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Abstract. A long-term time series of ice sheet surface elevation change (SEC) is an essential parameter to
assess the impact of climate change. In this study, we used an updated plane-fitting least-squares regression
strategy to generate a 30-year surface elevation time series for the Greenland Ice Sheet (GrIS) at monthly tem-
poral resolution and 5× 5 km grid spatial resolution using ERS-1 (European Remote Sensing), ERS-2, Envisat,
and CryoSat-2 satellite radar altimeter observations obtained between August 1991 and December 2020. The
ingenious corrections for intermission bias were applied using an updated plane-fitting least-squares regression
strategy. Empirical orthogonal function (EOF) reconstruction was used to supplement the sparse monthly gridded
data attributable to poor observations in the early years. Validation using both airborne laser altimeter observa-
tions and the European Space Agency GrIS Climate Change Initiative (CCI) product indicated that our merged
surface elevation time series is reliable. The accuracy and dispersion of errors of SECs of our results were 19.3 %
and 8.9 % higher, respectively, than those of CCI SECs and even 30.9 % and 19.0 % higher, respectively, in peri-
ods from 2006–2010 to 2010–2014. Further analysis showed that our merged time series could provide detailed
insight into GrIS SEC on multiple temporal (up to 30 years) and spatial scales, thereby providing an opportunity
to explore potential associations between ice sheet change and climatic forcing. The merged surface elevation
time series data are available at https://doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al., 2021).

1 Introduction

Over recent decades, the Greenland Ice Sheet (GrIS) has ex-
perienced increasing substantial imbalance. Driven by atmo-
spheric and oceanic warming (Straneo and Heimbach, 2013;
Hanna et al., 2012), this imbalance has become a leading
driver of global sea level change, whose contribution which
is about 0.42 mm yr−1 (Shepherd et al., 2020) is higher than
that of the Antarctic Ice Sheet at about 0.30 mm yr−1 (Shep-
herd et al., 2018). As a result of changes in surface mass
balance (SMB) and ice dynamics, ice sheet elevation change
(EC) is a direct indicator of climate change. Furthermore,
with an appropriate density model for the snow and firn layer
in addition to a model of the distribution of the ice layers
within the firn column, EC can be used to monitor variation

in ice sheet mass balance. Thus, a long-term time series of
GrIS EC is essential to assess the impact of climate change
on the GrIS (Sørensen et al., 2018). Since 1991, various satel-
lite altimetry missions have made continuous observations
of ice sheet EC a reality (Shepherd et al., 2019; Simonsen
et al., 2021). This approach, which uses measurements of
surface EC (SEC) derived from satellite altimetry to mon-
itor ice sheet mass balance, provides an unprecedented ad-
vantage in terms of spatiotemporal resolution in comparison
with two other satellite-based techniques: gravimetric mass
balance derived from satellite gravimetry and input–output
balance derived from remotely sensed ice flow (Shepherd et
al., 2019; Simonsen et al., 2021).

The effective life of a single satellite mission is limited,
which means reconstruction of a long-term ice sheet eleva-
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tion time series requires observations from multiple altime-
ter missions to be combined. In such a process, the method
adopted to eliminate system biases is a crucial factor. Sys-
tem biases include intermission bias, ascending–descending
bias, and time-variable penetration effects. It is generally be-
lieved that intermission bias is derived mainly from orbital
errors and differences in the center of gravity and phase
of antennae between satellites (Frappart et al., 2016). Ow-
ing to its distinct spatial pattern (Zwally et al., 2005; Frap-
part et al., 2016), intermission bias is generally corrected for
each grid cell using an estimate calculated from observations
over overlapping epochs (Paolo et al., 2016; Sørensen et al.,
2018; Adusumilli et al., 2018; Schröder et al., 2019; Shep-
herd et al., 2019; Simonsen et al., 2021). The ascending–
descending bias can be considered to comprise both intramis-
sion ascending–descending bias and intermission ascending–
descending bias (Zhang et al., 2020). Both are related to the
angle between radar polarization and wind-induced features
of the firn (Armitage et al., 2014; Remy et al., 2006). The for-
mer can be corrected by introducing a term for satellite flight
direction into a regression model (Simonsen and Sørensen,
2017; McMillan et al., 2014; Yang et al., 2019) or reduced by
re-tracking the radar return waveform using a threshold re-
tracker (Helm et al., 2014; Schröder et al., 2019). No specific
treatment has been proposed for handling the latter, except
that it is accounted for by the introduction of estimations of
a series of parameters into a regression model (Zhang et al.,
2020). It has been proven that using a large amount of surface
elevation observations to fine-tune the correction of intermis-
sion bias and ascending–descending bias can ensure better
self-consistency and reliability of the combined time series
of elevation (Zhang et al., 2020). Unfortunately, this method
is unsuitable for combining data from multiple satellite mis-
sions simultaneously because introduction into the fitting
model of additional parameters and the increasingly compli-
cated topological relationships between them will lead to re-
gression failure. For mitigating time-variable penetration ef-
fects, there are currently three common approaches: includ-
ing waveform parameters in the regression model (Flament
and Remy, 2012; Simonsen and Sørensen, 2017), re-tracking
the radar return waveforms with a threshold re-tracker (Nils-
son et al., 2016; Helm et al., 2014; Schröder et al., 2017),
or applying a waveform deconvolution model to the radar re-
turn waveforms (Arthern et al., 2001; McMillan et al., 2016;
Slater et al., 2019). However, none of these approaches can
account completely for the time-variable penetration effects.

