Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-155-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
SDUST2020 MSS: a global 1′ × 1′ mean sea surface model determined from multi-satellite altimetry data
Jiajia Yuan
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao, Shandong, China
School of Geomatics, Anhui University of Science and Technology,
Huainan, Anhui, China
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao, Shandong, China
Chengcheng Zhu
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao, Shandong, China
School of Surveying and Geo-Informatics, Shandong Jianzhu University,
Jinan, Shandong, China
Zhen Li
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao, Shandong, China
Xin Liu
College of Geodesy and Geomatics, Shandong University of Science and
Technology, Qingdao, Shandong, China
Jinyao Gao
Second Institute of Oceanography of MNR, Hangzhou, Zhejiang, China
Related authors
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Dechao An, Jinyun Guo, Xiaotao Chang, Zhenming Wang, Yongjun Jia, Xin Liu, Valery Bondur, and Heping Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2132, https://doi.org/10.5194/egusphere-2023-2132, 2023
Short summary
Short summary
Seafloor topography, as fundamental geoinformation in marine surveying and mapping, plays a crucial role in numerous scientific studies. In this paper, we focus on constructing a high-precision seafloor topography/bathymetry model for the Philippine Sea (5° N–35° N, 120° E–150° E) based on shipborne bathymetric data and marine gravity anomalies, and evaluate the reliability of the model's accuracy.
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Related subject area
Domain: ESSD – Ocean | Subject: Physical oceanography
A Mediterranean drifter dataset
The DTU21 global mean sea surface and first evaluation
A dataset for investigating socio-ecological changes in Arctic fjords
Oceanographic dataset collected during the 2021 scientific expedition of the Canadian Coast Guard Ship Amundsen
Dataset of depth and temperature profiles obtained from 2012 to 2020 using commercial fishing vessels of the AdriFOOS fleet in the Adriatic Sea
Measurements and modeling of water levels, currents, density, and wave climate on a semi-enclosed tidal bay, Cádiz (southwest Spain)
Wind wave and water level dataset for Hornsund, Svalbard (2013–2021)
Hyperspectral reflectance of pristine, ocean weathered and biofouled plastics from dry to wet and submerged state
Lagoon hydrodynamics of pearl farming atolls: the case of Raroia, Takapoto, Apataki and Takaroa (French Polynesia)
Deep-water hydrodynamic observations around a cold-water coral habitat in a submarine canyon in the eastern Ligurian Sea (Mediterranean Sea)
Ocean cross-validated observations from R/Vs L'Atalante, Maria S. Merian, and Meteor and related platforms as part of the EUREC4A-OA/ATOMIC campaign
A global Lagrangian eddy dataset based on satellite altimetry
The sea level time series of Trieste, Molo Sartorio, Italy (1869–2021)
Measurements of Nearshore Waves through Coherent Arrays of Free-Drifting Wave Buoys
Southern Europe and western Asian marine heatwaves (SEWA-MHWs): a dataset based on macroevents
An evaluation of long-term physical and hydrochemical measurements at the Sylt Roads Marine Observatory (1973–2019), Wadden Sea, North Sea
Annual hydrographic variability in Antarctic coastal waters infused with glacial inflow
Argo salinity: bias and uncertainty evaluation
Improved global sea surface height and current maps from remote sensing and in situ observations
Extension of high temporal resolution sea level time series at Socoa (Saint Jean-de-Luz, France) back to 1875
Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020)
Synoptic observations of sediment transport and exchange mechanisms in the turbid Ems Estuary: the EDoM campaign
A compilation of global bio-optical in situ data for ocean colour satellite applications – version three
Deep-water hydrodynamic observations of two moorings sites on the continental slope of the southern Adriatic Sea (Mediterranean Sea)
Hydrodynamic and hydrological processes within a variety of coral reef lagoons: field observations during six cyclonic seasons in New Caledonia
Reconstructing ocean subsurface salinity at high resolution using a machine learning approach
The HYPERMAQ dataset: bio-optical properties of moderately to extremely turbid waters
Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network
