Articles | Volume 15, issue 1
https://doi.org/10.5194/essd-15-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-15-1-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The World Atlas of Last Interglacial Shorelines (version 1.0)
Alessio Rovere
CORRESPONDING AUTHOR
DAIS, Ca' Foscari University of Venice, Venice, Italy
MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
Deirdre D. Ryan
Department of Earth Sciences, University of Pisa, Pisa, Italy
Matteo Vacchi
Department of Earth Sciences, University of Pisa, Pisa, Italy
CIRSEC – Centro Interdipartimentale di Ricerca per lo Studio degli
Effetti del Cambiamento climatico dell'Università di Pisa, Pisa, Italy
Andrea Dutton
Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
Alexander R. Simms
Department of Earth Science, University of California Santa Barbara, Santa Barbara, California, USA
Colin V. Murray-Wallace
School of Earth, Atmospheric and Life Sciences, University of
Wollongong, Wollongong,
NSW, Australia
Related authors
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Andrew Hollyday, Maureen E. Raymo, Jacqueline Austermann, Fred Richards, Mark Hoggard, and Alessio Rovere
Earth Surf. Dynam., 12, 883–905, https://doi.org/10.5194/esurf-12-883-2024, https://doi.org/10.5194/esurf-12-883-2024, 2024
Short summary
Short summary
Sea level was significantly higher during the Pliocene epoch, around 3 million years ago. The present-day elevations of shorelines that formed in the past provide a data constraint on the extent of ice sheet melt and the global sea level response under warm Pliocene conditions. In this study, we identify 10 escarpments that formed from wave-cut erosion during Pliocene times and compare their elevations with model predictions of solid Earth deformation processes to estimate past sea level.
Patrick Boyden, Paolo Stocchi, and Alessio Rovere
Earth Surf. Dynam., 11, 917–931, https://doi.org/10.5194/esurf-11-917-2023, https://doi.org/10.5194/esurf-11-917-2023, 2023
Short summary
Short summary
Preservation bias often hampers the extraction of sea level changes from the stratigraphic record. In this contribution, we use a forward stratigraphic model to build three synthetic subtropical fringing reefs for a site in southwestern Madagascar (Indian Ocean). Each of the three synthetic reefs represents a different ice sheet melt scenario for the Pleistocene. We then evaluate each resultant reef sequence against the observed stratigraphic record.
Paolo Scussolini, Job Dullaart, Sanne Muis, Alessio Rovere, Pepijn Bakker, Dim Coumou, Hans Renssen, Philip J. Ward, and Jeroen C. J. H. Aerts
Clim. Past, 19, 141–157, https://doi.org/10.5194/cp-19-141-2023, https://doi.org/10.5194/cp-19-141-2023, 2023
Short summary
Short summary
We reconstruct sea level extremes due to storm surges in a past warmer climate. We employ a novel combination of paleoclimate modeling and global ocean hydrodynamic modeling. We find that during the Last Interglacial, about 127 000 years ago, seasonal sea level extremes were indeed significantly different – higher or lower – on long stretches of the global coast. These changes are associated with different patterns of atmospheric storminess linked with meridional shifts in wind bands.
Andrea Dutton, Alexandra Villa, and Peter M. Chutcharavan
Earth Syst. Sci. Data, 14, 2385–2399, https://doi.org/10.5194/essd-14-2385-2022, https://doi.org/10.5194/essd-14-2385-2022, 2022
Short summary
Short summary
This paper includes data that have been compiled to identify the position of sea level during a warm period about 125 000 years ago that is known as the Last Interglacial. Here, we have focused on compiling data for the region of the Bahamas, Turks and Caicos, and the east coast of Florida. These data were compiled and placed within a standardized format prescribed by a new database known as WALIS, which stands for World Atlas of Last Interglacial Shorelines Database.
Erica L. Ashe, Nicole S. Khan, Lauren T. Toth, Andrea Dutton, and Robert E. Kopp
Adv. Stat. Clim. Meteorol. Oceanogr., 8, 1–29, https://doi.org/10.5194/ascmo-8-1-2022, https://doi.org/10.5194/ascmo-8-1-2022, 2022
Short summary
Short summary
We develop a new technique to integrate realistic uncertainties in probabilistic models of past sea-level change. The new framework performs better than past methods (in precision, accuracy, bias, and model fit) because it enables the incorporation of previously unused data and exploits correlations in the data. This method has the potential to assess the validity of past estimates of extreme sea-level rise and highstands providing better context in which to place current sea-level change.
Woo Hun Ryang, Alexander R. Simms, Hyun Ho Yoon, Seung Soo Chun, and Gee Soo Kong
Earth Syst. Sci. Data, 14, 117–142, https://doi.org/10.5194/essd-14-117-2022, https://doi.org/10.5194/essd-14-117-2022, 2022
Short summary
Short summary
This work is part of the World Atlas of Last Interglacial Shorelines (WALIS), whose aim is to construct a database of Last Interglacial (LIG) relative sea-level (RSL) indicators from across the globe. This paper reviews the LIG sea-level constraints from the Korean Peninsula entered into the online WALIS database. This paper including the dataset will contribute to reconstructing global LIG sea-level changes and regional LIG RSL in the Korean Peninsula.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Peter M. Chutcharavan and Andrea Dutton
Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, https://doi.org/10.5194/essd-13-3155-2021, 2021
Short summary
Short summary
This paper summarizes a global database of fossil coral U-series ages for the Last Interglacial period and was compiled as a contribution to the World Atlas of Last Interglacial Shorelines. Each entry contains relevant age, elevation and sample metadata, and all ages and isotope activity ratios have been normalized and recalculated using the same decay constant values. We also provide two example geochemical screening criteria to help users assess sample age quality.
Alexander R. Simms
Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, https://doi.org/10.5194/essd-13-1419-2021, 2021
Short summary
Short summary
This study is part of a larger community effort to catalogue the elevation of sea levels approximately 120 000 years ago – a time period when global temperatures were generally warmer than they are today. For this specific study I summarized the work of other scientists who had determined the age and elevations of ancient shorelines and coral reefs from across the Gulf of Mexico and Yucatán Peninsula.
