Articles | Volume 15, issue 10
https://doi.org/10.5194/essd-15-4417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-4417-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Soil water retention and hydraulic conductivity measured in a wide saturation range
Tobias L. Hohenbrink
CORRESPONDING AUTHOR
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Deutscher Wetterdienst (DWD), Agrometeorological Research Centre,
38116 Braunschweig, Germany
Conrad Jackisch
Interdisciplinary Environmental Research Centre, TU Bergakademie
Freiberg, 09599 Freiberg, Germany
Institute for Water and River Basin Management, Chair of Hydrology,
Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
Wolfgang Durner
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Kai Germer
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Thünen Institute of Agricultural Technology, 38116 Braunschweig,
Germany
Sascha C. Iden
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Janis Kreiselmeier
Thünen Institute of Forest Ecosystems, 16225 Eberswalde, Germany
Institute of Soil Science and Site Ecology, TU Dresden, 01737 Tharandt, Germany
Frederic Leuther
Helmholtz Centre for Environmental Research – UFZ, Department of Soil
System Sciences, 06120 Halle (Saale), Germany
Chair of Soil Physics, University of Bayreuth, 95447 Bayreuth,
Germany
Johanna C. Metzger
Institute of Soil Science, Center for Earth System Research and
Sustainability (CEN), Universität Hamburg, 20146 Hamburg, Germany
Institute of Geoscience, Group of Ecohydrology, Friedrich Schiller
University Jena, 07749 Jena, Germany
Mahyar Naseri
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Thünen Institute of Agricultural Technology, 38116 Braunschweig,
Germany
Andre Peters
Institute of Geoecology, Soil Science & Soil Physics, TU
Braunschweig, 38106 Braunschweig, Germany
Related authors
Christian Lehr and Tobias Ludwig Hohenbrink
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-172, https://doi.org/10.5194/hess-2024-172, 2024
Preprint under review for HESS
Short summary
Short summary
In hydrology, domain dependence (DD) of spatial Principal Component patterns is a rather unknown feature of the widely applied Principal Component Analysis. It easily leads to wrong hydrological interpretations. DD reference patterns enable to differentiate from the effect. Here, we (1) explore the DD effect, (2) present two methods to calculate DD reference patterns and (3) discuss considering DD. Scripts with an introduction to the DD effect and an implementation of both methods are provided.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Anita Alexandra Sanchez, Maximilian P. Lau, Sean Adam, Sabrina Hedrich, and Conrad Jackisch
EGUsphere, https://doi.org/10.5194/egusphere-2025-4092, https://doi.org/10.5194/egusphere-2025-4092, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Abandoned mine systems release contaminants through episodic connectivity rather than steady seepage. At the Reiche Zeche mine, we show that low flow and pre-flush phases accumulate solutes that are rapidly exported during short-lived reconnection events. These hot moments dominate annual metal loads, highlighting the need for event-sensitive monitoring and targeted, near-source remediation strategies.
Christian Lehr and Tobias Ludwig Hohenbrink
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-172, https://doi.org/10.5194/hess-2024-172, 2024
Preprint under review for HESS
Short summary
Short summary
In hydrology, domain dependence (DD) of spatial Principal Component patterns is a rather unknown feature of the widely applied Principal Component Analysis. It easily leads to wrong hydrological interpretations. DD reference patterns enable to differentiate from the effect. Here, we (1) explore the DD effect, (2) present two methods to calculate DD reference patterns and (3) discuss considering DD. Scripts with an introduction to the DD effect and an implementation of both methods are provided.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024, https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Andre Peters, Sascha C. Iden, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 4579–4593, https://doi.org/10.5194/hess-27-4579-2023, https://doi.org/10.5194/hess-27-4579-2023, 2023
Short summary
Short summary
While various expressions for the water retention curve are commonly compared, the capillary conductivity model proposed by Mualem is widely used but seldom compared to alternatives. We compare four different capillary bundle models in terms of their ability to fully predict the hydraulic conductivity. The Mualem model outperformed the three other models in terms of predictive accuracy. Our findings suggest that the widespread use of the Mualem model is justified.
