Articles | Volume 14, issue 2
https://doi.org/10.5194/essd-14-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-973-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters
Baojun Zhang
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Zemin Wang
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Jiachun An
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Tingting Liu
CORRESPONDING AUTHOR
Chinese Antarctic Center of Surveying and Mapping, Wuhan University,
Wuhan, 430079, China
Hong Geng
School of Resource and Environment Sciences, Wuhan University, Wuhan,
430079, China
Related authors
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603, https://doi.org/10.5194/egusphere-2025-603, 2025
Short summary
Short summary
Ephemeral grounding sites appear as ice shelves thin or sea levels rise. Sentinel-1A/B imagery (2014–2023) tracked these sites on Pine Island Ice Shelf, noting their disappearance after a 2020 calving event. Basal melting directly influences these sites, while calving and atmospheric forces are indirect factors. This site could become a key pinning point, impacting future calving. Further modeling is needed.
Yide Qian, Chunxia Zhou, Sainan Sun, Yiming Chen, Tao Wang, and Baojun Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-603, https://doi.org/10.5194/egusphere-2025-603, 2025
Short summary
Short summary
Ephemeral grounding sites appear as ice shelves thin or sea levels rise. Sentinel-1A/B imagery (2014–2023) tracked these sites on Pine Island Ice Shelf, noting their disappearance after a 2020 calving event. Basal melting directly influences these sites, while calving and atmospheric forces are indirect factors. This site could become a key pinning point, impacting future calving. Further modeling is needed.
Mohammed E. Shokr, Zihan Wang, and Tingting Liu
The Cryosphere, 14, 3611–3627, https://doi.org/10.5194/tc-14-3611-2020, https://doi.org/10.5194/tc-14-3611-2020, 2020
Short summary
Short summary
This paper uses sequential daily SAR images covering the Robeson Channel to quantitatively study kinematics of individual ice floes with exploration of wind influence and the evolution of the ice arch at the entry of the channel. Results show that drift of ice floes within the Robeson Channel and the arch are both significantly influenced by wind. The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring sea ice cover in narrow water passages.
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S.,
and Ligtenberg, S. R. M.: Variable Basal Melt Rates of Antarctic Peninsula
Ice Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095,
https://doi.org/10.1002/2017gl076652, 2018.
Armitage, T. W. K., Wingham, D. J., and Ridout, A. L.: Meteorological Origin
of the Static Crossover Pattern Present in Low-Resolution-Mode CryoSat-2
Data Over Central Antarctica, IEEE Geosci. Remote S.,
11, 1295–1299, https://doi.org/10.1109/lgrs.2013.2292821, 2014.
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter
measurements over ice sheets: Footprint-scale topography, backscatter
fluctuations, and the dependence of microwave penetration depth on satellite
orientation, J. Geophys. Res.-Atmos., 106, 33471–33484,
https://doi.org/10.1029/2001jd000498, 2001.
Aschwanden, A., Fahnestock, M. A., and Truffer, M.: Complex Greenland outlet
glacier flow captured, Nat. Commun., 7, 10524,
https://doi.org/10.1038/ncomms10524, 2016.
Bamber, J. L.: Ice sheet altimeter processing scheme, Int. J.
Remote Sens., 15, 925–938, https://doi.org/10.1080/01431169408954125, 1994.
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009.
Bartholomew, I. D., Nienow, P., Sole, A., Mair, D., Cowton, T., King, M. A.,
and Palmer, S.: Seasonal variations in Greenland Ice Sheet motion: Inland
extent and behaviour at higher elevations, Earth Planet. Sc.
Lett., 307, 271–278, https://doi.org/10.1016/j.epsl.2011.04.014, 2011.
Bevis, M., Harig, C., Khan, S. A., Brown, A., Simons, F. J., Willis, M.,
Fettweis, X., van den Broeke, M. R., Madsen, F. B., Kendrick, E., Caccamise,
D. J., van Dam, T., Knudsen, P., and Nylen, T.: Accelerating changes in ice
mass within Greenland, and the ice sheet's sensitivity to atmospheric
forcing, P. Natl. Acad. Sci. USA, 116, 1934,
https://doi.org/10.1073/pnas.1806562116, 2019.
Brockley, D. J., Baker, S., Femenias, P., Martinez, B., Massmann, F.-H.,
Otten, M., Paul, F., Picard, B., Prandi, P., Roca, M., Rudenko, S.,
Scharroo, R., and Visser, P.: REAPER: Reprocessing 12 Years of ERS-1 and
ERS-2 Altimeters and Microwave Radiometer Data, IEEE T.