Evan J. Gowan, Alessio Rovere, Deirdre D. Ryan, Sebastian Richiano, Alejandro Montes, Marta Pappalardo, and Marina L. Aguirre
Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, https://doi.org/10.5194/essd-13-171-2021, 2021
Short summary
Short summary
During the last interglacial (130 to 115 ka), global sea level was higher than present. The World Atlas of Last Interglacial Shorelines (WALIS) has been created to document this. In this paper, we have compiled data for southeastern South America. There are landforms that indicate that sea level was 5 to 25 m higher than present during this time period. However, the quality of these data is hampered by limitations on elevation measurements, chronology, and geological descriptions.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell N. Drysdale, Philip L. Gibbard, Lauren Gregoire, Feng He, Ruza F. Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis C. Tzedakis, Eric Wolff, and Xu Zhang
Geosci. Model Dev., 12, 3649–3685, https://doi.org/10.5194/gmd-12-3649-2019, https://doi.org/10.5194/gmd-12-3649-2019, 2019
Short summary
Short summary
As part of the Past Global Changes (PAGES) working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation for the Paleoclimate Modelling Intercomparison Project (PMIP4). This design includes time-varying changes in orbital forcing, greenhouse gas concentrations, continental ice sheets as well as freshwater input from the disintegration of continental ice sheets. Key paleo-records for model-data comparison are also included.
Laurie Menviel, Emilie Capron, Aline Govin, Andrea Dutton, Lev Tarasov, Ayako Abe-Ouchi, Russell Drysdale, Philip Gibbard, Lauren Gregoire, Feng He, Ruza Ivanovic, Masa Kageyama, Kenji Kawamura, Amaelle Landais, Bette L. Otto-Bliesner, Ikumi Oyabu, Polychronis Tzedakis, Eric Wolff, and Xu Zhang
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-106, https://doi.org/10.5194/cp-2018-106, 2018
Preprint withdrawn
Short summary
Short summary
The penultimate deglaciation (~ 138–128 ka), which represents the transition into the Last Interglacial period, provides a framework to investigate the climate and environmental response to large changes in boundary conditions. Here, as part of the PAGES-PMIP working group on Quaternary Interglacials, we propose a protocol to perform transient simulations of the penultimate deglaciation as well as a selection of paleo records for upcoming model-data comparisons.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
André Düsterhus, Alessio Rovere, Anders E. Carlson, Benjamin P. Horton, Volker Klemann, Lev Tarasov, Natasha L. M. Barlow, Tom Bradwell, Jorie Clark, Andrea Dutton, W. Roland Gehrels, Fiona D. Hibbert, Marc P. Hijma, Nicole Khan, Robert E. Kopp, Dorit Sivan, and Torbjörn E. Törnqvist
Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, https://doi.org/10.5194/cp-12-911-2016, 2016
Short summary
Short summary
This review/position paper addresses problems in creating new interdisciplinary databases for palaeo-climatological sea-level and ice-sheet data and gives an overview on new advances to tackle them. The focus therein is to define and explain strategies and highlight their importance to allow further progress in these fields. It also offers important insights into the general problem of designing competitive databases which are also applicable to other communities within the palaeo-environment.
Related subject area
Domain: ESSD – Land | Subject: Palaeooceanography, palaeoclimatology
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Last Glacial loess in Europe: luminescence database and chronology of deposition
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Li-Li Lu, Bo-Han Jiao, Feng Qin, Gan Xie, Kai-Qing Lu, Jin-Feng Li, Bin Sun, Min Li, David K. Ferguson, Tian-Gang Gao, Yi-Feng Yao, and Yu-Fei Wang
Earth Syst. Sci. Data, 14, 3961–3995, https://doi.org/10.5194/essd-14-3961-2022, https://doi.org/10.5194/essd-14-3961-2022, 2022
Short summary
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Cited articles
Alonso, A. and Pagés, J.: Estratigrafia de los depositos costeros
pleistocenos en el noroeste de Espana, J. Iber. Geol., 33, 207–221,
2007.
Ávila, S. P., Madeira, P., Zazo, C., Kroh, A., Kirby, M., da Silva, C.
M., Cachão, M., and de Frias Martins, A. M.: Palaeoecology of the
Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex
oceanic tectonic setting, Palaeogeogr. Palaeocl.,
274, 18–31, https://doi.org/10.1016/j.palaeo.2008.12.014, 2009.
Ávila, S. P., Melo, C., Silva, L., Ramalho, R. S., Quartau, R.,
Hipólito, A., Cordeiro, R., Rebelo, A. C., Madeira, P., Rovere, A.,
Hearty, P. J., Henriques, D., Silva, C. M. da, Martins, A. M. de F., and
Zazo, C.: A review of the MIS 5e highstand deposits from Santa Maria Island
(Azores, NE Atlantic): palaeobiodiversity, palaeoecology and
palaeobiogeography, Quaternary Sci. Rev., 114, 126–148,
https://doi.org/10.1016/j.quascirev.2015.02.012, 2015.
Banerjee, P. K.: Holocene and Late Pleistocene relative sea level
fluctuations along the east coast of India, Mar. Geol., 167, 243–260,
https://doi.org/10.1016/S0025-3227(00)00028-1, 2000.
Barton, R. N. E., Bouzouggar, A., Collcutt, S. N., Schwenninger, J.-L., and
Clark-Balzan, L.: OSL dating of the Aterian levels at Dar es-Soltan I
(Rabat, Morocco) and implications for the dispersal of modern Homo sapiens,
Quaternary Sci. Rev., 28, 1914–1931,
https://doi.org/10.1016/j.quascirev.2009.03.010, 2009.
Benedetti, M. M., Haws, J. A., Funk, C. L., Daniels, J. M., Hesp, P. A.,
Bicho, N. F., Minckley, T. A., Ellwood, B. B., and Forman, S. L.: Late
Pleistocene raised beaches of coastal Estremadura, central Portugal,
Quaternary Sci. Rev., 28, 3428–3447,
https://doi.org/10.1016/j.quascirev.2009.09.029, 2009.
Bhatt, N. and Bhonde, U.: Geomorphic expression of late Quaternary sea level
changes along the southern Saurashtra coast, western India, J. Earth Syst.
Sci., 115, 395–402, https://doi.org/10.1007/BF02702868, 2006.
Blanc, A. C.: Una spiaggia pleistocenica a “Strombus bubonius” presso
Palidoro (Roma), Ist. Ital. di Antropologia, 1936.
Bosworth, W. and Taviani, M.: Late Quaternary reorientation of stress field
and extension direction in the southern Gulf of Suez, Egypt: Evidence from
uplifted coral terraces, mesoscopic fault arrays, and borehole breakouts,
Tectonics, 15, 791–802, https://doi.org/10.1029/95TC03851, 1996.
Boyden, P., Weil Accardo, J., Deschamps, P., Oppo, D., and Rovere, A.:
Database of last interglacial sea level proxies in the East Africa and
Western Indian Ocean Region, Zenodo [data set], https://doi.org/10.5281/zenodo.4302244, 2021a.
Boyden, P., Weil-Accardo, J., Deschamps, P., Oppo, D., and Rovere, A.: Last interglacial sea-level proxies in East Africa and the Western Indian Ocean, Earth Syst. Sci. Data, 13, 1633–1651, https://doi.org/10.5194/essd-13-1633-2021, 2021b.