Moreen Willaredt, Thomas Nehls, and Andre Peters
Hydrol. Earth Syst. Sci., 27, 3125–3142, https://doi.org/10.5194/hess-27-3125-2023, https://doi.org/10.5194/hess-27-3125-2023, 2023
Short summary
Short summary
This study proposes a model to predict soil hydraulic properties (SHPs) of constructed Technosols for urban greening. The SHPs are determined by the Technosol composition and describe their capacity to store and supply water to plants. The model predicts SHPs of any binary mixture based on the SHPs of its two pure components, facilitating simulations of flow and transport processes before production. This can help create Technosols designed for efficient urban greening and water management.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Benjamin Guillaume, Hanane Aroui Boukbida, Gerben Bakker, Andrzej Bieganowski, Yves Brostaux, Wim Cornelis, Wolfgang Durner, Christian Hartmann, Bo V. Iversen, Mathieu Javaux, Joachim Ingwersen, Krzysztof Lamorski, Axel Lamparter, András Makó, Ana María Mingot Soriano, Ingmar Messing, Attila Nemes, Alexandre Pomes-Bordedebat, Martine van der Ploeg, Tobias Karl David Weber, Lutz Weihermüller, Joost Wellens, and Aurore Degré
SOIL, 9, 365–379, https://doi.org/10.5194/soil-9-365-2023, https://doi.org/10.5194/soil-9-365-2023, 2023
Short summary
Short summary
Measurements of soil water retention properties play an important role in a variety of societal issues that depend on soil water conditions. However, there is little concern about the consistency of these measurements between laboratories. We conducted an interlaboratory comparison to assess the reproducibility of the measurement of the soil water retention curve. Results highlight the need to harmonize and standardize procedures to improve the description of unsaturated processes in soils.
Andre Peters, Tobias L. Hohenbrink, Sascha C. Iden, Martinus Th. van Genuchten, and Wolfgang Durner
Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, https://doi.org/10.5194/hess-27-1565-2023, 2023
Short summary
Short summary
The soil hydraulic conductivity function is usually predicted from the water retention curve (WRC) with the requirement of at least one measured conductivity data point for scaling the function. We propose a new scheme of absolute hydraulic conductivity prediction from the WRC without the need of measured conductivity data. Testing the new prediction with independent data shows good results. This scheme can be used when insufficient or no conductivity data are available.
Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner
SOIL, 8, 99–112, https://doi.org/10.5194/soil-8-99-2022, https://doi.org/10.5194/soil-8-99-2022, 2022
Short summary
Short summary
We simulated stony soils with low to high volumes of rock fragments in 3D using evaporation and multistep unit-gradient experiments. Hydraulic properties of virtual stony soils were identified under a wide range of soil matric potentials. The developed models for scaling the hydraulic conductivity of stony soils were evaluated under unsaturated flow conditions.
Conrad Jackisch, Sibylle K. Hassler, Tobias L. Hohenbrink, Theresa Blume, Hjalmar Laudon, Hilary McMillan, Patricia Saco, and Loes van Schaik
Hydrol. Earth Syst. Sci., 25, 5277–5285, https://doi.org/10.5194/hess-25-5277-2021, https://doi.org/10.5194/hess-25-5277-2021, 2021
Frederic Leuther and Steffen Schlüter
SOIL, 7, 179–191, https://doi.org/10.5194/soil-7-179-2021, https://doi.org/10.5194/soil-7-179-2021, 2021
Short summary
Short summary
Freezing and thawing cycles are an important agent of soil structural transformation during the winter season in the mid-latitudes. This study shows that it promotes a well-connected pore system, fragments dense soil clods, and, hence, increases the unsaturated conductivity by a factor of 3. The results are important for predicting the structure formation and hydraulic properties of soils, with the prospect of milder winters due to climate change, and for farmers preparing the seedbed in spring.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Cited articles
Ad-hoc-Arbeitsgruppe Boden: Bodenkundliche Kartieranleitung: mit 41
Abbildungen, 103 Tabellen und 31 Listen, edited by: Eckelmann, W., E. Schweizerbart'sche Verlagsbuchhandlung (Nägele und
Obermiller), Stuttgart, ISBN 978-3-510-95920-4, 2005.