SDUST2021GRA: global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data
Reanalyses of Maskelyne's tidal data at St. Helena in 1761
Twenty-one years of hydrological data acquisition in the Mediterranean Sea: quality, availability, and research
A new operational Mediterranean diurnal optimally interpolated sea surface temperature product within the Copernicus Marine Service
Wind waves in the North Atlantic from ship navigational radar: SeaVision development and its validation with the Spotter wave buoy and WaveWatch III
Alberto Ribotti, Antonio Bussani, Milena Menna, Andrea Satta, Roberto Sorgente, Andrea Cucco, and Riccardo Gerin
Earth Syst. Sci. Data, 15, 4651–4659, https://doi.org/10.5194/essd-15-4651-2023, https://doi.org/10.5194/essd-15-4651-2023, 2023
Short summary
Short summary
Over 100 experiments were realized between 1998 and 2022 in the Mediterranean Sea using surface coastal and offshore Lagrangian drifters. Raw data were initially unified and pre-processed. Then, the integrity of the received data packages was checked and incomplete ones were discarded. Deployment information was retrieved and integrated into the PostgreSQL database. Data were interpolated at defined time intervals, providing a dataset of 158 trajectories, available in different formats.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Robert W. Schlegel and Jean-Pierre Gattuso
Earth Syst. Sci. Data, 15, 3733–3746, https://doi.org/10.5194/essd-15-3733-2023, https://doi.org/10.5194/essd-15-3733-2023, 2023
Short summary
Short summary
A single dataset was created for investigations of changes in the socio-ecological systems within seven Arctic fjords by amalgamating roughly 1400 datasets from a number of sources. The many variables in these data were organised into five distinct categories and classified into 14 key drivers. Data for seawater temperature and salinity are available from the late 19th century, with some other drivers having data available from the 1950s and 1960s and the others starting from the 1990s onward.
Tahiana Ratsimbazafy, Thibaud Dezutter, Amélie Desmarais, Daniel Amirault, Pascal Guillot, and Simon Morisset
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-204, https://doi.org/10.5194/essd-2023-204, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The Canadian Coast Guard Ship collects oceanographic data across the Canadian Arctic annually since the year 2003. Such activity aims to support Canadian and international researchers. The ship has several instruments with cutting-edge technology available for research each year during the summer. The data presented here includes measurements of physical, chemical, and biological variables during the year 2021. All datasets outputted from each expedition are free for access for the public.
Pierluigi Penna, Filippo Domenichetti, Andrea Belardinelli, and Michela Martinelli
Earth Syst. Sci. Data, 15, 3513–3527, https://doi.org/10.5194/essd-15-3513-2023, https://doi.org/10.5194/essd-15-3513-2023, 2023
Short summary
Short summary
This work presents the pressure (depth) and temperature profile dataset provided by the AdriFOOS infrastructure in the Adriatic Sea (Mediterranean basin) from 2012 to 2020. Data were subject to quality assurance (QA) and quality control (QC). This infrastructure, based on the ships of opportunity principle and involving the use of commercial fishing vessels, is able to produce huge amounts of useful data both for operational oceanography and fishery biology purposes.
Carmen Zarzuelo, Alejandro López-Ruiz, María Bermúdez, and Miguel Ortega-Sánchez
Earth Syst. Sci. Data, 15, 3095–3110, https://doi.org/10.5194/essd-15-3095-2023, https://doi.org/10.5194/essd-15-3095-2023, 2023
Short summary
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
Zuzanna M. Swirad, Mateusz Moskalik, and Agnieszka Herman
Earth Syst. Sci. Data, 15, 2623–2633, https://doi.org/10.5194/essd-15-2623-2023, https://doi.org/10.5194/essd-15-2623-2023, 2023
Short summary
Short summary
Monitoring ocean waves is important for understanding wave climate and seasonal to longer-term (years to decades) changes. In the Arctic, there is limited freely available observational wave information. We placed sensors at the sea bottom of six bays in Hornsund fjord, Svalbard, and calculated wave energy, wave height and wave period for full hours between July 2013 and February 2021. In this paper, we present the procedure of deriving wave properties from raw pressure measurements.