Geosci. Remote, 55, 5506–5514, https://doi.org/10.1109/tgrs.2017.2709343,
2017.
Chambers, D. P., Mehlhaff, C. A., Urban, T. J., Fujii, D., and Nerem, R. S.:
Low-frequency variations in global mean sea level: 1950–2000, J.
Geophys. Res.-Oceans, 107, 1-1–1-10, https://doi.org/10.1029/2001JC001089, 2002.
Chuter, S. J. and Bamber, J. L.: Antarctic ice shelf thickness from CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 10721–10729, https://doi.org/10.1002/2015GL066515, 2015.
Ewert, H., Groh, A., and Dietrich, R.: Volume and mass changes of the
Greenland ice sheet inferred from ICESat and GRACE, J. Geodynam., 59–60,
111–123, https://doi.org/10.1016/j.jog.2011.06.003, 2012.
Flament, T. and Remy, F.: Dynamic thinning of Antarctic glaciers from
along-track repeat radar altimetry, J. Glaciol., 58, 830–840, https://doi.org/10.3189/2012JoG11J118, 2012.
Frappart, F., Legrésy, B., Niño, F., Blarel, F., Fuller, N., Fleury,
S., Birol, F., and Calmant, S.: An ERS-2 altimetry reprocessing compatible
with ENVISAT for long-term land and ice sheets studies, Remote Sens.
Environ., 184, 558–581, https://doi.org/10.1016/j.rse.2016.07.037, 2016.
Groh, A., Ewert, H., Scheinert, M., Fritsche, M., Rülke, A., Richter, A., Rosenau, R., and Dietrich, R.: An investigation of Glacial Isostatic Adjustment over the Amundsen Sea sector, West Antarctica, Glob. Planet Chang., 98-99, 45–53, https://doi.org/10.1016/j.gloplacha.2012.08.001, 2012.
Hanna, E., Mernild, S. H., Cappelen, J., and Steffen, K.: Recent warming in
Greenland in a long-term instrumental (1881–2012) climatic context: I.
Evaluation of surface air temperature records, Environ. Res.
Lett., 7, 045404, https://doi.org/10.1088/1748-9326/7/4/045404, 2012.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Hurkmans, R. T. W. L., Bamber, J. L., Sørensen, L. S., Joughin, I. R.,
Davis, C. H., and Krabill, W. B.: Spatiotemporal interpolation of elevation
changes derived from satellite altimetry for Jakobshavn Isbræ,
Greenland, J. Geophys. Res.-Earth, 117, F03001,
https://doi.org/10.1029/2011JF002072, 2012.
Jin, T., Li, J., Jiang, W., and Chu, Y.: Low-frequency sea level variation
and its correlation with climate events in the Pacific, Chinese Sci.
Bull., 57, 3623–3630, https://doi.org/10.1007/s11434-012-5231-y, 2012.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed
on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610,
https://doi.org/10.1038/nature03130, 2004.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., Noël, B. P. Y., van
den Broeke, M. R., Dinardo, S., and Willis, J.: Interruption of two decades
of Jakobshavn Isbrae acceleration and thinning as regional ocean cools, Nat.
Geosci., 12, 277–283, https://doi.org/10.1038/s41561-019-0329-3, 2019.
Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho,
B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas,
R., and Yungel, J.: Greenland Ice Sheet: Increased coastal thinning, Geophys.
Res. Lett., 31, L24402, https://doi.org/10.1029/2004GL021533, 2004.
McMillan, M., Shepherd, A., Sundal, A., Briggs, K., Muir, A., Ridout, A.,
Hogg, A., and Wingham, D.: Increased ice losses from Antarctica detected by
CryoSat-2, Geophys. Res. Lett., 41, 3899–3905, https://doi.org/10.1002/2014gl060111, 2014.
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K.,
Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de
Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert,
L.: A high-resolution record of Greenland mass balance, Geophys. Res. Lett.,
43, 7002–7010, https://doi.org/10.1002/2016GL069666, 2016.
Meloni, M., Bouffard, J., Parrinello, T., Dawson, G., Garnier, F., Helm, V., Di Bella, A., Hendricks, S., Ricker, R., Webb, E., Wright, B., Nielsen, K., Lee, S., Passaro, M., Scagliola, M., Simonsen, S. B., Sandberg Sørensen, L., Brockley, D., Baker, S., Fleury, S., Bamber, J., Maestri, L., Skourup, H., Forsberg, R., and Mizzi, L.: CryoSat Ice Baseline-D validation and evolutions, The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, 2020.
