Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters
Baojun Zhang
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Zemin Wang
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Jiachun An
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Tingting Liu
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Hong Geng
School of Resource and Environment Sciences, Wuhan University, Wuhan,
430079, China
Related authors
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603, https://doi.org/10.5194/egusphere-2025-603, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ephemeral grounding sites appear as ice shelves thin or sea levels rise. Sentinel-1A/B imagery (2014–2023) tracked these sites on Pine Island Ice Shelf, noting their disappearance after a 2020 calving event. Basal melting directly influences these sites, while calving and atmospheric forces are indirect factors. This site could become a key pinning point, impacting future calving. Further modeling is needed.
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603, https://doi.org/10.5194/egusphere-2025-603, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ephemeral grounding sites appear as ice shelves thin or sea levels rise. Sentinel-1A/B imagery (2014–2023) tracked these sites on Pine Island Ice Shelf, noting their disappearance after a 2020 calving event. Basal melting directly influences these sites, while calving and atmospheric forces are indirect factors. This site could become a key pinning point, impacting future calving. Further modeling is needed.
Mohammed E. Shokr, Zihan Wang, and Tingting Liu
The Cryosphere, 14, 3611–3627, https://doi.org/10.5194/tc-14-3611-2020, https://doi.org/10.5194/tc-14-3611-2020, 2020
Short summary
Short summary
This paper uses sequential daily SAR images covering the Robeson Channel to quantitatively study kinematics of individual ice floes with exploration of wind influence and the evolution of the ice arch at the entry of the channel. Results show that drift of ice floes within the Robeson Channel and the arch are both significantly influenced by wind. The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring sea ice cover in narrow water passages.
Y. Chen, X. Shen, G. Zhang, T. Liu, Z. Lu, J. Xu, and H. Wang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2020, 217–222, https://doi.org/10.5194/isprs-annals-V-4-2020-217-2020, https://doi.org/10.5194/isprs-annals-V-4-2020-217-2020, 2020
L. Tang, Y. Zhao, and J. An
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-11, https://doi.org/10.5194/nhess-2016-11, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Previous studies focused on the ionospheric signature induced by straight tsunami waves. In this study, we apply the two-dimensional TEC maps derived from a dense GPS network (GEONET) to detect the reflected tsunami signature in ionosphere after the 2011 Tohoku earthquake. The results indicate not only the straight tsunami waves from mainshock, but also the reflected tsunami waves might have potential to induce ionospheric disturbances.
Related subject area
Cryosphere – Radar measurements
A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2
Airborne ultra-wideband radar sounding over the shear margins and along flow lines at the onset region of the Northeast Greenland Ice Stream
Polar maps of C-band backscatter parameters from the Advanced Scatterometer
A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene
Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning
First ice thickness measurements in Tierra del Fuego at Schiaparelli Glacier, Chile
Subglacial topography and ice flux along the English Coast of Palmer Land, Antarctic Peninsula
Bed topography of Princess Elizabeth Land in East Antarctica
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022, https://doi.org/10.5194/essd-14-3075-2022, 2022
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for fieldwork planning, surface height change and mass balance estimations. A new and reliable DEM for Antarctica with a modal resolution of 500 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method. The high accuracy of elevations and the possibility for annual updates make the ICESat-2 DEM an addition to the existing Antarctic DEM groups.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Jessica Cartwright, Alexander D. Fraser, and Richard Porter-Smith
Earth Syst. Sci. Data, 14, 479–490, https://doi.org/10.5194/essd-14-479-2022, https://doi.org/10.5194/essd-14-479-2022, 2022
Short summary
Short summary
Due to the scale and remote nature of the polar regions, it is essential to use satellite remote sensing to monitor and understand them and their dynamics. Here we present data from the Advanced Scatterometer (ASCAT), processed in a manner proven for use in cryosphere studies. The data have been processed on three timescales (5 d, 2 d and 1 d) in order to optimise temporal resolution as each of the three MetOp satellites is launched.