Robin V. F. de Vries, Shungudzemwoyo P. Garaba, and Sarah-Jeanne Royer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-209, https://doi.org/10.5194/essd-2023-209, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper presents a unique dataset of hyperspectral measurements of various plastics, including aged plastics harvested from the open ocean (North Pacific Ocean) and COVID-19 related plastic items. These datasets are vital as input for the development of remote sensing technology to better map and locate plastic litter pollution in the natural environment. In this study, there is specific emphasis on the spectral characteristics of submerged plastics.
Oriane Bruyère, Romain Le Gendre, Mathilde Chauveau, Bertrand Bourgeois, David Varillon, John Butscher, Thomas Trophime, Yann Follin, Jerome Aucan, Vetea Liao, and Serge Andréfouët
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-198, https://doi.org/10.5194/essd-2023-198, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
In 2018–2022, 4 pearl farming Tuamotu atolls (French Polynesia) were studied with oceanographic instruments to measure lagoon hydrodynamics and ocean-lagoon water exchanges. The goal was to gain knowledge on the processes influencing the spat collection of the pearl oyster Pinctada margaritifera, the species used to produce black pearls. A worldwide unique oceanographic atoll data set is provided to address local pearl farming questions and other fundamental and applied investigations as well.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Tongya Liu and Ryan Abernathey
Earth Syst. Sci. Data, 15, 1765–1778, https://doi.org/10.5194/essd-15-1765-2023, https://doi.org/10.5194/essd-15-1765-2023, 2023
Short summary
Short summary
Nearly all existing datasets of mesoscale eddies are based on the Eulerian method because of its operational simplicity. Using satellite observations and a Lagrangian method, we present a global Lagrangian eddy dataset (GLED v1.0). We conduct the statistical comparison between two types of eddies and the dataset validation. Our dataset offers relief from dilemma that the Eulerian eddy dataset is nearly the only option for studying mesoscale eddies.
Fabio Raicich
Earth Syst. Sci. Data, 15, 1749–1763, https://doi.org/10.5194/essd-15-1749-2023, https://doi.org/10.5194/essd-15-1749-2023, 2023
Short summary
Short summary
In the changing climate, long sea level time series are essential for studying the variability of the mean sea level and the occurrence of extreme events on different timescales. This work summarizes the rescue and quality control of the ultra-centennial sea level data set of Trieste, Italy. The whole time series is characterized by a linear trend of about 1.4 mm yr−1, the period corresponding to the altimetry coverage by a trend of about 3.0 mm yr−1, similarly to the global ocean.
Edwin John Rainville, Jim Thomson, Melissa Moulton, and Morteza Derakhti
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-64, https://doi.org/10.5194/essd-2023-64, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Measuring ocean waves nearshore is essential for understanding how the waves impact our coastlines. We designed and deployed many small wave buoys into the nearshore ocean over 27 days in Duck, North Carolina, USA, in 2021. The wave buoys measure their motion as they drift. In this paper, we describe how we use the measurements from the buoys to measure nearshore wave properties. We find that the buoy measurements are accurate and reliable compared to other nearby instruments.
Giulia Bonino, Simona Masina, Giuliano Galimberti, and Matteo Moretti
Earth Syst. Sci. Data, 15, 1269–1285, https://doi.org/10.5194/essd-15-1269-2023, https://doi.org/10.5194/essd-15-1269-2023, 2023
Short summary
Short summary
We present a unique observational dataset of marine heat wave (MHW) macroevents and their characteristics over southern Europe and western Asian (SEWA) basins in the SEWA-MHW dataset. This dataset is the first effort in the literature to archive extremely hot sea surface temperature macroevents. The advantages of the availability of SEWA-MHWs are avoiding the waste of computational resources to detect MHWs and building a consistent framework which would increase comparability among MHW studies.
