Articles | Volume 15, issue 6
https://doi.org/10.5194/essd-15-2431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-2431-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
An investigation of the global uptake of CO2 by lime from 1930 to 2020
Longfei Bing
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
110016, China
Key Laboratory of Pollution Ecology and Environmental Engineering,
Chinese Academy of Sciences, Shenyang 110016, China
Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning
Province, Shenyang 110016, China
Mingjing Ma
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
110016, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Lili Liu
Search CO (Shanghai) Environmental Science & Technology Co.,
Ltd, Shanghai 200232, China
Jiaoyue Wang
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
110016, China
Key Laboratory of Pollution Ecology and Environmental Engineering,
Chinese Academy of Sciences, Shenyang 110016, China
Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning
Province, Shenyang 110016, China
Le Niu
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
110016, China
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Fengming Xi
CORRESPONDING AUTHOR
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
110016, China
Key Laboratory of Pollution Ecology and Environmental Engineering,
Chinese Academy of Sciences, Shenyang 110016, China
Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning
Province, Shenyang 110016, China
Related authors
Zi Huang, Jiaoyue Wang, Longfei Bing, Yijiao Qiu, Rui Guo, Ying Yu, Mingjing Ma, Le Niu, Dan Tong, Robbie M. Andrew, Pierre Friedlingstein, Josep G. Canadell, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 15, 4947–4958, https://doi.org/10.5194/essd-15-4947-2023, https://doi.org/10.5194/essd-15-4947-2023, 2023
Short summary
Short summary
This is about global and regional cement process carbon emissions and CO2 uptake calculations from 1930 to 2019. The global cement production is rising to 4.4 Gt, causing processing carbon emission of 1.81 Gt (95% CI: 1.75–1.88 Gt CO2) in 2021. Plus, in 2021, cement’s carbon accumulated uptake (22.9 Gt, 95% CI: 19.6–22.6 Gt CO2) has offset 55.2% of cement process CO2 emissions (41.5 Gt, 95% CI: 38.7–47.1 Gt CO2) since 1930.
Rui Guo, Jiaoyue Wang, Longfei Bing, Dan Tong, Philippe Ciais, Steven J. Davis, Robbie M. Andrew, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 13, 1791–1805, https://doi.org/10.5194/essd-13-1791-2021, https://doi.org/10.5194/essd-13-1791-2021, 2021
Short summary
Short summary
Using a life-cycle approach, we estimated the CO2 process emission and uptake of cement materials produced and consumed from 1930 to 2019; ~21 Gt of CO2, about 55 % of the total process emission, had been abated through cement carbonation. China contributed the greatest to the cumulative uptake, with more than 6 Gt (~30 % of the world total), while ~59 %, or more than 12 Gt, of the total uptake was attributed to mortar. Cement CO2 uptake makes up a considerable part of the human carbon budget.
Le Niu, Songbin Wu, Robbie M. Andrew, Zi Shao, Jiaoyue Wang, and Fengming Xi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-437, https://doi.org/10.5194/essd-2024-437, 2024
Preprint under review for ESSD
Short summary
Short summary
This study provides a precise bottom-up quantification to cement carbonation sinks at national and global levels. It shows the global CO2 uptake by cement materials increases from 7.74 Mt yr-1 in 1928 to 0.84 Gt yr-1 in 2023, and projected to rise to 0.86 Gt yr-1 in 2024, the accumulated CO2 uptake offsets about 46 % of the cement process emission. The dominance in cement carbon uptake has shifted from the USA, Japan and some European countries to emerging economies such as China and India.
Zi Huang, Jiaoyue Wang, Longfei Bing, Yijiao Qiu, Rui Guo, Ying Yu, Mingjing Ma, Le Niu, Dan Tong, Robbie M. Andrew, Pierre Friedlingstein, Josep G. Canadell, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 15, 4947–4958, https://doi.org/10.5194/essd-15-4947-2023, https://doi.org/10.5194/essd-15-4947-2023, 2023
Short summary
Short summary
This is about global and regional cement process carbon emissions and CO2 uptake calculations from 1930 to 2019. The global cement production is rising to 4.4 Gt, causing processing carbon emission of 1.81 Gt (95% CI: 1.75–1.88 Gt CO2) in 2021. Plus, in 2021, cement’s carbon accumulated uptake (22.9 Gt, 95% CI: 19.6–22.6 Gt CO2) has offset 55.2% of cement process CO2 emissions (41.5 Gt, 95% CI: 38.7–47.1 Gt CO2) since 1930.
