.org/10.1097/00010694-199304000-00002, 1993.
Mualem, Y.: A New Model for Predicting the Hydraulic Conductivity of
Unsaturated Porous Media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.
Nemes, A., Schaap, M., Leij, F., and Wösten, J.: Description of the
unsaturated soil hydraulic database UNSODA version 2.0, J. Hydrol., 251,
151–162, https://doi.org/10.1016/S0022-1694(01)00465-6, 2001.
Nemes, A., Wösten, J. H. M., Lilly, A., and Oude Voshaar, J. H.: Evaluation
of different procedures to interpolate particle-size distributions to
achieve compatibility within soil databases, Geoderma, 90, 187–202,
https://doi.org/10.1016/S0016-7061(99)00014-2, 1999.
Nimmo, J. R.: Comment on the treatment of residual water content in “A
consistent set of parametric models for the two-phase flow of immiscible
fluids in the subsurface” by L. Luckner et al., Water Resour. Res., 27,
661–662, https://doi.org/10.1029/91WR00165, 1991.
Ottoni, M. V., Ottoni Filho, T. B., Schaap, M. G., Lopes-Assad, M. L. R.,
and Rotunno Filho, O. C.: Hydrophysical Database for Brazilian Soils
(HYBRAS) and Pedotransfer Functions for Water Retention, Vadose Zone J., 17, 170095.
https://doi.org/10.2136/vzj2017.05.0095, 2018.
Pertassek, T., Peters, A., and Durner, W.: HYPROP-FIT software user's
manual, V. 3.0, UMS GmbH, Munich, Germany,
https://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf,
(last access: 16 August 2023), 2015.
Peters, A.: Simple consistent models for water retention and hydraulic
conductivity in the complete moisture range, Water Resour. Res., 49,
6765–6780, https://doi.org/10.1002/wrcr.20548, 2013.
Peters, A. and Durner, W.: Simplified evaporation method for determining
soil hydraulic properties, J. Hydrol., 356, 147–162,
https://doi.org/10.1016/j.jhydrol.2008.04.016, 2008.
Peters, A. and Durner, W.: SHYPFIT 2.0 User's Manual, Research Report,
Institut für Ökologie [code], Technische Universität Berlin, Germany,
2015.
Peters, A., Hohenbrink, T. L., Iden, S. C., and Durner, W.: A Simple Model
to Predict Hydraulic Conductivity in Medium to Dry Soil From the Water
Retention Curve, Water Resour. Res., 57, e2020WR029211,
https://doi.org/10.1029/2020WR029211, 2021.
Peters, A., Hohenbrink, T. L., Iden, S. C., van Genuchten, M. Th., and Durner, W.: Prediction of the absolute hydraulic conductivity function from soil water retention data, Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, 2023.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing [code], Vienna, Austria,
https://www.R-project.org/ (last access: 16 August 2023), 2020.
Sarkar, S., Germer, K., Maity, R., and Durner, W.: Measuring near-saturated
hydraulic conductivity of soils by quasi unit-gradient percolation – 1.
Theory and numerical analysis, J. Plant. Nutr. Soil Sc., 182, 524–534,
https://doi.org/10.1002/jpln.201800382, 2019a.
Sarkar, S., Germer, K., Maity, R., and Durner, W.: Measuring near-saturated
hydraulic conductivity of soils by quasi unit-gradient percolation – 2.
Application of the methodology, J. Plant. Nutr. Soil Sc., 182, 535–540,
https://doi.org/10.1002/jpln.201800383, 2019b.
Schaap, M. G., Leij, F. J., and Van Genuchten, M. T.: ROSETTA: a computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Schindler, U.: Ein Schnellverfahren zur Messung der Wasserleitfähigkeit
im teilgesättigten Boden an Stechzylinderproben, Arch. Acker- u.
Pflanzenbau u. Bodenkd., Berlin, 24, 1–7, 1980.
Schindler, U., Durner, W., Von Unold, G., Mueller, L., and Wieland, R.: The
evaporation method: Extending the measurement range of soil hydraulic
properties using the air-entry pressure of the ceramic cup, J. Plant. Nutr.
Soil. Sc., 173, 563–572, https://doi.org/10.1002/jpln.200900201, 2010.
Schindler, U. G. and Müller, L.: Soil hydraulic functions of
international soils measured with the Extended Evaporation Method (EEM) and
the HYPROP device, Open Data Journal for Agricultural Research, 3, 10–16,
https://doi.org/10.18174/odjar.v3i1.15763, 2017.
Schneider, M. and Goss, K.-U.: Prediction of the water sorption isotherm in
air dry soils, Geoderma, 170, 64–69,
https://doi.org/10.1016/j.geoderma.2011.10.008, 2012.
Tuller, M. and Or, D.: Water films and scaling of soil characteristic curves
at low water contents, Water Resour. Res., 41, W09403,
https://doi.org/10.1029/2005WR004142, 2005.
Twarakavi, N. K. C., Šimůnek, J., and Schaap, M. G.: Can
texture-based classification optimally classify soils with respect to soil
hydraulics?, Water Resour. Res., 46, W01501, https://doi.org/10.1029/2009wr007939,
2010.
USDA: Soil Taxonomy: A Basic System of Soil Classification for Making and
Interpreting Soil Surveys, 2nd Edn., United States Department of
Agriculture, Washington DC, USA, https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil Taxonomy.pdf
(last access: 30 September 2023), 1999.
Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil. Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., and others:
Pedotransfer Functions in Earth System Science: Challenges and Perspectives,
Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M., and
Genuchten, M. T.: Using Pedotransfer Functions to Estimate the van
Genuchten–Mualem Soil Hydraulic Properties: A Review, Vadose Zone J., 9,
795–820, https://doi.org/10.2136/vzj2010.0045, 2010.
Weihermüller, L., Lehmann, P., Herbst, M., Rahmati, M., Verhoef, A., Or,
D., Jacques, D., and Vereecken, H.: Choice of Pedotransfer Functions Matters
when Simulating Soil Water Balance Fluxes, J. Adv. Model Earth. Sy., 13,
e2020MS002404, https://doi.org/10.1029/2020MS002404, 2021.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken
Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model, Vadose
Zone J., 8, 86–95, https://doi.org/10.2136/vzj2008.0062, 2009.
Weynants, M., Montanarella, L., Toth, G., Arnoldussen, A., Anaya Romero, M.,
Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonçalves, M. D.
C., Haugen, L. E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay, C. A., Kätterer, T., Kvaerno, S., Laktinova, T., Lamorski, K., Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V., Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tóth, B., and Woesten, H.: European HYdropedological Data Inventory (EU-HYDI), EUR
Scientific and Technical Research Series, vol. EUR 26053 EN, Publications Office of the European Union, https://doi.org/10.2788/5936,
2013.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C. t,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Schaik, R. van,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
Comment: The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18,
2016.
Wösten, J., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of
a database of hydraulic properties of European soils, Geoderma, 90,
169–185, https://doi.org/10.1016/S0016-7061(98)00132-3, 1999.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53,
https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y., Weihermüller, L., Toth, B., Noman, M., and Vereecken, H.:
Analyzing dual porosity in soil hydraulic properties using soil databases
for pedotransfer function development, Vadose Zone J., 21, e20227,
https://doi.org/10.1002/vzj2.20227, 2022.
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
The article describes a collection of 572 data sets of soil water retention and unsaturated...
Altmetrics
Final-revised paper
Preprint