Johannes J. Rick, Mirco Scharfe, Tatyana Romanova, Justus E. E. van Beusekom, Ragnhild Asmus, Harald Asmus, Finn Mielck, Anja Kamp, Rainer Sieger, and Karen H. Wiltshire
Earth Syst. Sci. Data, 15, 1037–1057, https://doi.org/10.5194/essd-15-1037-2023, https://doi.org/10.5194/essd-15-1037-2023, 2023
Short summary
Short summary
The Sylt Roads (Wadden Sea) time series is illustrated. Since 1984, the water temperature has risen by 1.1 °C, while pH and salinity decreased by 0.2 and 0.3 units. Nutrients (P, N) displayed a period of high eutrophication until 1998 and have decreased since 1999, while Si showed a parallel increase. Chlorophyll did not mirror these changes, probably due to a switch in nutrient limitation. Until 1998, algae were primarily limited by Si, and since 1999, P limitation has become more important.
Maria Osińska, Kornelia A. Wójcik-Długoborska, and Robert J. Bialik
Earth Syst. Sci. Data, 15, 607–616, https://doi.org/10.5194/essd-15-607-2023, https://doi.org/10.5194/essd-15-607-2023, 2023
Short summary
Short summary
Water properties, including temperature, conductivity, turbidity and pH as well as the dissolved oxygen, dissolved organic matter, chlorophyll-a and phycoerythrin contents, were investigated in 31 different locations at up to 100 m depth over a period of 38 months in a glacial bay in Antarctica. These investigations were carried out 142 times in all seasons of the year, resulting in a unique dataset of information about seasonal and long-term changes in polar water properties.
Annie P. S. Wong, John Gilson, and Cécile Cabanes
Earth Syst. Sci. Data, 15, 383–393, https://doi.org/10.5194/essd-15-383-2023, https://doi.org/10.5194/essd-15-383-2023, 2023
Short summary
Short summary
This article describes the instrument bias in the raw Argo salinity data from 2000 to 2021. The main cause of this bias is sensor drift. Using Argo data without filtering out this instrument bias has been shown to lead to spurious results in various scientific applications. We describe the Argo delayed-mode process that evaluates and adjusts such instrument bias, and we estimate the uncertainty of the Argo delayed-mode salinity dataset. The best ways to use Argo data are illustrated.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-443, https://doi.org/10.5194/essd-2022-443, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Established in 1875, Socoa tide gauge is one of the long-running permanent tide-gauge of the South-Western France region. However, a large part of its record was in paper format in various archives facing risk of damage. Through data archaeology, these data and associated metadata documents are rescued, digitized, and constructed into a uniform hourly sea level time series from 1875 to date. This new dataset will be useful for climate research on sea level rise, tide, and storm surges.
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023, https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Short summary
This paper presents a new satellite-derived gridded dataset, including 10 years of sea surface height and geostrophic velocity at monthly resolution, over the Arctic ice-covered and ice-free regions, up to 88° N. We assess the dataset by comparison to independent satellite and mooring data. Results correlate well with independent satellite data at monthly timescales, and the geostrophic velocity fields can resolve seasonal to interannual variability of boundary currents wider than about 50 km.