Rui Guo, Jiaoyue Wang, Longfei Bing, Dan Tong, Philippe Ciais, Steven J. Davis, Robbie M. Andrew, Fengming Xi, and Zhu Liu
Earth Syst. Sci. Data, 13, 1791–1805, https://doi.org/10.5194/essd-13-1791-2021, https://doi.org/10.5194/essd-13-1791-2021, 2021
Short summary
Short summary
Using a life-cycle approach, we estimated the CO2 process emission and uptake of cement materials produced and consumed from 1930 to 2019; ~21 Gt of CO2, about 55 % of the total process emission, had been abated through cement carbonation. China contributed the greatest to the cumulative uptake, with more than 6 Gt (~30 % of the world total), while ~59 %, or more than 12 Gt, of the total uptake was attributed to mortar. Cement CO2 uptake makes up a considerable part of the human carbon budget.
Related subject area
Domain: ESSD – Global | Subject: Atmospheric chemistry and physics
Climate change risks illustrated by the IPCC “burning embers”
Four decades of global surface albedo estimates in the third edition of the CM SAF cLoud, Albedo and surface Radiation (CLARA) climate data record
Data supporting the North Atlantic Climate System: Integrated Studies (ACSIS) programme, including atmospheric composition, oceanographic and sea ice observations (2016–2022) and output from ocean, atmosphere, land and sea-ice models (1950–2050)
Seamless mapping of long-term (2010–2020) daily global XCO2 and XCH4 from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and CAMS global greenhouse gas reanalysis (CAMS-EGG4) with a spatiotemporally self-supervised fusion method
Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset
Isotopic measurements in water vapor, precipitation, and seawater during EUREC4A
Global Carbon Budget 2022
Philippe Marbaix, Alexandre K. Magnan, Veruska Muccione, Peter W. Thorne, and Zinta Zommers
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-312, https://doi.org/10.5194/essd-2024-312, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Since 2001, the IPCC has used 'burning ember' diagrams to show how risks increase with global warming. We bring this data into a harmonised framework and facilitate access through an online 'climate risks ember explorer'. Without high levels of adaptation, most risks reach a high level around 2 to 2.3 °C of global warming. Improvements in future IPCC reports could include systematic collection of explanatory information, broader coverage of regions and greater consideration of adaptation.
Aku Riihelä, Emmihenna Jääskeläinen, and Viivi Kallio-Myers
Earth Syst. Sci. Data, 16, 1007–1028, https://doi.org/10.5194/essd-16-1007-2024, https://doi.org/10.5194/essd-16-1007-2024, 2024
Short summary
Short summary
We describe a new climate data record describing the surface albedo, or reflectivitity, of Earth's surface (called CLARA-A3 SAL). The climate data record spans over 4 decades of satellite observations, beginning in 1979. We conduct a quality assessment of the generated data, comparing them against other satellite data and albedo observations made on the ground. We find that the new data record in general matches surface observations well and is stable through time.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Yuan Wang, Qiangqiang Yuan, Tongwen Li, Yuanjian Yang, Siqin Zhou, and Liangpei Zhang
Earth Syst. Sci. Data, 15, 3597–3622, https://doi.org/10.5194/essd-15-3597-2023, https://doi.org/10.5194/essd-15-3597-2023, 2023
Short summary
Short summary
We propose a novel spatiotemporally self-supervised fusion method to establish long-term daily seamless global XCO2 and XCH4 products. Results show that the proposed method achieves a satisfactory accuracy that distinctly exceeds that of CAMS-EGG4 and is superior or close to those of GOSAT and OCO-2. In particular, our fusion method can effectively correct the large biases in CAMS-EGG4 due to the issues from assimilation data, such as the unadjusted anthropogenic emission for COVID-19.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Cited articles
Almanac of China building materials industry,
https://www.yearbookchina.com/naviBooklist-n3020013348-1.html,
last access: 6 June 2023.