Brandl, G.: Sphinx documentation, http://sphinx-doc.org/sphinx.pdf (last access: 15 December 2022),
2021.
Brigham-Grette, J. and Hopkins, D. M.: Emergent Marine Record and
Paleoclimate of the Last Interglaciation along the Northwest Alaskan Coast,
Quaternary Res., 43, 159–173, https://doi.org/10.1006/qres.1995.1017,
1995.
Brigham-Grette, J., Hopkins, D. M., Ivanov, V. F., Basilyan, A. E., Benson,
S. L., Heiser, P. A., and Pushkar, V. S.: Last Interglacial (isotope stage
5) glacial and sea-level history of coastal Chukotka Peninsula and St.
Lawrence Island, Western Beringia, Quaternary Sci. Rev., 20, 419–436,
https://doi.org/10.1016/S0277-3791(00)00107-4, 2001.
Celsius, A.: Anmärkning om vatnets förminskande sa i
Östersiönsom Vesterhafvet, Kongl. Swenska Wetenskaps Academiens
Handlingar, 4, 33–50, 1743.
Cerrone, C., Vacchi, M., Fontana, A., and Rovere, A.: Last interglacial
sea-level index points in the Western Mediterranean, Zenodo [data set],
https://doi.org/10.5281/zenodo.5341661, 2021a.
Cerrone, C., Vacchi, M., Fontana, A., and Rovere, A.: Last Interglacial sea-level proxies in the western Mediterranean, Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, 2021b.
Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., and
Pillans, B.: Reconciliaion of late Quaternary sea levels derived from coral
terraces at Huon Peninsula with deep sea oxygen isotope records, Earth
Planet. Sc. Lett., 141, 227–236,
https://doi.org/10.1016/0012-821X(96)00062-3, 1996.
Chutcharavan, P. M. and Dutton, A.: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e), Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, 2021a.
Chutcharavan, P. M. and Dutton, A.: Global database of U-series dated fossil
coral sea-level indicators for the Last Interglacial period, Zenodo [data set],
https://doi.org/10.5281/zenodo.4792284, 2021b.
Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., and Barlow, N. L. M.: Last Interglacial sea-level data points from Northwest Europe, Earth Syst. Sci. Data, 14, 2895–2937, https://doi.org/10.5194/essd-14-2895-2022, 2022.
Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., and Barlow, N. L.
M.: Last Interglacial sea-level data points from Northwest Europe, Zenodo [data set],
https://doi.org/10.5281/zenodo.5608459, 2021.
Cooper, A. and Green, A.: Database of Last Interglacial sea levels in
Angola, Namibia and South Africa, Zenodo [data set], https://doi.org/10.5281/zenodo.4459297,
2020.
Cooper, J. A. G. and Green, A. N.: A standardized database of Marine Isotope Stage 5e sea-level proxies in southern Africa (Angola, Namibia and South Africa), Earth Syst. Sci. Data, 13, 953–968, https://doi.org/10.5194/essd-13-953-2021, 2021.
Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C., and Pico,
T.: Predicted bounds on peak global mean sea level during marine isotope
stages 5a and 5c, Quaternary Sci. Rev., 163, 193–208,
https://doi.org/10.1016/j.quascirev.2017.03.003, 2017.
Dalton, A. S., Gowan, E. J., Mangerud, J., Möller, P., Lunkka, J. P.,
and Astakhov, V.: Last interglacial (MIS 5e) sea level proxies in the
glaciated Northern Hemisphere, Zenodo [data set], https://doi.org/10.5281/zenodo.5602213, 2021.
Dalton, A. S., Gowan, E. J., Mangerud, J., Möller, P., Lunkka, J. P., and Astakhov, V.: Last interglacial sea-level proxies in the glaciated Northern Hemisphere, Earth Syst. Sci. Data, 14, 1447–1492, https://doi.org/10.5194/essd-14-1447-2022, 2022.
De Lamothe, R.: Les anciennes lignes de rivage du Sahel d'Alger et d'une
partie de la côte Algérienne, Societe geologique de France, 1911.
De Vries, H. and Barendsen, G.: Measurements of age by the carbon-14
technique, Nature, 174, 1138–1141, 1954.
DeConto, R. M., Pollard, D., Alley, R. B., Velicogna, I., Gasson, E., Gomez,
N., Sadai, S., Condron, A., Gilford, D. M., Ashe, E. L., Kopp, R. E., Li, D., and Dutton, A.: The
Paris Climate Agreement and future sea-level rise from Antarctica, Nature,
593, 83–89, 2021.
Dodonov, A. E., Trifonov, V. G., Ivanova, T. P., Kuznetsov, V. Yu.,
Maksimov, F. E., Bachmanov, D. M., Sadchikova, T. A., Simakova, A. N.,
Minini, H., Al-Kafri, A.-M., and Ali, O.: Late Quaternary marine terraces in
the Mediterranean coastal area of Syria: Geochronology and neotectonics,
Quatern. Int., 190, 158–170,
https://doi.org/10.1016/j.quaint.2008.02.008, 2008.
Drechsel, J., Khan, N. S., and Rovere, A.: PALEO-SEAL: A tool for the
visualization and sharing of Holocene sea-level data, Quaternary Sci. Rev., 259, 106884, https://doi.org/10.1016/j.quascirev.2021.106884, 2021.
Dullo, W.-C.: Facies, fossil record, and age of pleistocene reefs from the
Red Sea (Saudi Arabia), Facies, 22, 1–45,
https://doi.org/10.1007/BF02536943, 1990.
Dumitru, O. A., Polyak, V. J., Asmerom, Y., and Onac, B. P.: Last interglacial sea-level history from speleothems: a global standardized database, Earth Syst. Sci. Data, 13, 2077–2094, https://doi.org/10.5194/essd-13-2077-2021, 2021.
Dumitru, O.-A., Polyak, V. J., Asmerom, Y., and Onac, B. P.: Last
Interglacial sea-level history from speleothems: a global standardized
database, Zenodo [data set], https://doi.org/10.5281/zenodo.4681307, 2020.
Düsterhus, A., Rovere, A., Carlson, A. E., Horton, B. P., Klemann, V., Tarasov, L., Barlow, N. L. M., Bradwell, T., Clark, J., Dutton, A., Gehrels, W. R., Hibbert, F. D., Hijma, M. P., Khan, N., Kopp, R. E., Sivan, D., and Törnqvist, T. E.: Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives, Clim. Past, 12, 911–921, https://doi.org/10.5194/cp-12-911-2016, 2016.