Assouline, S. and Or, D.: Conceptual and Parametric Representation of Soil
Hydraulic Properties: A Review, Vadose Zone J., 12, 1–20,
https://doi.org/10.2136/vzj2013.07.0121, 2013.
Assouline, S. and Or, D.: The concept of field capacity revisited: Defining
intrinsic static and dynamic criteria for soil internal drainage dynamics,
Water Resour. Res., 50, 4787–4802,
https://doi.org/10.1002/2014wr015475, 2014.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrol. Paper 3, 1–27, Colorado State University, Fort Collins, Colorado, 1964.
Campbell, G. S., Smith, D. M., and Teare, B. L.: Application of a Dew Point
Method to Obtain the Soil Water Characteristic, in: Experimental unsaturated
soil mechanics, Springer, 71–77,
https://doi.org/10.1007/3-540-69873-6_7, 2007.
Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions
of soil water retention characteristics, Water Resour. Res., 24, 755–769,
https://doi.org/10.1029/WR024i005p00755, 1988.
Dane, J. H. and Topp G. C. (Eds.): Methods of Soil Analysis: Part 4 Physical
Methods, John Wiley & Sons., https://doi.org/10.2136/sssabookser5.4,
2002.
DIN ISO 11277: Soil quality – Determination of particle size distribution in
mineral soil material – Method by sieving and sedimentation (ISO 11277:1998
+ ISO 11277:1998 Corrigendum 1:2002), DIN Deutsches Institut für
Normung e.V., https://doi.org/10.31030/9283499, 2002.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28,
1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous
pore structure, Water Resour. Res., 30, 211–223,
https://doi.org/10.1029/93WR02676, 1994.
Durner, W. and Iden, S. C.: The improved integral suspension pressure method
(ISP+) for precise particle size analysis of soil and sedimentary
materials, Soil Till. Res., 213, 105086,
https://doi.org/10.1016/j.still.2021.105086, 2021.
Durner, W., Iden, S. C., and von Unold, G.: The integral suspension pressure
method (ISP) for precise particle-size analysis by gravitational
sedimentation, Water Resour. Res., 53, 33–48,
https://doi.org/10.1002/2016WR019830, 2017.
Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M. H., Ghezzehei, T.
A., Hengl, T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an
important omission in Earth System Models, Nat. Commun., 11, 1–11,
https://doi.org/10.1038/s41467-020-14411-z, 2020.
Germer, K. and Braun, J.: Multi-step outflow and evaporation
experiments–Gaining large undisturbed samples and comparison of the two
methods, J Hydrol., 577, 123914,
https://doi.org/10.1016/j.jhydrol.2019.123914, 2019.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.:
Global Soil Hydraulic Properties dataset based on legacy site observations
and robust parameterization, Sci. Data, 9, 1–15,
https://doi.org/10.1038/s41597-022-01481-5, 2022.
Hohenbrink, T. L., Jackisch, C., Durner, W., Germer, K., Iden, S. C.,
Kreiselmeier, J., Leuther, F., Metzger, J. C., Naseri, M., and Peters, A.: Soil
hydraulic characteristics in a wide range of saturation and soil properties,
GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2023.012, 2023.
Iden, S. C., Peters, A., and Durner, W.: Improving prediction of hydraulic
conductivity by constraining capillary bundle models to a maximum pore size,
Adv. Water Resour., 85, 86–92,
https://doi.org/10.1016/j.advwatres.2015.09.005, 2015.
Jackisch, C., Angermann, L., Allroggen, N., Sprenger, M., Blume, T., Tronicke, J., and Zehe, E.: Form and function in hillslope hydrology: in situ imaging and characterization of flow-relevant structures, Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, 2017.