Baciocchi, R.: Carbonation of Industrial Residues for CCUS: Fundamentals,
Energy Requirements and Scale-up Opportunities, CO2 Summit III:
Pathways to Carbon Capture, Utilization, and Storage Deployment, ECI Symposium Series, https://dc.engconfintl.org/co2_summit3/15 (last access: 8 June 2023), 2017.
Berner, R. A., Lasaga, A. C., and Garrels, R. M.: The carbonate-silicate
geochemical cycle and its effect on atmospheric carbon dioxide over the past
100 million years, Am. J. Sci., 283, 641–683,
https://doi.org/10.2475/AJS.283.7.641, 1983.
Bhatia, S. and Perlmutter, D.: Effect of the product layer on the kinetics
of the CO2-lime reaction, AIChE Journal, 29, 79–86,
https://doi.org/10.1002/AIC.690290111, 1983.
Bobicki, E. R., Liu, Q., Xu, Z., and Zeng, H.: Carbon capture and storage
using alkaline industrial wastes, Prog. Energ. Combust.,
38, 302–320, https://doi.org/10.1016/J.PECS.2011.11.002, 2012.
Cao, Z., Liu, G., Duan, H., Xi, F., and Yang, Y.: Unravelling the mystery of Chinese
building lifetime: A calibration and verification based on dynamic material
flow analysis, Appl. Energ., 238, 442–452,
https://doi.org/10.1016/j.apenergy.2019.01.106, 2019.
China Construction Material Industry Yearbook,
https://data.cnki.net/yearBook/single?id=N2022040143 (last access: 27 May 2022), 2022
China Statistical Yearbook:
https://data.stats.gov.cn/easyquery.htm?cn=C01, last access: 27 May 2022.
Cizer, Ö., Rodriguez-Navarro, C., Ruiz-Agudo, E., Elsen, J., van Gemert,
D., and van Balen, K.: Phase and morphology evolution of calcium carbonate
precipitated by carbonation of hydrated lime, J. Mater. Sci.,
47, 6151–6165, https://doi.org/10.1007/s10853-012-6535-7, 2012a.
Cizer, Ö., van Balen, K., Elsen, J., and van Gemert, D.: Real-time
investigation of reaction rate and mineral phase modifications of lime
carbonation, Constr. Build. Mater., 35, 741–751,
https://doi.org/10.1016/J.CONBUILDMAT.2012.04.036, 2012b.
Cui, D., Deng, Z., and Liu, Z.: China's non-fossil fuel CO2 emissions
from industrial processes, Appl. Energ., 254, 113537,
https://doi.org/10.1016/J.APENERGY.2019.113537, 2019.
Despotou, E., Shtiza, A., Schlegel, T., and Verhelst, F.: Literature study
on the rate and mechanism of carbonation of lime in mortars/Literaturstudie über Mechanismus und Grad der Karbonatisierung von
Kalkhydrat im Mörtel, Mauerwerk, 20, 124–137,
https://doi.org/10.1002/DAMA.201500674, 2016.
Dong, Y., Yupin, W., Wang, W., and Dehai, L.: Demonstration Analysis of
Chinese Construction Industry Output under Global Financial Crisis, Sci. Technol. Manag. Res., 30, 72–75, 2010.
Greco-Coppi, M., Hofmann, C., Ströhle, J., Walter, D., and Epple, B.:
Efficient CO2 capture from lime production by an indirectly heated
carbonate looping process, Int. J. Greenh. Gas Contr.,
112, 103430, https://doi.org/10.1016/J.IJGGC.2021.103430, 2021.
Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis, S. J., Andrew, R. M., Xi, F., and Liu, Z.: Global CO2 uptake by cement from 1930 to 2019, Earth Syst. Sci. Data, 13, 1791–1805, https://doi.org/10.5194/essd-13-1791-2021, 2021.