Dutton, A. and Lambeck, K.: Ice Volume and Sea Level During the Last
Interglacial, Science, 337, 216–219,
https://doi.org/10.1126/science.1205749, 2012.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U.,
DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.: Sea-level rise
due to polar ice-sheet mass loss during past warm periods, Science, 349,
aaa4019, https://doi.org/10.1126/science.aaa4019, 2015.
Dutton, A., Rubin, K., McLean, N., Bowring, J., Bard, E., Edwards, R. L.,
Henderson, G. M., Reid, M. R., Richards, D. A., Sims, K. W. W., Walker, J.
D., and Yokoyama, Y.: Data reporting standards for publication of U-series
data for geochronology and timescale assessment in the earth sciences,
Quat. Geochronol., 39, 142–149,
https://doi.org/10.1016/j.quageo.2017.03.001, 2017.
Dutton, A., Villa, A., and Chutcharavan, P. M.: Database of Last
Interglacial sea level indicators from the Bahamas, Turks and Caicos, and
the east coast of Florida, USA, Zenodo [data set], https://doi.org/10.5281/zenodo.5596899,
2021.
Dyer, B., Austermann, J., D'Andrea, W. J., Creel, R. C., Sandstrom, M. R.,
Cashman, M., Rovere, A., and Raymo, M. E.: Sea-level trends across the
Bahamas constrain peak last interglacial ice melt, P.
Natl. Acad. Sci. USA, 118, e2026839118,
https://doi.org/10.1073/pnas.2026839118, 2021.
Engelhart, S. E. and Horton, B. P.: Holocene sea level database for the
Atlantic coast of the United States, Quaternary Sci. Rev., 54, 12–25,
2012.
Falkenroth, M., Schneider, B., and Hoffmann, G.: Beachrock as sea-level
indicator – A case study at the coastline of Oman (Indian Ocean),
Quaternary Sci. Rev., 206, 81–98,
https://doi.org/10.1016/j.quascirev.2019.01.003, 2019.
Falkenroth, M., Adolphs, S., Cahnbley, M., Bagci, H., Kázmér, M.,
Mechernich, S., and Hoffmann, G.: Biological Indicators Reveal Small-Scale
Sea-Level Variability During MIS 5e (Sur, Sultanate of Oman), Open
Quaternary, 6, 1–20, https://doi.org/10.5334/oq.72, 2020.
Farrell, W. and Clark, J. A.: On postglacial sea level, Geophys. J.
Int., 46, 647–667, 1976.
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G.,
Mastronuzzi, G., Monaco, C., Orrù, P., Pappalardo, M., Radtke, U.,
Renda, P., Romano, P., Sansò, P., and Verrubbi, V.: Markers of the last
interglacial sea-level high stand along the coast of Italy: Tectonic
implications, Quatern. Int., 145–146, 30–54,
https://doi.org/10.1016/j.quaint.2005.07.009, 2006.
Forbes, J.: On the Temple of Jupiter Serapis at Pozzuoli and the phenomena
which it exhibits, Edinb. J. Sci. New Series, 1, 260–286, 1829.
Freisleben, R., Jara-Muñoz, J., Melnick, D., Martínez, J. M., and
Strecker, M.: Marine terraces of the last interglacial period along the
Pacific coast of South America (1∘ N–40∘ S), Zenodo [data set],
https://doi.org/10.5281/zenodo.4309748, 2020.
Freisleben, R., Jara-Muñoz, J., Melnick, D., Martínez, J. M., and Strecker, M. R.: Marine terraces of the last interglacial period along the Pacific coast of South America (1∘ N–40∘ S), Earth Syst. Sci. Data, 13, 2487–2513, https://doi.org/10.5194/essd-13-2487-2021, 2021.
Gaki-Papanastassiou, K., Karymbalis, E., Papanastassiou, D., and Maroukian,
H.: Quaternary marine terraces as indicators of neotectonic activity of the
Ierapetra normal fault SE Crete (Greece), Geomorphology, 104, 38–46,
https://doi.org/10.1016/j.geomorph.2008.05.037, 2009.
Gallagher, C. and Thorp, M.: The age of the Pleistocene raised beach near
Fethard, County Wexford, using infra red stimulated luminescence (IRSL),
Irish Geography, 30, 68–89, 1997.
Garzón, S. and Rovere, A.: WALIS visualization interface (Version 2.0), Zenodo [code],
https://doi.org/10.5281/zenodo.7252121, 2022.
Gehrels, W. R. and Shennan, I.: Sea level in time and space: revolutions and
inconvenient truths, J. Quaternary Sci., 30, 131–143, 2015.
Gilford, D. M., Ashe, E. L., DeConto, R. M., Kopp, R. E., Pollard, D., and
Rovere, A.: Could the Last Interglacial Constrain Projections of Future
Antarctic Ice Mass Loss and Sea-level Rise?, J. Geophys.
Res.-Earth, 125, e2019JF005418, https://doi.org/10.1029/2019JF005418, 2020.
Giresse, P., Barusseau, J.-P., Causse, C., and Diouf, B.: Successions of
sea-level changes during the Pleistocene in Mauritania and Senegal
distinguished by sedimentary facies study and U/Th dating, Mar. Geol.,
170, 123–139, https://doi.org/10.1016/S0025-3227(00)00070-0, 2000.
Gischler, E., Hudson, J. H., and Pisera, A.: Late Quaternary reef growth and
sea level in the Maldives (Indian Ocean), Mar. Geol., 250, 104–113,
https://doi.org/10.1016/j.margeo.2008.01.004, 2008.
Goodfriend, G. A., Brigham-Grette, J., and Miller, G. H.: Enhanced Age
Resolution of the Marine Quaternary Record in the Arctic Using Aspartic Acid
Racemization Dating of Bivalve Shells, Quaternary Res., 45.2, 176–187, 1996.
Gowan, E. J., Rovere, A., Ryan, D. D., Richiano, S., Montes, A., Pappalardo,
M., and Aguirre, M. L.: Last interglacial (MIS 5e) sea-level proxies in
southeastern South America, Zenodo [data set], https://doi.org/10.5281/zenodo.4313799, 2020.
Gowan, E. J., Rovere, A., Ryan, D. D., Richiano, S., Montes, A., Pappalardo, M., and Aguirre, M. L.: Last interglacial (MIS 5e) sea-level proxies in southeastern South America, Earth Syst. Sci. Data, 13, 171–197, https://doi.org/10.5194/essd-13-171-2021, 2021.
Gregory, S.: The Raised Beaches of the Peninsula Area of Sierra Leone,
Transactions and Papers (Institute of British Geographers), 15–22,
https://doi.org/10.2307/621084, 1962.