Jackisch, C., Germer, K., Graeff, T., Andrä, I., Schulz, K., Schiedung, M., Haller-Jans, J., Schneider, J., Jaquemotte, J., Helmer, P., Lotz, L., Bauer, A., Hahn, I., Šanda, M., Kumpan, M., Dorner, J., de Rooij, G., Wessel-Bothe, S., Kottmann, L., Schittenhelm, S., and Durner, W.: Soil moisture and matric potential – an open field comparison of sensor systems, Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, 2020.
Jarvis, N. J.: A review of non-equilibrium water flow and solute transport
in soil macropores: principles, controlling factors and consequences for
water quality, Soil Sci., 58, 523–546,
https://doi.org/10.1111/j.1365-2389.2007.00915.x, 2007.
Kirste, B., Iden, S. C., and Durner, W.: Determination of the Soil Water
Retention Curve around the Wilting Point: Optimized Protocol for the
Dewpoint Method, Soil Sci. Soc. Am. J., 83, 288–299,
https://doi.org/10.2136/sssaj2018.08.0286, 2019.
Köhn, M.: Die mechanische Analyse des Bodens mittels Pipettmethode, Z
Pflanz. Bodenkunde, 21, 211–222,
https://doi.org/10.1002/jpln.19310210206, 1931.
Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S.,
Feger, K.-H., and Schwärzel, K.: Quantification of soil pore dynamics
during a winter wheat cropping cycle under different tillage regimes, Soil
Till. Res., 192, 222–232, https://doi.org/10.1016/j.still.2019.05.014, 2019.
Kreiselmeier, J., Chandrasekhar, P., Weninger, T., Schwen, A., Julich, S.,
Feger, K.-H., and Schwärzel, K.: Temporal variations of the hydraulic
conductivity characteristic under conventional and conservation tillage,
Geoderma, 362, 114127, https://doi.org/10.1016/j.geoderma.2019.114127, 2020.
Leuther, F., Schlüter, S., Wallach, R., and Vogel, H.-J.: Structure and
hydraulic properties in soils under long-term irrigation with treated
wastewater, Geoderma, 333, 90–98,
https://doi.org/10.1016/j.geoderma.2018.07.015, 2019.
Meter Group AG: Operation Manual KSAT,
https://library.metergroup.com/Manuals/UMS/KSAT_Manual.pdf, last access: 16 August 2023.
Metzger, J. C., Filipzik, J., Michalzik, B., and Hildebrandt, A.: Stemflow
Infiltration Hotspots Create Soil Microsites Near Tree Stems in an Unmanaged
Mixed Beech Forest, Front. For. Glob. Change, 4, 701293,
https://doi.org/10.3389/ffgc.2021.701293, 2021.
Moeys, J.: soiltexture: Functions for Soil Texture Plot, Classification and
Transformation, R package version 1.5.1 [code],
https://CRAN.R-project.org/package=soiltexture (last access: 16 August 2023), 2018.
Moshrefi, N.: A new method of sampling soil suspension for particle-size
analysis, Soil Sci., 155, 245–248,
https://doi.org/10.1097/00010694-199304000-00002, 1993.
Mualem, Y.: A New Model for Predicting the Hydraulic Conductivity of
Unsaturated Porous Media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976.
Nemes, A., Schaap, M., Leij, F., and Wösten, J.: Description of the
unsaturated soil hydraulic database UNSODA version 2.0, J. Hydrol., 251,
151–162, https://doi.org/10.1016/S0022-1694(01)00465-6, 2001.
Nemes, A., Wösten, J. H. M., Lilly, A., and Oude Voshaar, J. H.: Evaluation
of different procedures to interpolate particle-size distributions to
achieve compatibility within soil databases, Geoderma, 90, 187–202,
https://doi.org/10.1016/S0016-7061(99)00014-2, 1999.