Dirk S. van Maren, Christian Maushake, Jan-Willem Mol, Daan van Keulen, Jens Jürges, Julia Vroom, Henk Schuttelaars, Theo Gerkema, Kirstin Schulz, Thomas H. Badewien, Michaela Gerriets, Andreas Engels, Andreas Wurpts, Dennis Oberrecht, Andrew J. Manning, Taylor Bailey, Lauren Ross, Volker Mohrholz, Dante M. L. Horemans, Marius Becker, Dirk Post, Charlotte Schmidt, and Petra J. T. Dankers
Earth Syst. Sci. Data, 15, 53–73, https://doi.org/10.5194/essd-15-53-2023, https://doi.org/10.5194/essd-15-53-2023, 2023
Short summary
Short summary
This paper reports on the main findings of a large measurement campaign aiming to better understand how an exposed estuary (the Ems Estuary on the Dutch–German border) interacts with a tidal river (the lower Ems River). Eight simultaneously deployed ships measuring a tidal cycle and 10 moorings collecting data throughout a spring–neap tidal cycle have produced a dataset providing valuable insight into processes determining exchange of water and sediment between the two systems.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Oriane Bruyère, Benoit Soulard, Hugues Lemonnier, Thierry Laugier, Morgane Hubert, Sébastien Petton, Térence Desclaux, Simon Van Wynsberge, Eric Le Tesson, Jérôme Lefèvre, Franck Dumas, Jean-François Kayara, Emmanuel Bourassin, Noémie Lalau, Florence Antypas, and Romain Le Gendre
Earth Syst. Sci. Data, 14, 5439–5462, https://doi.org/10.5194/essd-14-5439-2022, https://doi.org/10.5194/essd-14-5439-2022, 2022
Short summary
Short summary
From 2014 to 2021, extensive monitoring of hydrodynamics was deployed within five contrasted lagoons of New Caledonia during austral summers. These coastal physical observations encompassed unmonitored lagoons and captured eight major atmospheric events ranging from tropical depression to category 4 cyclone. The main objectives were to characterize the processes controlling hydrodynamics of these lagoons and record the signature of extreme events on land–lagoon–ocean continuum functioning.
Tian Tian, Lijing Cheng, Gongjie Wang, John Abraham, Wangxu Wei, Shihe Ren, Jiang Zhu, Junqiang Song, and Hongze Leng
Earth Syst. Sci. Data, 14, 5037–5060, https://doi.org/10.5194/essd-14-5037-2022, https://doi.org/10.5194/essd-14-5037-2022, 2022
Short summary
Short summary
A high-resolution gridded dataset is crucial for understanding ocean processes at various spatiotemporal scales. Here we used a machine learning approach and successfully reconstructed a high-resolution (0.25° × 0.25°) ocean subsurface (1–2000 m) salinity dataset for the period 1993–2018 (monthly) by merging in situ salinity profile observations with high-resolution satellite remote-sensing data. This new product could be useful in various applications in ocean and climate fields.
Héloïse Lavigne, Ana Dogliotti, David Doxaran, Fang Shen, Alexandre Castagna, Matthew Beck, Quinten Vanhellemont, Xuerong Sun, Juan Ignacio Gossn, Pannimpullath Remanan Renosh, Koen Sabbe, Dieter Vansteenwegen, and Kevin Ruddick
Earth Syst. Sci. Data, 14, 4935–4947, https://doi.org/10.5194/essd-14-4935-2022, https://doi.org/10.5194/essd-14-4935-2022, 2022
Short summary
Short summary
Because of the large diversity of case 2 waters and the complexity of light transfer, retrieving main biogeochemical parameters in these waters is still challenging. By providing optical and biogeochemical parameters for 180 sampling stations with turbidity and chlorophyll-a concentration ranging from low to extreme values, the HYPERMAQ dataset will contribute to a better description of marine optics in optically complex water bodies and can help the scientific community to develop algorithms.
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022, https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Short summary
The role of eddies and fronts in the oceans is a hot topic in climate research, but there are still many related knowledge gaps, particularly in the ice-covered Arctic Ocean. Here we present a unique dataset of ocean observations collected by a set of drifting buoys installed on ice floes as part of the 2019/2020 MOSAiC campaign. The buoys recorded temperature and salinity data for 10 months, providing extraordinary insights into the properties and processes of the ocean along their drift.