Hallmann, N. and Camoin, G.: Database of Last Interglacial (MIS 5e)
sea-level proxies on tropical Pacific islands, Zenodo [data set],
https://doi.org/10.5281/zenodo.4731480, 2020.
Hallmann, N., Camoin, G., Webster, J. M., and Humblet, M.: A standardized database of Marine Isotopic Stage 5e sea-level proxies on tropical Pacific islands, Earth Syst. Sci. Data, 13, 2651–2699, https://doi.org/10.5194/essd-13-2651-2021, 2021.
Hibbert, F. D., Rohling, E. J., Dutton, A., Williams, F. H., Chutcharavan,
P. M., Zhao, C., and Tamisiea, M. E.: Coral indicators of past sea-level
change: A global repository of U-series dated benchmarks, Quaternary Sci. Rev., 145, 1–56, https://doi.org/10.1016/j.quascirev.2016.04.019, 2016.
Issel, A.: Le oscillazioni lente del suolo o bradisismi: saggio di geologia storica, R. Istituto
de'sordomuti, 1883.
Issel, A.: Lembi fossiliferi quaternarie recenti nella Sardegna
meridionale, Accademia Nazionale dei Lincei, Serie, 5, 759–770, 1914.
Jara-Muñoz, J., Melnick, D., and Strecker, M. R.: TerraceM: A
MATLAB® tool to analyze marine and lacustrine terraces using
high-resolution topography, Geosphere, 12, 176–195, 2016.
Khan, N. S., Horton, B. P., Engelhart, S., Rovere, A., Vacchi, M., Ashe, E.
L., Törnqvist, T. E., Dutton, A., Hijma, M. P., and Shennan, I.:
Inception of a global atlas of sea levels since the Last Glacial Maximum,
Quaternary Sci. Rev., 220, 359–371, 2019.
Khim, B.-K., Krantz, D. E., and Brigham-Grette, J.: Stable isotope profiles of Last Interglacial (Pelukian Transgression) mollusks and paleoclimate implications in the Bering Strait Region, Quaternary Sci. Rev., 20, 463–483, https://doi.org/10.1016/S0277-3791(00)00104-9,
2001.
Lamothe, M.: Luminescence dating of interglacial coastal depositional
systems: Recent developments and future avenues of research, Quaternary Sci. Rev., 146, 1–27,
https://doi.org/10.1016/j.quascirev.2016.05.005, 2016.
López-Martínez, J., Schmid, T., Serrano, E., Mink, S., Nieto, A.,
and Guillaso, S.: Geomorphology and landforms distribution in selected
ice-free areas in the South Shetland Islands, Antarctic Northern Peninsula
region, Cuadernos de Investigación Geográfica, 42, 435–455, https://doi.org/10.18172/cig.2965, 2016.
Lorscheid, T. and Rovere, A.: The indicative meaning calculator –
quantification of paleo sea-level relationships by using global wave and
tide datasets, Open geospatial data, Softw. Stand., 4, 10,
https://doi.org/10.1186/s40965-019-0069-8, 2019.
Mauz, B.: Database of last interglacial sea-level proxies in the eastern
Mediterranean, Zenodo [data set], https://doi.org/10.5281/zenodo.4454553, 2020.
Mauz, B. and Elmejdoub, N.: A review of last interglacial sea-level proxies
in the eastern Mediterranean coastal region, Physical Sciences and
Mathematics, Eartharxiv [preprint], https://doi.org/10.31223/X50G6H, 2021.
Mauz, B., Vacchi, M., Green, A., Hoffmann, G., and Cooper, A.: Beachrock: A
tool for reconstructing relative sea level in the far-field, Mar. Geol.,
362, 1–16, https://doi.org/10.1016/j.margeo.2015.01.009, 2015.
Mauz, B., Sivan, D., and Galili, E.: MIS 5e sea-level proxies in the eastern
Mediterranean coastal region, https://essd.copernicus.org/preprints/essd-2020-357/essd-2020-357.pdf (last access: 15 December 2022), 2020.
Maxwell, K., Westphal, H., and Rovere, A.: A standardized database of Last Interglacial (MIS 5e) sea-level indicators in Southeast Asia, Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, 2021a.
Maxwell, K., Westphal, H., and Rovere, A.: Database of Last Interglacial
(MIS 5e) Sea-level Indicators in Southeast Asia, Zenodo [data set],
https://doi.org/10.5281/zenodo.5040784, 2021b.
McKay, N. P., Overpeck, J. T., and Otto-Bliesner, B. L.: The role of ocean
thermal expansion in Last Interglacial sea level rise, Geophys. Res.
Lett., 38, L14605, https://doi.org/10.1029/2011GL048280, 2011.
Medina-Elizalde, M.: A global compilation of coral sea-level benchmarks:
Implications and new challenges, Earth Planet. Sc. Lett., 362,
310–318, https://doi.org/10.1016/j.epsl.2012.12.001, 2013.
Meireles, J. and Texier, J. P.: Etude morpho-stratigraphique des
dépôts littoraux du Minho (NW du Portugal) [Morpho-stratigraphic
study of littoral deposits of the Minho region (NW Portugal)], Quaternaire, 11,
21–29, https://doi.org/10.3406/quate.2000.1652, 2000.
Mitchell, S. F., Pickerill, R. K., and Stemann, T. A.: The Port Morant
Formation (Upper Pleistocene, Jamaica): high resolution sedimentology and
paleoenvironmental analysis of a mixed carbonate clastic lagoonal
succession, Sediment. Geol., 144, 291–306,
https://doi.org/10.1016/S0037-0738(01)00101-4, 2001.
Mitchell, S. F., James, S. A., and Brown, I. C.: A late Pleistocene
progradational clastic shoreface succession in Jamaica: Implications for the
preservation potential of the echinoid Leodia, Lethaia, 39, 321–327,
https://doi.org/10.1080/00241160600847553, 2006.
Muhs, D., Wehmiller, J., Ryan, D. D., and Rovere, A.: MIS 5e relative
sea-level index points along the Pacific coast of North America, Zenodo [data set],
https://doi.org/10.5281/zenodo.5903285, 2021a.
Muhs, D. R.: MIS 5e sea-level history along the Pacific coast of North America, Earth Syst. Sci. Data, 14, 1271–1330, https://doi.org/10.5194/essd-14-1271-2022, 2022.
Muhs, D. R., Simmons, K. R., and Steinke, B.: Timing and warmth of the Last
Interglacial period: new U-series evidence from Hawaii and Bermuda and a new
fossil compilation for North America, Quaternary Sci. Rev., 21,
1355–1383, https://doi.org/10.1016/S0277-3791(01)00114-7, 2002.