Marie G. P. Cavitte, Duncan A. Young, Robert Mulvaney, Catherine Ritz, Jamin S. Greenbaum, Gregory Ng, Scott D. Kempf, Enrica Quartini, Gail R. Muldoon, John Paden, Massimo Frezzotti, Jason L. Roberts, Carly R. Tozer, Dustin M. Schroeder, and Donald D. Blankenship
Earth Syst. Sci. Data, 13, 4759–4777, https://doi.org/10.5194/essd-13-4759-2021, https://doi.org/10.5194/essd-13-4759-2021, 2021
Short summary
Short summary
We present a data set consisting of ice-penetrating-radar internal stratigraphy: 26 internal reflecting horizons that cover the greater Dome C area, East Antarctica, the most extensive IRH data set to date in the region. This data set uses radar surveys collected over the span of 10 years, starting with an airborne international collaboration in 2008 to explore the region, up to the detailed ground-based surveys in support of the European Beyond EPICA – Oldest Ice (BE-OI) project.
Yi-Ran Wang and Xiao-Ming Li
Earth Syst. Sci. Data, 13, 2723–2742, https://doi.org/10.5194/essd-13-2723-2021, https://doi.org/10.5194/essd-13-2723-2021, 2021
Short summary
Short summary
Sea ice cover is the most fundamental factor that indicates the underlying great changes in the Arctic. We propose novel sea ice cover data in high resolution of a few hundred meters by spaceborne synthetic aperture radar, which is more than 10 times that of the operational sea ice cover and concentration data. The method is based on a deep learning architecture of U-Net. We have been processing data acquired by Sentinel-1 since 2014 to obtain high-quality sea ice cover data in the Arctic.
Guisella Gacitúa, Christoph Schneider, Jorge Arigony, Inti González, Ricardo Jaña, and Gino Casassa
Earth Syst. Sci. Data, 13, 231–236, https://doi.org/10.5194/essd-13-231-2021, https://doi.org/10.5194/essd-13-231-2021, 2021
Short summary
Short summary
We performed the first successful ice thickness measurements using terrestrial ground-penetrating radar in the ablation area of Schiaparelli Glacier (Cordillera Darwin, Tierra del Fuego, Chile). Data are fundamental to understand glaciers dynamics, constrain ice dynamical modelling, and predict glacier evolution. Results show a valley-shaped bedrock below current sea level; thus further retreat of Schiaparelli Glacier will probably lead to an enlarged and strongly over-deepened proglacial lake.
Kate Winter, Emily A. Hill, G. Hilmar Gudmundsson, and John Woodward
Earth Syst. Sci. Data, 12, 3453–3467, https://doi.org/10.5194/essd-12-3453-2020, https://doi.org/10.5194/essd-12-3453-2020, 2020
Short summary
Short summary
Satellite measurements of the English Coast in the Antarctic Peninsula reveal that glaciers are thinning and losing mass, but ice thickness data are required to assess these changes, in terms of ice flux and sea level contribution. Our ice-penetrating radar measurements reveal that low-elevation subglacial channels control fast-flowing ice streams, which release over 39 Gt of ice per year to floating ice shelves. This topography could make ice flows susceptible to future instability.
Xiangbin Cui, Hafeez Jeofry, Jamin S. Greenbaum, Jingxue Guo, Lin Li, Laura E. Lindzey, Feras A. Habbal, Wei Wei, Duncan A. Young, Neil Ross, Mathieu Morlighem, Lenneke M. Jong, Jason L. Roberts, Donald D. Blankenship, Sun Bo, and Martin J. Siegert
Earth Syst. Sci. Data, 12, 2765–2774, https://doi.org/10.5194/essd-12-2765-2020, https://doi.org/10.5194/essd-12-2765-2020, 2020
Short summary
Short summary
We present a topographic digital elevation model (DEM) for Princess Elizabeth Land (PEL), East Antarctica. The DEM covers an area of approximately 900 000 km2 and was built from radio-echo sounding data collected in four campaigns since 2015. Previously, to generate the Bedmap2 topographic product, PEL’s bed was characterised from low-resolution satellite gravity data across an otherwise large (>200 km wide) data-free zone.
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S.,
and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula
Ice Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095,
https://doi.org/10.1002/2017gl076652, 2018.
Armitage, T. W. K., Wingham, D. J., and Ridout, A. L.: Meteorological Origin
of the Static Crossover Pattern Present in Low-Resolution-Mode CryoSat-2
Data Over Central Antarctica, IEEE Geosci. Remote S.,
11, 1295–1299, https://doi.org/10.1109/lgrs.2013.2292821, 2014.
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter
measurements over ice sheets: Footprint-scale topography, backscatter
fluctuations, and the dependence of microwave penetration depth on satellite
orientation, J. Geophys. Res.-Atmos., 106, 33471–33484,
https://doi.org/10.1029/2001jd000498, 2001.