Nimmo, J. R.: Comment on the treatment of residual water content in “A
consistent set of parametric models for the two-phase flow of immiscible
fluids in the subsurface” by L. Luckner et al., Water Resour. Res., 27,
661–662, https://doi.org/10.1029/91WR00165, 1991.
Ottoni, M. V., Ottoni Filho, T. B., Schaap, M. G., Lopes-Assad, M. L. R.,
and Rotunno Filho, O. C.: Hydrophysical Database for Brazilian Soils
(HYBRAS) and Pedotransfer Functions for Water Retention, Vadose Zone J., 17, 170095.
https://doi.org/10.2136/vzj2017.05.0095, 2018.
Pertassek, T., Peters, A., and Durner, W.: HYPROP-FIT software user's
manual, V. 3.0, UMS GmbH, Munich, Germany,
https://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf,
(last access: 16 August 2023), 2015.
Peters, A.: Simple consistent models for water retention and hydraulic
conductivity in the complete moisture range, Water Resour. Res., 49,
6765–6780, https://doi.org/10.1002/wrcr.20548, 2013.
Peters, A. and Durner, W.: Simplified evaporation method for determining
soil hydraulic properties, J. Hydrol., 356, 147–162,
https://doi.org/10.1016/j.jhydrol.2008.04.016, 2008.
Peters, A. and Durner, W.: SHYPFIT 2.0 User's Manual, Research Report,
Institut für Ökologie [code], Technische Universität Berlin, Germany,
2015.
Peters, A., Hohenbrink, T. L., Iden, S. C., and Durner, W.: A Simple Model
to Predict Hydraulic Conductivity in Medium to Dry Soil From the Water
Retention Curve, Water Resour. Res., 57, e2020WR029211,
https://doi.org/10.1029/2020WR029211, 2021.
Peters, A., Hohenbrink, T. L., Iden, S. C., van Genuchten, M. Th., and Durner, W.: Prediction of the absolute hydraulic conductivity function from soil water retention data, Hydrol. Earth Syst. Sci., 27, 1565–1582, https://doi.org/10.5194/hess-27-1565-2023, 2023.
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing [code], Vienna, Austria,
https://www.R-project.org/ (last access: 16 August 2023), 2020.
Sarkar, S., Germer, K., Maity, R., and Durner, W.: Measuring near-saturated
hydraulic conductivity of soils by quasi unit-gradient percolation – 1.
Theory and numerical analysis, J. Plant. Nutr. Soil Sc., 182, 524–534,
https://doi.org/10.1002/jpln.201800382, 2019a.
Sarkar, S., Germer, K., Maity, R., and Durner, W.: Measuring near-saturated
hydraulic conductivity of soils by quasi unit-gradient percolation – 2.
Application of the methodology, J. Plant. Nutr. Soil Sc., 182, 535–540,
https://doi.org/10.1002/jpln.201800383, 2019b.
Schaap, M. G., Leij, F. J., and Van Genuchten, M. T.: ROSETTA: a computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Schindler, U.: Ein Schnellverfahren zur Messung der Wasserleitfähigkeit
im teilgesättigten Boden an Stechzylinderproben, Arch. Acker- u.
Pflanzenbau u. Bodenkd., Berlin, 24, 1–7, 1980.
Schindler, U., Durner, W., Von Unold, G., Mueller, L., and Wieland, R.: The
evaporation method: Extending the measurement range of soil hydraulic
properties using the air-entry pressure of the ceramic cup, J. Plant. Nutr.
Soil. Sc., 173, 563–572, https://doi.org/10.1002/jpln.200900201, 2010.
Schindler, U. G. and Müller, L.: Soil hydraulic functions of
international soils measured with the Extended Evaporation Method (EEM) and
the HYPROP device, Open Data Journal for Agricultural Research, 3, 10–16,
https://doi.org/10.18174/odjar.v3i1.15763, 2017.
Schneider, M. and Goss, K.-U.: Prediction of the water sorption isotherm in
air dry soils, Geoderma, 170, 64–69,
https://doi.org/10.1016/j.geoderma.2011.10.008, 2012.