Chengcheng Zhu, Jinyun Guo, Jiajia Yuan, Zhen Li, Xin Liu, and Jinyao Gao
Earth Syst. Sci. Data, 14, 4589–4606, https://doi.org/10.5194/essd-14-4589-2022, https://doi.org/10.5194/essd-14-4589-2022, 2022
Short summary
Short summary
Accurate marine gravity anomalies play an important role in the fields of submarine topography, Earth structure, and submarine exploitation. With the launch of different altimetry satellites, the density of altimeter data can meet the requirements of inversion of high-resolution and high-precision gravity anomaly models. We construct the global marine gravity anomaly model (SDUST2021GRA) from altimeter data (including HY-2A). The accuracy of the model is high, especially in the offshore area.
Philip L. Woodworth and John M. Vassie
Earth Syst. Sci. Data, 14, 4387–4396, https://doi.org/10.5194/essd-14-4387-2022, https://doi.org/10.5194/essd-14-4387-2022, 2022
Short summary
Short summary
An electronic data set of tidal measurements at St. Helena in 1761 by Nevil Maskelyne is described. These data were first analysed by Cartwright in papers on changing tides, but his data files were never archived. The now newly digitised Maskelyne data have been reanalysed in order to obtain an updated impression of whether the tide has changed at that location in over two and a half centuries. Our main conclusion is that the major tidal constituent (M2) has changed little.
Alberto Ribotti, Roberto Sorgente, Federica Pessini, Andrea Cucco, Giovanni Quattrocchi, and Mireno Borghini
Earth Syst. Sci. Data, 14, 4187–4199, https://doi.org/10.5194/essd-14-4187-2022, https://doi.org/10.5194/essd-14-4187-2022, 2022
Short summary
Short summary
Over 1468 hydrological vertical profiles were acquired in 21 years in the Mediterranean Sea. This allowed us to follow the diffusion of the Western Mediterranean Transient along all western seas or make some important repetitions across straits, channels, or at defined locations. These data are now available in four open-access online datasets, including profiles of water temperature, conductivity, dissolved oxygen, chlorophyll α fluorescence, and, after 2004, turbidity and pH.
Andrea Pisano, Daniele Ciani, Salvatore Marullo, Rosalia Santoleri, and Bruno Buongiorno Nardelli
Earth Syst. Sci. Data, 14, 4111–4128, https://doi.org/10.5194/essd-14-4111-2022, https://doi.org/10.5194/essd-14-4111-2022, 2022
Short summary
Short summary
A new operational diurnal sea surface temperature (SST) product has been developed within the Copernicus Marine Service, providing gap-free hourly mean SST fields from January 2019 to the present. This product is able to accurately reproduce the diurnal cycle, the typical day–night SST oscillation mainly driven by solar heating, including extreme diurnal warming events. This product can thus represent a valuable dataset to improve the study of those processes that require a subdaily frequency.
Natalia Tilinina, Dmitry Ivonin, Alexander Gavrikov, Vitali Sharmar, Sergey Gulev, Alexander Suslov, Vladimir Fadeev, Boris Trofimov, Sergey Bargman, Leysan Salavatova, Vasilisa Koshkina, Polina Shishkova, Elizaveta Ezhova, Mikhail Krinitsky, Olga Razorenova, Klaus Peter Koltermann, Vladimir Tereschenkov, and Alexey Sokov
Earth Syst. Sci. Data, 14, 3615–3633, https://doi.org/10.5194/essd-14-3615-2022, https://doi.org/10.5194/essd-14-3615-2022, 2022
Short summary
Short summary
We present wind wave parameter data from research cruises in the North Atlantic in 2020 and 2021 and the SeaVision system for measuring wind wave characteristics with a standard marine navigation X-band radar. We promote the potential of ship navigation X-band radars (when assembled with SeaVision or similar systems) for the development of a new near-global observational network, providing a much larger number of wind wave observations.
Cited articles
Andersen, O. B. and Knudsen, P.: DNSC08 mean sea surface and mean dynamic
topography models, J. Geophys. Res.-Oceans, 114, 327–343,
https://doi.org/10.1029/2008JC005179, 2009.