Aschwanden, A., Fahnestock, M. A., and Truffer, M.: Complex Greenland outlet
glacier flow captured, Nat. Commun., 7, 10524,
https://doi.org/10.1038/ncomms10524, 2016.
Bamber, J. L.: Ice sheet altimeter processing scheme, Int. J.
Remote Sens., 15, 925–938, https://doi.org/10.1080/01431169408954125, 1994.
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009.
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A.,
and Palmer, S.: Seasonal variations in Greenland Ice Sheet motion: Inland
extent and behaviour at higher elevations, Earth Planet. Sc.
Lett., 307, 271–278, https://doi.org/10.1016/j.epsl.2011.04.014, 2011.
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M.,
Fettweis, X., van den Broeke, M. R., Madsen, F. B., Kendrick, E., Caccamise,
D. J., van Dam, T., Knudsen, P., and Nylen, T.: Accelerating changes in ice
mass within Greenland, and the ice sheet's sensitivity to atmospheric
forcing, P. Natl. Acad. Sci. USA, 116, 1934,
https://doi.org/10.1073/pnas.1806562116, 2019.
Brockley, D. J., Baker, S., Femenias, P., Martinez, B., Massmann, F.-H.,
Otten, M., Paul, F., Picard, B., Prandi, P., Roca, M., Rudenko, S.,
Scharroo, R., and Visser, P.: REAPER: Reprocessing 12 Years of ERS-1 and
ERS-2 Altimeters and Microwave Radiometer Data, IEEE T.
Geosci. Remote, 55, 5506–5514, https://doi.org/10.1109/tgrs.2017.2709343,
2017.
Chambers, D. P., Mehlhaff, C. A., Urban, T. J., Fujii, D., and Nerem, R. S.:
Low-frequency variations in global mean sea level: 1950–2000, J.
Geophys. Res.-Oceans, 107, 1-1–1-10, https://doi.org/10.1029/2001JC001089, 2002.
Chuter, S. J. and Bamber, J. L.: Antarctic ice shelf thickness from CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 10721–10729, https://doi.org/10.1002/2015GL066515, 2015.
Ewert, H., Groh, A., and Dietrich, R.: Volume and mass changes of the
Greenland ice sheet inferred from ICESat and GRACE, J. Geodynam., 59–60,
111–123, https://doi.org/10.1016/j.jog.2011.06.003, 2012.
Flament, T. and Remy, F.: Dynamic thinning of Antarctic glaciers from
along-track repeat radar altimetry, J. Glaciol., 58, 830–840, https://doi.org/10.3189/2012JoG11J118, 2012.
Frappart, F., Legrésy, B., Niño, F., Blarel, F., Fuller, N., Fleury,
S., Birol, F., and Calmant, S.: An ERS-2 altimetry reprocessing compatible
with ENVISAT for long-term land and ice sheets studies, Remote Sens.
Environ., 184, 558–581, https://doi.org/10.1016/j.rse.2016.07.037, 2016.
Groh, A., Ewert, H., Scheinert, M., Fritsche, M., Rülke, A., Richter, A., Rosenau, R., and Dietrich, R.: An investigation of Glacial Isostatic Adjustment over the Amundsen Sea sector, West Antarctica, Glob. Planet Chang., 98-99, 45–53, https://doi.org/10.1016/j.gloplacha.2012.08.001, 2012.
Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K.: Recent warming in
Greenland in a long-term instrumental (1881–2012) climatic context: I.
Evaluation of surface air temperature records, Environ. Res.
Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Hurkmans, R. T. W. L., Bamber, J. L., Sørensen, L. S., Joughin, I. R.,
Davis, C. H., and Krabill, W. B.: Spatiotemporal interpolation of elevation
changes derived from satellite altimetry for Jakobshavn Isbræ,
Greenland, J. Geophys. Res.-Earth, 117, F03001,
https://doi.org/10.1029/2011JF002072, 2012.
Jin, T., Li, J., Jiang, W., and Chu, Y.: Low-frequency sea level variation
and its correlation with climate events in the Pacific, Chinese Sci.
Bull., 57, 3623–3630, https://doi.org/10.1007/s11434-012-5231-y, 2012.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed
on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610,
https://doi.org/10.1038/nature03130, 2004.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van
den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two decades
of Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat.
Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho,
B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas,
R., and Yungel, J.: Greenland Ice Sheet: Increased coastal thinning, Geophys.
Res. Lett., 31, L24402, https://doi.org/10.1029/2004GL021533, 2004.
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A.,
Hogg, A., and Wingham, D.: Increased ice losses from Antarctica detected by
CryoSat-2, Geophys. Res. Lett., 41, 3899–3905, https://doi.org/10.1002/2014gl060111, 2014.
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K.,
Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de
Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert,
L.: A high-resolution record of Greenland mass balance, Geophys. Res. Lett.,
43, 7002–7010, https://doi.org/10.1002/2016GL069666, 2016.
Meloni, M., Bouffard, J., Parrinello, T., Dawson, G., Garnier, F., Helm, V., Di Bella, A., Hendricks, S., Ricker, R., Webb, E., Wright, B., Nielsen, K., Lee, S., Passaro, M., Scagliola, M., Simonsen, S. B., Sandberg Sørensen, L., Brockley, D., Baker, S., Fleury, S., Bamber, J., Maestri, L., Skourup, H., Forsberg, R., and Mizzi, L.: CryoSat Ice Baseline-D validation and evolutions, The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, 2020.
Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem,
M., Buzzi, A., and Paden, J.: Fast retreat of Zachariæ Isstrøm,
northeast Greenland, Science, 350, 1357, https://doi.org/10.1126/science.aac7111, 2015.
Nilsson, J., Vallelonga, P., Simonsen, S. B., Sørensen, L. S., Forsberg,
R., Dahl-Jensen, D., Hirabayashi, M., Goto-Azuma, K., Hvidberg, C. S.,
Kjær, H. A., and Satow, K.: Greenland 2012 melt event effects on
CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 3919–3926, https://doi.org/10.1002/2015GL063296, 2015.
Nilsson, J., Gardner, A., Sandberg Sørensen, L., and Forsberg, R.: Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet, The Cryosphere, 10, 2953–2969, https://doi.org/10.5194/tc-10-2953-2016, 2016.
Paolo, F. S., Fricker, H. A., and Padman, L.: Constructing improved decadal
records of Antarctic ice shelf height change from multiple satellite radar
altimeters, Remote Sens. Environ., 177, 192–205,
https://doi.org/10.1016/j.rse.2016.01.026, 2016.
Peltier, R. W., Argus, D. F., and Drummond, R.: Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al, J. Geophys. Res.-Sol. Ea., 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Remy, F., Legresy, B., and Benveniste, J.: On the Azimuthally Anisotropy
Effects of Polarization for Altimetric Measurements, IEEE T.
Geosci. Remote S., 44, 3289–3296, https://doi.org/10.1109/tgrs.2006.878444,
2006.
Schröder, L., Richter, A., Fedorov, D. V., Eberlein, L., Brovkov, E. V., Popov, S. V., Knöfel, C., Horwath, M., Dietrich, R., Matveev, A. Y., Scheinert, M., and Lukin, V. V.: Validation of satellite altimetry by kinematic GNSS in central East Antarctica, The Cryosphere, 11, 1111–1130, https://doi.org/10.5194/tc-11-1111-2017, 2017.
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G.,
Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C.,
Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho,
B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H.,
Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm,
V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen,
P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D.,
Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A.,
Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E.,
Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L.,
Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo,
K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M.,
Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M.,
Vishwakarma, B. D., Wiese, D., Wouters, B., and The, I. T.: Mass balance of
the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222,
https://doi.org/10.1038/s41586-018-0179-y, 2018.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater,
T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46, 8174–8183,
https://doi.org/10.1029/2019GL082182, 2019.
Simonsen, S. B. and Sørensen, L. S.: Implications of changing scattering
properties on Greenland ice sheet volume change from Cryosat-2 altimetry,
Remote Sens. Environ., 190, 207–216, https://doi.org/10.1016/j.rse.2016.12.012,
2017.
Simonsen, S. B., Barletta, V. R., Colgan, W. T., and Sørensen, L. S.:
Greenland Ice Sheet Mass Balance (1992–2020) From Calibrated Radar
Altimetry, Geophys. Res. Lett., 48, e2020GL091216, https://doi.org/10.1029/2020GL091216,
2021.
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018.