Tuller, M. and Or, D.: Water films and scaling of soil characteristic curves
at low water contents, Water Resour. Res., 41, W09403,
https://doi.org/10.1029/2005WR004142, 2005.
Twarakavi, N. K. C., Šimůnek, J., and Schaap, M. G.: Can
texture-based classification optimally classify soils with respect to soil
hydraulics?, Water Resour. Res., 46, W01501, https://doi.org/10.1029/2009wr007939,
2010.
USDA: Soil Taxonomy: A Basic System of Soil Classification for Making and
Interpreting Soil Surveys, 2nd Edn., United States Department of
Agriculture, Washington DC, USA, https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil Taxonomy.pdf
(last access: 30 September 2023), 1999.
Van Genuchten, M. T.: A Closed-form Equation for Predicting the Hydraulic
Conductivity of Unsaturated Soils, Soil. Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U.,
Montzka, C., Nemes, A., Pachepsky, Y. A., Padarian, J., and others:
Pedotransfer Functions in Earth System Science: Challenges and Perspectives,
Rev. Geophys., 55, 1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M., and
Genuchten, M. T.: Using Pedotransfer Functions to Estimate the van
Genuchten–Mualem Soil Hydraulic Properties: A Review, Vadose Zone J., 9,
795–820, https://doi.org/10.2136/vzj2010.0045, 2010.
Weihermüller, L., Lehmann, P., Herbst, M., Rahmati, M., Verhoef, A., Or,
D., Jacques, D., and Vereecken, H.: Choice of Pedotransfer Functions Matters
when Simulating Soil Water Balance Fluxes, J. Adv. Model Earth. Sy., 13,
e2020MS002404, https://doi.org/10.1029/2020MS002404, 2021.
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken
Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model, Vadose
Zone J., 8, 86–95, https://doi.org/10.2136/vzj2008.0062, 2009.
Weynants, M., Montanarella, L., Toth, G., Arnoldussen, A., Anaya Romero, M.,
Bilas, G., Borresen, T., Cornelis, W., Daroussin, J., Gonçalves, M. D.
C., Haugen, L. E., Hennings, V., Houskova, B., Iovino, M., Javaux, M., Keay, C. A., Kätterer, T., Kvaerno, S., Laktinova, T., Lamorski, K., Lilly, A., Mako, A., Matula, S., Morari, F., Nemes, A., Patyka, N. V., Romano, N., Schindler, U., Shein, E., Slawinski, C., Strauss, P., Tóth, B., and Woesten, H.: European HYdropedological Data Inventory (EU-HYDI), EUR
Scientific and Technical Research Series, vol. EUR 26053 EN, Publications Office of the European Union, https://doi.org/10.2788/5936,
2013.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne,
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon,
O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A.
J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C. t,
Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons,
A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Schaik, R. van,
Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz,
M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J.,
Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.:
Comment: The FAIR Guiding Principles for scientific data management and
stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18,
2016.
Wösten, J., Lilly, A., Nemes, A., and Le Bas, C.: Development and use of
a database of hydraulic properties of European soils, Geoderma, 90,
169–185, https://doi.org/10.1016/S0016-7061(98)00132-3, 1999.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53,
https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhang, Y., Weihermüller, L., Toth, B., Noman, M., and Vereecken, H.:
Analyzing dual porosity in soil hydraulic properties using soil databases
for pedotransfer function development, Vadose Zone J., 21, e20227,
https://doi.org/10.1002/vzj2.20227, 2022.
Short summary
The article describes a collection of 572 data sets of soil water retention and unsaturated hydraulic conductivity data measured with state-of-the-art laboratory methods. Furthermore, the data collection contains basic soil properties such as soil texture and organic carbon content. We expect that the data will be useful for various important purposes, for example, the development of soil hydraulic property models and related pedotransfer functions.
The article describes a collection of 572 data sets of soil water retention and unsaturated...
Altmetrics
Final-revised paper
Preprint