Andersen, O. B., Knudsen, P., and Bondo, T.: The mean sea surface DTU10
MSS-comparison with GPS and Tide Gauges, in: ESA Living Planet Symposium,
Bergen, Norway, 28 June–2 July, 2010, https://articles.adsabs.harvard.edu/pdf/2010ESASP.686E.502A (last access: 5 January 2023), 2010.
Andersen, O. B., Knudsen, P., and Stenseng, L.: The DTU13 MSS (mean sea surface)
and MDT (mean dynamic topography) from 20 years of satellite altimetry, in: IGFS 2014, International Association of Geodesy
Symposia, edited by:
Jin, S. and Barzaghi, R., 144, Springer, Cham,
https://doi.org/10.1007/1345_2015_182, 2015.
Andersen, O. B., Piccioni, G., Stenseng, L., and Knudsen, P.: The DTU15 MSS
(mean sea surface) and DTU15LAT (lowest astronomical tide) reference
surface, in: Proceedings of the ESA Living Planet Symposium 2016, Prague, Czech Republik, 9–13 May 2016, https://ftp.space.dtu.dk/pub/DTU15/DOCUMENTS/MSS/DTU15MSS+LAT.pdf (last access: 5 January 2023),
2016.
Andersen, O. B., Knudsen, P., and Stenseng, L.: A new DTU18 MSS mean sea
surface–improvement from SAR altimetry, in: 25 Years of Progress in Radar
Altimetry Symposium, Portugal, 24–29 September, https://ftp.space.dtu.dk/pub/DTU18/MSS_MATERIAL/PRESENTATIONS/DTU18MSS-V2.pdf (last access: 5 January 2023), 2018.
Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Dupuy, S.: FES 2014: a
new global tidal model, OSTST Meeting, Lake Contance, Germany, http://meetings.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/29Red1100-2_ppt_OSTST2014_FES2014_LC.pdf (last access: 5 January 2023), 2014.
CNES: Along-track level-2+ (L2P) SLA product handbook,
SALPMU-P-EA-23150-CLS, Issue 2.0,
https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_L2P_all_missions_except_S3.pdf (last access: 5 January 2023), 2020.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping
of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys.
Res.-Oceans, 105, 19477–19498, https://doi.org/10.1029/2000jc900063,
2000.
Guo, J., Hwang, C., and Deng, X.: Editorial: Application of satellite
altimetry in marine geodesy and geophysics, Front. Environ. Sci., 10,
910562, https://doi.org/10.3389/feart.2022.910562, 2022.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea,
M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh,
J.: New Data Systems and Products at the Permanent Service for Mean Sea
Level, J. Coastal Res., 29, 493–504,
https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Huang, M., Zhai, G., Ouyang, Y., Lu, X., Liu, C., and Wang, R.: Integrated
data processing for multi-satellite missions and recovery of marine gravity
field, Terr. Atmos. Ocean. Sci., 19, 103–109,
https://doi.org/10.3319/TAO.2008.19.1-2.103(SA), 2008.
Hwang, C. W.: High precision gravity anomaly and sea surface height
estimation from Geos-3/Seasat altimeter data, M.S. Thesis. Dept. of Geodetic
Science and Surveying, The Ohio State University, Columbus, OH, USA, 1989.
Jin, T., Li, J., and Jiang, W.: The global mean sea surface model WHU2013, Geod.
Geodyn., 7, 202–209, https://doi.org/10.1016/j.geog.2016.04.006, 2016.
Jordan, S. K.: Self-consistent statistical models for the gravity anomaly,
vertical deflections, and undulation of the geoid, J. Geophys. Res., 77,
3660–3670, https://doi.org/10.1029/JB077i020p03660, 1972.
Le Traon, P. Y., Nadal, F., and Ducet, N.: An improved mapping method of
multisatellite altimeter data, J. Atmos. Ocean. Tech., 15, 522–534,
https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2, 1998.