Muhs, D. R., Wehmiller, J. F., Simmons, K. R., and York, L. L.: Quaternary
sea-level history of the United States, in: Developments in Quaternary
Sciences, vol. 1, Elsevier, 147–183,
https://doi.org/10.1016/S1571-0866(03)01008-X, 2003.
Muhs, D. R., Meco, J., and Simmons, K. R.: Uranium-series ages of corals,
sea level history, and palaeozoogeography, Canary Islands, Spain: An
exploratory study for two Quaternary interglacial periods, Palaeogeogr. Palaeocl., 394, 99–118,
https://doi.org/10.1016/j.palaeo.2013.11.015, 2014.
Muhs, D. R., Schweig, E. S., Simmons, K. R., and Halley, R. B.: Late
Quaternary uplift along the North America-Caribbean plate boundary: Evidence
from the sea level record of Guantanamo Bay, Cuba, Quaternary Sci. Rev., 178, 54–76, https://doi.org/10.1016/j.quascirev.2017.10.024, 2017.
Muhs, D. R., Simmons, K. R., Schumann, R. R., Schweig, E. S., and Rowe, M.
P.: Testing glacial isostatic adjustment models of last-interglacial sea
level history in the Bahamas and Bermuda, Quaternary Sci. Rev., 233,
106212, https://doi.org/10.1016/j.quascirev.2020.106212, 2020.
Muhs, D. R., Schumann, R. R., Groves, L. T., Simmons, K. R., and Florian, C.
R.: The marine terraces of Santa Cruz Island, California: Implications for
glacial isostatic adjustment models of last-interglacial sea-level history,
Geomorphology, 389, 107826, https://doi.org/10.1016/j.geomorph.2021.107826,
2021b.
Murray-Wallace, C. and Belperio, A.: The last interglacial shoreline in
Australia – a review, Quaternary Sci. Rev., 10, 441–461, 1991.
Murray-Wallace, C. V.: Pleistocene coastal stratigraphy, sea-level
highstands and neotectonism of the southern Australian passive continental
margin?a review, J. Quaternary Sci., 17, 469–489,
https://doi.org/10.1002/jqs.717, 2002.
Murray-Wallace, C. V. and Woodroffe, C. D.: Quaternary sea-level changes: a
global perspective, Cambridge University Press, ISBN 9781108445856, 2014.
Murray-Wallace, C. V., Belperio, A. P., Dosseto, A., Nicholas, W. A.,
Mitchell, C., Bourman, R. P., Eggins, S. M., and Grün, R.: Last
interglacial (MIS 5e) sea-level determined from a tectonically stable,
far-field location, Eyre Peninsula, southern Australia, Aust. J.
Earth Sci., 63, 611–630,
https://doi.org/10.1080/08120099.2016.1229693, 2016.
Navas, A., López-Martínez, J., Casas, J., Machín, J.,
Durán, J. J., Serrano, E., and Cuchi, J.-A.: Soil Characteristics along
a Transect on Raised Marine Surfaces on Byers Peninsula, Livingston Island,
South Shetland Islands, in: Antarctica, edited by: Fütterer, D. K.,
Damaske, D., Kleinschmidt, G., Miller, H., and Tessensohn, F.,
Springer-Verlag, Berlin/Heidelberg, 467–473,
https://doi.org/10.1007/3-540-32934-X_60, 2006.
O'Neal, M. L. and McGeary, S.: Late Quaternary stratigraphy and sea-level
history of the northern Delaware Bay margin, southern New Jersey, USA: a
ground penetrating radar analysis of composite Quaternary coastal terraces,
Quaternary Sci. Rev., 21, 929–946, https://doi.org/10.1016/S0277-3791(01)00051-8, 2002.
Orme, A. R.: Quaternary Changes of Sea-level in Ireland, T.
I. Brit. Geogr., 39, 127–140, https://doi.org/10.2307/621680, 1966.
Ota, Y. and Omura, A.: Late Quaternary shorelines in the Japanese islands,
The Quaternary Research (Daiyonki-Kenkyu), 30, 175–186, 1991.
Otvos, E. G.: Beach ridges – definitions and significance, Geomorphology,
32, 83–108, https://doi.org/10.1016/S0169-555X(99)00075-6, 2000.
Oveisi, B., Lavé, J., and van der Beek, P.: Rates and Processes of
Active Folding Evidenced by Pleistocene Terraces at the Central Zagros Front
(Iran), in: Thrust Belts and Foreland Basins, edited by: Lacombe, O., Roure,
F., Lavé, J., and Vergés, J., Springer Berlin Heidelberg, Berlin,
Heidelberg, 267–287,
https://doi.org/10.1007/978-3-540-69426-7_14, 2007.
Pan, T.-Y., Murray-Wallace, C. V., Dosseto, A., and Bourman, R. P.: The last
interglacial (MIS 5e) sea level highstand from a tectonically stable
far-field setting, Yorke Peninsula, southern Australia, Mar. Geol., 398,
126–136, https://doi.org/10.1016/j.margeo.2018.01.012, 2018.
Parker, J. H., Gischler, E., and Eisenhauer, A.: Biodiversity of
foraminifera from Late Pleistocene to Holocene coral reefs, South Sinai,
Egypt, Mar. Micropaleontol., 86–87, 59–75,
https://doi.org/10.1016/j.marmicro.2012.02.002, 2012.
Pasquetti, F., Bini, M., Giaccio, B., Ratti, A., Vacchi, M., and Zanchetta,
G.: Chronology of the Mediterranean sea-level highstand during the Last
Interglacial: a critical review of the U/Th-dated deposits, J. Quaternary
Sci, 36, 1174–1189, https://doi.org/10.1002/jqs.3359, 2021.
Pedoja, K., Shen, J.-W., Kershaw, S., and Tang, C.: Coastal Quaternary
morphologies on the northern coast of the South China Sea, China, and their
implications for current tectonic models: A review and preliminary study,
Mar. Geol., 255, 103–117, https://doi.org/10.1016/j.margeo.2008.02.002,
2008.
Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson,
M. E., Kershaw, S., Saillard, M., Martinod, J., Furgerot, L., Weill, P., and
Delcaillau, B.: Relative sea-level fall since the last interglacial stage:
Are coasts uplifting worldwide?, Earth-Sci. Rev., 108, 1–15,
https://doi.org/10.1016/j.earscirev.2011.05.002, 2011.
Pedoja, K., Authemayou, C., Pinegina, T., Bourgeois, J., Nexer, M.,
Delcaillau, B., and Regard, V.: “Arc-continent collision” of the
Aleutian-Komandorsky arc into Kamchatka: Insight into Quaternary tectonic
segmentation through Pleistocene marine terraces and morphometric analysis
of fluvial drainage, Tectonics, 32, 827–842, https://doi.org/10.1002/tect.20051, 2013.