Mouginot, J., Rignot, E., Scheuchl, B., Fenty, I., Khazendar, A., Morlighem,
M., Buzzi, A., and Paden, J.: Fast retreat of Zachariæ Isstrøm,
northeast Greenland, Science, 350, 1357, https://doi.org/10.1126/science.aac7111, 2015.
Nilsson, J., Vallelonga, P., Simonsen, S. B., Sørensen, L. S., Forsberg,
R., Dahl-Jensen, D., Hirabayashi, M., Goto-Azuma, K., Hvidberg, C. S.,
Kjær, H. A., and Satow, K.: Greenland 2012 melt event effects on
CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 3919–3926, https://doi.org/10.1002/2015GL063296, 2015.
Nilsson, J., Gardner, A., Sandberg Sørensen, L., and Forsberg, R.: Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet, The Cryosphere, 10, 2953–2969, https://doi.org/10.5194/tc-10-2953-2016, 2016.
Paolo, F. S., Fricker, H. A., and Padman, L.: Constructing improved decadal
records of Antarctic ice shelf height change from multiple satellite radar
altimeters, Remote Sens. Environ., 177, 192–205,
https://doi.org/10.1016/j.rse.2016.01.026, 2016.
Peltier, R. W., Argus, D. F., and Drummond, R.: Comment on “An Assessment of the ICE-6G_C (VM5a) Glacial Isostatic Adjustment Model” by Purcell et al, J. Geophys. Res.-Sol. Ea., 123, 2019–2028, https://doi.org/10.1002/2016JB013844, 2018.
Remy, F., Legresy, B., and Benveniste, J.: On the Azimuthally Anisotropy
Effects of Polarization for Altimetric Measurements, IEEE T.
Geosci. Remote S., 44, 3289–3296, https://doi.org/10.1109/tgrs.2006.878444,
2006.
Schröder, L., Richter, A., Fedorov, D. V., Eberlein, L., Brovkov, E. V., Popov, S. V., Knöfel, C., Horwath, M., Dietrich, R., Matveev, A. Y., Scheinert, M., and Lukin, V. V.: Validation of satellite altimetry by kinematic GNSS in central East Antarctica, The Cryosphere, 11, 1111–1130, https://doi.org/10.5194/tc-11-1111-2017, 2017.
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G.,
Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C.,
Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho,
B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H.,
Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm,
V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen,
P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D.,
Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A.,
Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E.,
Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L.,
Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo,
K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M.,
Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M.,
Vishwakarma, B. D., Wiese, D., Wouters, B., and The, I. T.: Mass balance of
the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222,
https://doi.org/10.1038/s41586-018-0179-y, 2018.
Shepherd, A., Gilbert, L., Muir, A. S., Konrad, H., McMillan, M., Slater,
T., Briggs, K. H., Sundal, A. V., Hogg, A. E., and Engdahl, M. E.: Trends in
Antarctic Ice Sheet Elevation and Mass, Geophys. Res. Lett., 46, 8174–8183,
https://doi.org/10.1029/2019GL082182, 2019.
Simonsen, S. B. and Sørensen, L. S.: Implications of changing scattering
properties on Greenland ice sheet volume change from Cryosat-2 altimetry,
Remote Sens. Environ., 190, 207–216, https://doi.org/10.1016/j.rse.2016.12.012,
2017.
Simonsen, S. B., Barletta, V. R., Colgan, W. T., and Sørensen, L. S.:
Greenland Ice Sheet Mass Balance (1992–2020) From Calibrated Radar
Altimetry, Geophys. Res. Lett., 48, e2020GL091216, https://doi.org/10.1029/2020GL091216,
2021.
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018.
Slater, T., Shepherd, A., Mcmillan, M., Armitage, T. W. K., Otosaka, I., and
Arthern, R. J.: Compensating Changes in the Penetration Depth of
Pulse-Limited Radar Altimetry Over the Greenland Ice Sheet, IEEE
T. Geosci. Remote S., 57, 9633–9642,
https://doi.org/10.1109/TGRS.2019.2928232, 2019.
Slater, T., Shepherd, A., McMillan, M., Leeson, A., Gilbert, L., Muir, A.,
Munneke, P. K., Noël, B., Fettweis, X., van den Broeke, M., and Briggs,
K.: Increased variability in Greenland Ice Sheet runoff from satellite
observations, Nat. Commun., 12, 6069,
https://doi.org/10.1038/s41467-021-26229-4, 2021.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo,
F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., R., S. M., and Zwally, H. J.: Pervasive ice sheet
mass loss reflects competing ocean and atmosphere processes, Science, 368,
1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Smith, T. M., Reynolds, R. W., Livezey, R. E., and Stokes, D. C.:
Reconstruction of Historical Sea Surface Temperatures Using Empirical
Orthogonal Functions, J. Climate, 9, 1403–1420,
https://doi.org/10.1175/1520-0442(1996)009<1403:ROHSST>2.0.CO;2,
1996.