Hao, J., Jiang, X., Yang, H., Yang, S., and Li, Z.: Research Progress
and Application of Carbide Slag, Guangzhou Chemical Industry, 41, 45–46,
2013.
Huang, C., Deng, Y., Xing, X., and Lu, J.: Comprehensive utilization of
carbide slag, Journal of Jiaozuo Institute of Technology (Natural Science),
23, 143–146, 2004.
IPCC: IPCC guidelines for national
greenhouse gas inventories, Institute for Global
Environmental Strategies (IGES), Hayama (Japan), 2006.
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2021.
Lai, Q. T., Habte, L., Thriveni, T., Seongho, L., and Ahn, J. W.: COVID-19
Impacts on Climate Change – Sustainable Technologies for Carbon Capture
Storage and Utilization (CCUS), Minerals, Metals and Materials Series, 23–28, https://doi.org/10.1007/978-3-030-65257-9_3, 2021.
Lan, X., Tans, P., and Thoning, K. W.: Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements, Version 2023-06, https://doi.org/10.15138/9N0H-ZH07, 2023.
Latif, M. A., Naganathan, S., Razak, H. A., and Mustapha, K. N.: Performance
of Lime Kiln Dust as Cementitious Material, Proced. Eng., 125,
780–787, https://doi.org/10.1016/J.PROENG.2015.11.135, 2015.
Li, H., Wang, S., Bai, X., Luo, W., Tang, H., Cao, Y., Wu, L., Chen, F., Li,
Q., Zeng, C., and Wang, M.: Spatiotemporal distribution and national
measurement of the global carbonate carbon sink, Sci. Total
Environ., 643, 157–170, https://doi.org/10.1016/j.scitotenv.2018.06.196, 2018.
Lin, Q., Wang, X., Cao, J., and Zhang, J.: Preparation of Nanosized Calcium
Carbonate from Calcium Carbide Residue, Guizhou Chemical Industry, 3, 5–7,
2006.
Liu, L. L., Ling, J. H., Li, T., Wang, J. Y., and Xi, F. M.: Review of lime
carbon sink, Chinese J. Appl. Ecol., 29, 327–334, 2018a.
Liu, L. L., Wang, J., Bing, L., Ling, J., Xu, M., and Xi, F.: Analysis of
carbon sink of steel slag in China, Chinese J. Appl. Ecol., 29,
3385–3390, 2018b.
Ma, J., Chen, Y., Xu, D., Xu, F., Xue, S., Fan, B., Liu, D. K., and Ma,
S.: Effects of Particle Size difference between White Mud and Limestone on
Desulfurization Performance, Journal of Chinese Society of Power
Engineering, 6, 497–504, 2021.
Ma, M., Bing, L., Liu, L., Wang, J., Niu, L., and Xi, F.: Global uptake of CO2 by lime from 1930 to 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.7896106, 2023.
Ma, M. J., Ma, M. J., Xi, F. M., Ling, J. H., Ling, J. H., Wang, J. Y., and
Quan, S. M.: Research progress on mineral carhonation of carbon dioxide,
Chinese J. Ecol., 38, 3854–3863,
https://doi.org/10.13292/J.1000-4890.201912.002, 2019.
Ma, M., Guo, R., Bing, L., Wang, J., Yin, Y., Zhang, W., Niu, L., Liu, Z., and Xi, F.: Quantitative analysis of CO2 uptake by alkaline solid wastes in China, J. Clean. Prod., 363, 132454, https://doi.org/10.1016/j.jclepro.2022.132454, 2022.
Pan, S. Y., Chang, E. E., and Chiang, P.-C.: CO2 capture by accelerated
carbonation of alkaline wastes: a review on its principles and applications,
Aerosol Air Qual. Res., 12, 770–791, 2012.
Pan, S. Y., Chen, Y. H., Fan, L. S., Kim, H., Gao, X., Ling, T. C., Chiang,
P. C., Pei, S. L., and Gu, G.: CO2 mineralization and utilization by
alkaline solid wastes for potential carbon reduction, Nat. Sustain.,
3, 399–405, https://doi.org/10.1038/s41893-020-0486-9, 2020.