Pedoja, K., Husson, L., Johnson, M. E., Melnick, D., Witt, C., Pochat, S.,
Nexer, M., Delcaillau, B., Pinegina, T., Poprawski, Y., Authemayou, C.,
Elliot, M., Regard, V., and Garestier, F.: Coastal staircase sequences
reflecting sea-level oscillations and tectonic uplift during the Quaternary
and Neogene, Earth-Sci. Rev., 132, 13–38,
https://doi.org/10.1016/j.earscirev.2014.01.007, 2014.
Peltier, W.: The impulse response of a Maxwell Earth, Rev. Geophys.,
12, 649–669, 1974.
Peppoloni, S., Bilham, N., and Di Capua, G.: Contemporary Geoethics Within
the Geosciences, in: Exploring Geoethics, edited by: Bohle, M., Palgrave Pivot, Cham, https://doi.org/10.1007/978-3-030-12010-8_2, 2019.
Pirazzoli, P. A.: World atlas of Holocene sea-level changes, Elsevier Oceanography Series, 58, Elsevier, Amsterdam/Oxford/New York/Tokyo, ISBN 0-444-89086-6, e-ISBN 978-0-444-89086-3. X, 300 pp., 1991.
Pirazzoli, P. A., Reyss, J.-L., Fontugne, M., Haghipour, A., Hilgers, A.,
Kasper, H. U., Nazari, H., Preusser, F., and Radtke, U.: Quaternary
coral-reef terraces from Kish and Qeshm Islands, Persian Gulf: new
radiometric ages and tectonic implications, Quatern. Int., 120,
15–27, https://doi.org/10.1016/j.quaint.2004.01.003, 2004.
Plaziat, J.-C., Aberkan, M., and Reyss, J.-L.: New late Pleistocene
seismites in a shoreline series including eolianites, north of Rabat
(Morocco), B. Soc. Géol. Fr., 177,
323–332, https://doi.org/10.2113/gssgfbull.177.6.323, 2006.
Plaziat, J.-C., Aberkan, M., Ahmamou, M., and Choukri, A.: The Quaternary
Deposits of Morocco, in: Continental Evolution: The Geology of Morocco, vol.
116, edited by: Michard, A., Saddiqi, O., Chalouan, A., and Lamotte, D. F.
de, Springer Berlin Heidelberg, Berlin, Heidelberg, 359–376,
https://doi.org/10.1007/978-3-540-77076-3_8, 2008.
Rhodes, E. J., Singarayer, J. S., Raynal, J.-P., Westaway, K. E., and
Sbihi-Alaoui, F. Z.: New age estimates for the Palaeolithic assemblages and
Pleistocene succession of Casablanca, Morocco, Quaternary Sci. Rev.,
25, 2569–2585, https://doi.org/10.1016/j.quascirev.2005.09.010, 2006.
Rovere, A. and Dutton, A.: PaLsea: 13 years of ice-sheet and sea-level
science, Past Global Changes Magazine, 29, 18–20,
https://doi.org/10.22498/pages.29.1.18, 2021.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P.,
Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty,
P. J.: The analysis of Last Interglacial (MIS 5e) relative sea-level
indicators: Reconstructing sea-level in a warmer world, Earth-Sci.
Rev., 159, 404–427, https://doi.org/10.1016/j.earscirev.2016.06.006,
2016.
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A.,
Lorscheid, T., Chutcharavan, P., Brill, D., Bartz, M., Jankowski, N.,
Mueller, D., Cohen, K., and Gowan, E.: Descriptions of database fields for
the World Atlas of Last Interglacial Shorelines (WALIS), Zenodo [data set],
https://doi.org/10.5281/zenodo.3961544, 2020.
Rovere, A., Ryan, D. D., Vacchi, M., Dutton, A., Simms, A., and
Murray-Wallace, C.: WALIS – The World Atlas of Last Interglacial Shorelines
(Ver 1.0 final), Zenodo [code and data set], https://doi.org/10.5281/zenodo.7348242, 2022.
Rubio-Sandoval, K., Rovere, A., Cerrone, C., Stocchi, P., Lorscheid, T., Felis, T., Petersen, A.-K., and Ryan, D. D.: A review of last interglacial sea-level proxies in the western Atlantic and southwestern Caribbean, from Brazil to Honduras, Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, 2021a.
Rubio-Sandoval, K., Rovere, A., Cerrone, C., Stocchi, P., Lorscheid, T.,
Felis, T., Petersen, A.-K., and Ryan, D. D.: Last Interglacial sea-level
proxies in the Western Atlantic and Southwestern Caribbean, from Brazil to
Honduras, Zenodo [data set], https://doi.org/10.5281/zenodo.5516444, 2021b.
Ryan, D. D., Clement, A. J. H., Jankowski, N. R., Stocchi, P., and Rovere,
A.: The last interglacial sea-level record of Aotearoa New Zealand – WALIS
database of sea-level indicators, Zenodo [data set], https://doi.org/10.5281/zenodo.4590188,
2020.
Ryan, D. D., Clement, A. J. H., Jankowski, N. R., and Stocchi, P.: The last interglacial sea-level record of Aotearoa New Zealand, Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, 2021.
Ryang, W. H. and Simms, A. R.: Last Interglacial Sea Levels within the
Korean Peninsula, Zenodo [data set], https://doi.org/10.5281/zenodo.4974826, 2021.
Ryang, W. H., Simms, A. R., Yoon, H. H., Chun, S. S., and Kong, G. S.: Last interglacial sea-level proxies in the Korean Peninsula, Earth Syst. Sci. Data, 14, 117–142, https://doi.org/10.5194/essd-14-117-2022, 2022.
Sanlaville, P.: Le rôle de la mer dans les aplanissements côtiers du
Liban, in: Revue de géographie de Lyon, 49, 295–310, https://doi.org/10.3406/geoca.1974.1656, 1974.
Schielein, P., Burow, C., Pajon, J., Rojas Consuegra, R., Zhao, J., and
Schellmann, G.: ESR and U-Th dating results for Last Interglacial coral reef
terraces at the northern coast of Cuba, Quatern. Int., 556,
216–229, https://doi.org/10.1016/j.quaint.2019.11.041, 2020.
Shennan, I.: Interpretation of Flandrian sea-level data from the Fenland,
England, P. Geologist. Assoc., 93, 53–63, 1982.
Shennan, I., Long, A. J., and Horton, B. P.: Handbook of sea-level research, edited by: Shennan, I., Long, A. J., and Horton, B. P.,
John Wiley & Sons, Print ISBN 9781118452585, Online ISBN 9781118452547, https://doi.org/10.1002/9781118452547, 2015.