Sørensen, L. S., Simonsen, S. B., Forsberg, R., Khvorostovsky, K.,
Meister, R., and Engdahl, M. E.: 25 years of elevation changes of the
Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry, Earth
Planet. Sc. Lett., 495, 234–241,
https://doi.org/10.1016/j.epsl.2018.05.015, 2018.
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854,
2013.
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R.: Regional
acceleration in ice mass loss from Greenland and Antarctica using GRACE
time-variable gravity data, Geophys. Res. Lett., 41, 8130–8137, https://doi.org/10.1002/2014GL061052, 2014.
Wahr, J., Swenson, S., and Velicogna, I.: Accuracy of GRACE mass estimates,
Geophys. Res. Lett., 33, L06401, https://doi.org/10.1029/2005GL025305, 2006.
Wingham, D., Rapley, C., and Griffiths, H., Guyenne, T. D., and Hunt, J. J.
(Eds.): New Techniques in Satellite Altimeter Tracking Systems, in:
Proceedings of the IGARSS Symposium, European Space Agency, Zurich, Ref. ESA SP-254, 1986.
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D.,
Cullen, R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos,
C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.
W.: CryoSat: A mission to determine the fluctuations in Earth's land and
marine ice fields, Adv. Space Res., 37, 841–871,
https://doi.org/10.1016/j.asr.2005.07.027, 2006.
Wood, M., Rignot, E., Fenty, I., An, L., Bjørk, A., van den Broeke, M.,
Cai, C., Kane, E., Menemenlis, D., Millan, R., Morlighem, M., Mouginot, J.,
Noël, B., Scheuchl, B., Velicogna, I., Willis, J. K., and Zhang, H.:
Ocean forcing drives glacier retreat in Greenland, Sci. Adv., 7,
eaba7282, https://doi.org/10.1126/sciadv.aba7282, 2021.
Yang, Y. D., Li, F., Hwang, C., Ding, M. H., and Ran, J. J.: Space-Time
Evolution of Greenland Ice Sheet Elevation and Mass From Envisat and GRACE
Data, J. Geophys. Res.-Earth, 124, 2079–2100, https://doi.org/10.1029/2018jf004765, 2019.
Zhang, B., Wang, Z., Li, F., An, J., Yang, Y., and Liu, J.: Estimation of
present-day glacial isostatic adjustment, ice mass change and elastic
vertical crustal deformation over the Antarctic ice sheet, J. Glaciol., 63,
703–715, https://doi.org/10.1017/jog.2017.37, 2017.
Zhang, B., Wang, Z., Yang, Q., Liu, J., An, J., Li, F., Liu, T., and Geng,
H.: Elevation Changes of the Antarctic Ice Sheet from Joint Envisat and
CryoSat-2 Radar Altimetry, Remote Sensing, 12, 3746, https://doi.org/10.3390/rs12223746, 2020.
Zhang, B., Wang, Z., An, J., Liu, T., and Geng, H.: Surface elevation time
series over the Greenland Ice Sheet (1991–2020), National Tibetan Plateau
Data Center [data set], https://doi.org/10.11888/Glacio.tpdc.271658, 2021.
Zwally, H. J., Giovinetto, M. B., Beckley, M. A., and Saba, J. L.: Antarctic and Greenland Drainage Systems, GSFC Cryospheric Sciences Laboratory [data set], https://earth.gsfc.nasa.gov/cryo/data/polar-altimetry/antarctic-and-greenland-drainage-systems (last access: 10 July 2021), 2012.
Zwally, H. J., Giovinetto, M. B., Li, J., Cornejo, H. G., Beckley, M. A.,
Brenner, A. C., Saba, J. L., and Yi, D. H.: Mass changes of the Greenland
and Antarctic ice sheets and shelves and contributions to sea-level rise:
1992–2002, J. Glaciol., 51, 509–527, https://doi.org/10.3189/172756505781829007, 2005.
Short summary
A long-term time series of ice sheet surface elevation change essential for assessing climate change. This study presents a 30-year monthly 5 km gridded surface elevation time series for the Greenland Ice Sheet from multiple satellite radar altimeters. The dataset can provide detailed insight into Greenland Ice Sheet surface elevation change on multiple temporal and spatial scales, thereby providing an opportunity to explore potential associations between ice sheet change and climatic forcing.
A long-term time series of ice sheet surface elevation change essential for assessing climate...
Special issue
Altmetrics
Final-revised paper
Preprint