Le Traon, P. Y., Dibarboure, G., and Ducet, N.: Use of a high-resolution
model to analyze the mapping capabilities of multiple-altimeter missions, J.
Atmos. Ocean. Tech., 18, 1277–1288,
https://doi.org/10.1175/1520-0426(2001)018<1277:UOAHRM>2.0.CO;2, 2001.
Le Traon, P. Y., Faugère, Y., Hernandez, F., Dorandeu, J., Mertz, F.,
and Ablain, M.: Can we merge GEOSAT follow-on with TOPEX/Poseidon and ERS-2
for an improved description of the ocean circulation?, J. Atmos. Ocean.
Tech., 20, 889–895, https://doi.org/10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2, 2003.
Moritz, H.: Least-squares collocation, Rev. Geophys., 16, 421–430,
https://doi.org/10.1029/RG016i003p00421, 1978.
Pujol, M.-I., Schaeffer, P., Faugère, Y., Raynal, M., Dibarboure, G.,
and Picot, N.: Gauging the improvement of recent mean sea surface models: a
new approach for identifying and quantifying their errors, J. Geophys.
Res.-Oceans, 123, 5889–5911, https://doi.org/10.1029/2017JC013503, 2018.
Rapp, R. H. and Bašić, T.: Oceanwide gravity anomalies from GEOS-3,
Seasat and Geosat altimeter data, Geophys. Res. Lett., 19, 1979–1982,
https://doi.org/10.1029/92GL02247, 1992.
Santamaria-Gomez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., and
Wöppelmann, G.: Uncertainty of the 20th century sea-level rise due to
vertical land motion errors, Earth. Planet. Sc. Lett., 473, 24–32,
https://doi.org/10.1016/j.epsl.2017.05.038, 2017.
Schaeffer, P., Faugére, Y., Legeais, J. F., Ollivier, A., Guinle, T.,
and Picot, N.: The CNES_CLS11 global mean sea surface
computed from 16 Years of satellite altimeter data, Mar. Geod., 35, 3–19,
https://doi.org/10.1080/01490419.2012.718231, 2012.
Sun, W., Zhou, X., Yang, L., Zhou, D., and Li, F.: Construction of the mean
sea surface model combined HY-2A with DTU18 MSS in the antarctic ocean,
Front. Environ. Sci., 9, 697111, https://doi.org/10.3389/fenvs.2021.697111,
2021.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H.
F., and Tian, D.: The generic mapping tools version 6, Geochem. Geophy.
Geosy., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Yuan, J., Guo, J., Liu, X., Zhu, C., Niu, Y., Li, Z., Ji, B., and Ouyang,
Y.: Mean sea surface model over China seas and its adjacent ocean
established with the 19-year moving average method from multi-satellite
altimeter data, Cont. Shelf Res., 192, 104009,
https://doi.org/10.1016/j.csr.2019.104009, 2020.
Yuan, J., Guo, J., Zhu, C., Hwang, C., Yu, D., Sun, M., and Mu, D.:
High-resolution sea level change around China seas revealed through
multi-satellite altimeter data, Int. J. Appl. Earth Obs., 102, 102433,
https://doi.org/10.1016/j.jag.2021.102433, 2021.
Yuan, J., Guo, J., Zhu, C., Li, Z., Liu, X., and Gao, J.: SDUST2020 MSS: A
global mean sea surface model determined
from multi-satellite altimetry data, Zenodo [data set],
https://doi.org/10.5281/zenodo.6555990, 2022.
Short summary
The mean sea surface (MSS) is a relative steady-state sea level within a finite period with important applications in geodesy, oceanography, and other disciplines. In this study, the Shandong University of Science and Technology 2020 (SDUST2020), a new global MSS model, was established with a 19-year moving average method from multi-satellite altimetry data. Its global coverage is from 80 °S to 84 °N, the grid size is 1'×1', and the reference period is from January 1993 to December 2019.
The mean sea surface (MSS) is a relative steady-state sea level within a finite period with...
Altmetrics
Final-revised paper
Preprint