Simms, A. R.: Last Interglacial Sea Levels within the Gulf of Mexico and
northwestern Caribbean Sea, Zenodo [data set], https://doi.org/10.5281/zenodo.4556163, 2020.
Simms, A. R.: Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea, Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, 2021.
Sivan, D. and Galili, E.: The last interglacial sea-level record of the
Israeli coastline – WALIS database of sea-level indicators, Zenodo [data set],
https://doi.org/10.5281/zenodo.4274178, 2020.
Steidle, S. D., Warken, S. F., Schorndorf, N., Förstel, J.,
Schröder-Ritzrau, A., Moseley, G. E., Spötl, C., Aviles, J.,
Stinnesbeck, W., and Frank, N.: Reconstruction of Middle to Late Quaternary
sea level using submerged speleothems from the northeastern Yucatán
Peninsula, J. Quaternary Sci, 36, 1190–1200,
https://doi.org/10.1002/jqs.3365, 2021.
Tam, E. and Yokoyama, Y.: Database of Last Interglacial Sea-level Proxies in
and around Japan, Zenodo [data set], https://doi.org/10.5281/zenodo.4294326, 2020.
Tam, E. and Yokoyama, Y.: A review of MIS 5e sea-level proxies around Japan, Earth Syst. Sci. Data, 13, 1477–1497, https://doi.org/10.5194/essd-13-1477-2021, 2021.
Tarı, U., Tüysüz, O., Blackwell, B. A. B., Mahmud, Z., Florentin,
J. A., Qi, J., Genç, Ş. C., and Skinner, A. R.: Sealevel change and
tectonic uplift from dated marine terraces along the eastern Mediterranean
coast, southeastern Turkey, Palaeogeogr. Palaeocl., 511, 80–102, https://doi.org/10.1016/j.palaeo.2018.07.003,
2018.
Thompson, S. and Creveling, J.: WALIS Spreadsheet Thompson Creveling v2.0, Zenodo [data set],
https://doi.org/10.5281/zenodo.5021306, 2021a.
Thompson, S. B. and Creveling, J. R.: A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators, Earth Syst. Sci. Data, 13, 3467–3490, https://doi.org/10.5194/essd-13-3467-2021, 2021b.
Van de Plassche, O.: Sea-level research: A manual for the collection and
evaluation of data, Geobooks, UK (Norwich), 1986.
Vyverberg, K., Dechnik, B., Dutton, A., Webster, J. M., Zwartz, D., and
Portell, R. W.: Episodic reef growth in the granitic Seychelles during the
Last Interglacial: Implications for polar ice sheet dynamics, Mar.
Geol., 399, 170–187, https://doi.org/10.1016/j.margeo.2018.02.010, 2018.
Wehmiller, J. F. and Pellerito, V.: An evolving database for Quaternary
aminostratigraphy, GeoResJ, 6, 115–123,
https://doi.org/10.1016/j.grj.2015.02.009, 2015.
Wehmiller, J. F., Simmons, K. R., Cheng, H., Lawrence Edwards, R.,
Martin-McNaughton, J., York, L. L., Krantz, D. E., and Shen, C.-C.:
Uranium-series coral ages from the US Atlantic Coastal Plain–the “80ka
problem” revisited, Quatern. Int., 120, 3–14,
https://doi.org/10.1016/j.quaint.2004.01.002, 2004.
Wehmiller, J. F., Thieler, E. R., Miller, D., Pellerito, V., Bakeman Keeney,
V., Riggs, S. R., Culver, S., Mallinson, D., Farrell, K. M., and York, L.
L.: Aminostratigraphy of surface and subsurface Quaternary sediments, North
Carolina coastal plain, USA, Quat. Geochronol., 5, 459–492,
https://doi.org/10.1016/j.quageo.2009.10.005, 2010.
Wehmiller, J. F., Harris, W. B., Boutin, B. S., and Farrell, K. M.:
Calibration of amino acid racemization (AAR) kinetics in United States
mid-Atlantic Coastal Plain Quaternary mollusks using analyses:
Evaluation of kinetic models and estimation of regional Late Pleistocene
temperature history, Quat. Geochronol., 7, 21–36,
https://doi.org/10.1016/j.quageo.2011.09.005, 2012.
Wehmiller, J. F., Brothers, L. L., Ramsey, K. W., Foster, D. S., Mattheus,
C. R., Hein, C. J., and Shawler, J. L.: Molluscan aminostratigraphy of the
US Mid-Atlantic Quaternary coastal system: Implications for onshore-offshore
correlation, paleochannel and barrier island evolution, and local late
Quaternary sea-level history, Quat. Geochronol., 66, 101177,
https://doi.org/10.1016/j.quageo.2021.101177, 2021.
Williams, A. H. and Walkden, G. M.: Late Quaternary highstand deposits of
the southern Arabian Gulf: a record of sea-level and climate change,
Geological Society, London, Special Publications, 195, 371–386,
https://doi.org/10.1144/GSL.SP.2002.195.01.20, 2002.
Woodroffe, C. D.: Late Quaternary sea-level highstands in the central and
eastern Indian Ocean: A review, Global Planet. Change, 49, 121–138,
https://doi.org/10.1016/j.gloplacha.2005.06.002, 2005.
Wright, J. D., Sheridan, R. E., Miller, K. G., Uptegrove, J., Cramer, B. S.,
and Browning, J. V.: Late Pleistocene Sea level on the New Jersey Margin:
Implications to eustasy and deep-sea temperature, Global Planet.
Change, 66, 93–99, https://doi.org/10.1016/j.gloplacha.2008.03.013, 2009.
Zazo, C., Goy, J. L., Dabrio, C. J., Soler, V., Hillaire-Marcel, Cl.,
Ghaleb, B., González-Delgado, J. A., Bardají, T., and Cabero, A.:
Quaternary marine terraces on Sal Island (Cape Verde archipelago),
Quaternary Sci. Rev., 26, 876–893,
https://doi.org/10.1016/j.quascirev.2006.12.014, 2007.
Zazo, C., Goy, J. L., Hillaire-Marcel, C., Dabrio, C. J.,
González-Delgado, J. A., Cabero, A., Bardají, T., Ghaleb, B., and
Soler, V.: Sea level changes during the last and present interglacials in
Sal Island (Cape Verde archipelago), Global Planet. Change, 72,
302–317, https://doi.org/10.1016/j.gloplacha.2010.01.006, 2010.
Zomeni, Z.: Last interglacial (MIS 5e) sea-level proxies in Cyprus, Eastern
Mediterranean, Zenodo [data set], https://doi.org/10.5281/zenodo.4438721, 2021.
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a...
Special issue
Altmetrics
Final-revised paper
Preprint