Slater, T., Shepherd, A., Mcmillan, M., Armitage, T. W. K., Otosaka, I., and
Arthern, R. J.: Compensating Changes in the Penetration Depth of
Pulse-Limited Radar Altimetry Over the Greenland Ice Sheet, IEEE
T. Geosci. Remote S., 57, 9633–9642,
https://doi.org/10.1109/TGRS.2019.2928232, 2019.
Slater, T., Shepherd, A., McMillan, M., Leeson, A., Gilbert, L., Muir, A.,
Munneke, P. K., Noël, B., Fettweis, X., van den Broeke, M., and Briggs,
K.: Increased variability in Greenland Ice Sheet runoff from satellite
observations, Nat. Commun., 12, 6069,
https://doi.org/10.1038/s41467-021-26229-4, 2021.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., R., S. M., and Zwally, H. J.: Pervasive ice sheet
mass loss reflects competing ocean and atmosphere processes, Science, 368,
1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Smith, T. M., Reynolds, R. W., Livezey, R. E., and Stokes, D. C.:
Reconstruction of Historical Sea Surface Temperatures Using Empirical
Orthogonal Functions, J. Climate, 9, 1403–1420,
https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2,
1996.
Sørensen, L. S., Simonsen, S. B., Forsberg, R., Khvorostovsky, K.,
Meister, R., and Engdahl, M. E.: 25 years of elevation changes of the
Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry, Earth
Planet. Sc. Lett., 495, 234–241,
https://doi.org/10.1016/j.epsl.2018.05.015, 2018.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013.
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137, https://doi.org/10.1002/2014GL061052, 2014.
Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates,
Geophys. Res. Lett., 33, L06401, https://doi.org/10.1029/2005GL025305, 2006.
Wingham, D., Rapley, C., and Griffiths, H., Guyenne, T. D., and Hunt, J. J.
(Eds.): New Techniques in Satellite Altimeter Tracking Systems, in:
Proceedings of the IGARSS Symposium, European Space Agency, Zurich, Ref. ESA SP-254, 1986.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D.,
Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos,
C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.
W.: CryoSat: A mission to determine the fluctuations in Earth's land and
marine ice fields, Adv. Space Res., 37, 841–871,
https://doi.org/10.1016/j.asr.2005.07.027, 2006.
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M.,
Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7,
eaba7282, https://doi.org/10.1126/sciadv.aba7282, 2021.
Yang, Y. D., Li, F., Hwang, C., Ding, M. H., and Ran, J. J.: Space-Time
Evolution of Greenland Ice Sheet Elevation and Mass From Envisat and GRACE
Data, J. Geophys. Res.-Earth, 124, 2079–2100, https://doi.org/10.1029/2018jf004765, 2019.
Zhang, B., Wang, Z., Li, F., An, J., Yang, Y., and Liu, J.: Estimation of
present-day glacial isostatic adjustment, ice mass change and elastic
vertical crustal deformation over the Antarctic ice sheet, J. Glaciol., 63,
703–715, https://doi.org/10.1017/jog.2017.37, 2017.
Zhang, B., Wang, Z., Yang, Q., Liu, J., An, J., Li, F., Liu, T., and Geng,
H.: Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and
CryoSat-2 Radar Altimetry, Remote Sensing, 12, 3746, https://doi.org/10.3390/rs12223746, 2020.
Zhang, B., Wang, Z., An, J., Liu, T., and Geng, H.: Surface elevation time
series over the Greenland Ice Sheet (1991–2020), National Tibetan Plateau
Data Center [data set], https://doi.org/10.11888/Glacio.tpdc.271658, 2021.
Zwally, H. J., Giovinetto, M. B., Beckley, M. A., and Saba, J. L.: Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory [data set], https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems (last access: 10 July 2021), 2012.
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A.,
Brenner, A. C., Saba, J. L., and Yi, D. H.: Mass changes of the Greenland
and Antarctic ice sheets and shelves and contributions to sea-level rise:
1992–2002, J. Glaciol., 51, 509–527, https://doi.org/10.3189/172756505781829007, 2005.
Short summary
A long-term time series of ice sheet surface elevation change essential for assessing climate change. This study presents a 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters. The dataset can provide detailed insight into Greenland Ice Sheet surface elevation change on multiple temporal and spatial scales, thereby providing an opportunity to explore potential associations between ice sheet change and climatic forcing.
A long-term time series of ice sheet surface elevation change essential for assessing climate...
Special issue
Altmetrics
Final-revised paper
Preprint