Qin, J., Cui, C., Cui, X., Hussain, A., Yang, C., and Yang, S.: Recycling of
lime mud and fly ash for fabrication of anorthite ceramic at low sintering
temperature, Ceram. Int., 41, 5648–5655,
https://doi.org/10.1016/J.CERAMINT.2014.12.149, 2015.
Renforth, P.: The negative emission potential of alkaline materials, Nat.
Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-09475-5, 2019.
Samari, M., Ridha, F., Manovic, V., Macchi, A., and Anthony, E. J.: Direct
capture of carbon dioxide from air via lime-based sorbents, Mitigation and
Adaptation Strategies for Global Change, 25, 25–41,
https://doi.org/10.1007/s11027-019-9845-0, 2020.
Shan, Y., Liu, Z., and Guan, D.: CO2 emissions from China's lime
industry, Appl. Energ., 166, 245–252,
https://doi.org/10.1016/j.apenergy.2015.04.091, 2016.
Snæbjörnsdóttir, S., Sigfússon, B., Marieni, C., Goldberg,
D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through
mineral carbonation, Nat. Rev. Earth Environ., 1,
90–102, https://doi.org/10.1038/s43017-019-0011-8, 2020.
Tong, Q., Zhou, S., Guo, Y., Zhang, Y., and Wei, X.: Forecast and Analysis
on Reducing China's CO2 Emissions from Lime Industrial Process, Int. J.
Environ. Res. Public He., 16, 500, https://doi.org/10.3390/IJERPH16030500, 2019.
USGS: Iron and Steel Slag Statistics and Information,
https://www.usgs.gov/centers/national-minerals-information-center/iron-and-steel-slag-statistics-and-information, last
access: 27 May 2022a.
USGS: Lime Statistics and Information,
https://www.usgs.gov/centers/national-minerals-information-center/lime-statistics-and-information,
last access: 26 May 2022b.
Ventol, L., Vendrell, M., Giraldez, P., and Merino, L.: Traditional organic
additives improve lime mortars: New old materials for restoration and
building natural stone fabrics, Constr. Build. Mater., 25,
3313–3318, https://doi.org/10.1016/J.CONBUILDMAT.2011.03.020, 2011.
Wang, L., Sun, N., Tang, H., and Sun, W.: A review on comprehensive
utilization of red mud and prospect analysis, Minerals, 9, 362,
https://doi.org/10.3390/MIN9060362, 2019.
Wang, Q. and Yan, P.: Characteristic of hydration products of steel slag,
Journal of the Chinese Ceramic society, 38, 1731–1734,
https://doi.org/10.14062/j.issn.0454-5648.2010.09.030, 2010.
Wang, Q., Shen, F., Luo, M., and Li, X.: Progress and Application of Calcium Carbonate Produced by Precipitation Method, Mater. Sci. Eng., 20, 306–312, 2002.
Xi, F., Davis, S. J., Ciais, P., Crawford-Brown, D., Guan, D., Pade, C.,
Shi, T., Syddall, M., Lv, J., Ji, L., Bing, L., Wang, J., Wei, W., Yang, K.
H., Lagerblad, B., Galan, I., Andrade, C., Zhang, Y., and Liu, Z.:
Substantial global carbon uptake by cement carbonation, Nat. Geosci.,
9, 880–883, https://doi.org/10.1038/ngeo2840, 2016.
Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., Li, Q., Wu, L.,
Chen, F., Li, C., Deng, Y., Yang, Y., and Xi, H.: Global CO2
Consumption by Silicate Rock Chemical Weathering: Its Past and Future,
Earth's Future, 9, 5, https://doi.org/10.1029/2020EF001938, 2021.
Short summary
We provided CO2 uptake inventory for global lime materials from 1930–2020, The majority of CO2 uptake was from the lime in China.
Our dataset and the accounting mathematical model may serve as a set of tools to improve the CO2 emission inventories and provide data support for policymakers to formulate scientific and reasonable policies under
carbon neutraltarget.
We provided CO2 uptake inventory for global lime materials from 1930–2020, The majority of CO2...
Altmetrics
Final-revised paper
Preprint