The coverage of ground tracks of polar-orbiting altimetry
satellites over the polar ice sheets is uneven. Additionally,
certain outliers exist in altimeter observations, especially in
relation to the early altimetry missions, e.g., ERS-1 (Euro-
pean Remote Sensing; Schröder et al., 2019). These prob-
lems will result in a lack of available data values in cer-
tain cells of a joint elevation time series. Thus, to estimate
the volume or mass change over a basin or an entire ice
sheet, gridding methods such as kriging (e.g., Bamber et

al., 2009; Slater et al., 2018), tension continuous curvature
splines (e.g., Zhang et al., 2017), or inverse distance weight
(e.g., Chuter and Bamber, 2015) are usually employed to in-
terpolate or even extrapolate the results for unobserved grid
cells. However, such straightforward interpolations are un-
able to reflect the true patterns of elevation or EC in steep
and very active areas across ice sheet margins (Hurkmans
et al., 2012), not to mention the accuracy of the extrapola-
tion results where there are insufficient constraints. Assum-
ing that the spatial distribution pattern of the variation of ice
sheet SEC is very small temporally, orthogonal spatial maps
of surface elevation (SE) variability can be extracted using
empirical orthogonal function (EOF) decomposition from a
sufficiently long elevation time series. Together with sparse
observations, orthogonal spatial maps can be used to real-
ize interpolation (reconstruction) of a time series of early-
satellite-derived SE. Actually, EOF reconstruction has al-
ready been used for reconstruction of sea surface temperature
(e.g., Smith et al., 1996) and sea level change (e.g., Chambers
et al., 2002; Jin et al., 2012) time series. The high-quality ob-
servations of Envisat and CryoSat-2, especially the higher-
resolution coverage of CryoSat-2, provide potential for the
use of EOF reconstruction for interpolation of an early ele-
vation time series.

Here, we improve a previously proposed algorithm (Zhang
et al., 2020) that requires a large volume of observations
in an integrated adjustment model for the simultaneous
correction of intermission bias and ascending–descending
bias. While retaining its advantages, we develop a 30-
year (1991–2020) monthly 5× 5 km gridded SE time se-
ries for the GrIS by merging ERS-1, ERS-2, Envisat, and
CryoSat-2 radar altimetry observations. Then, to facilitate
the use of the elevation time series, we use the EOF re-
construction method for a more reliable interpolation of
data for grid cells with missing values. In this paper,
the details of the data processing are presented. The fi-
nal merged SE time series dataset is freely available at
https://doi.org/10.11888/Glacio.tpdc.271658 (Zhang et al.,
2021).

2 Material and methodology

2.1 Satellite radar altimetry data

In this study, we used ice sheet SE observations from four
European Space Agency (ESA) satellite radar altimeter mis-
sions: ERS-1, ERS-2, Envisat, and CryoSat-2. Since the
launch of ERS-1 in 1991, satellite radar altimeters have con-
tinuously collected SE observations for 30 years using simi-
lar Ku-band altimeters. Currently, following the retirement of
the first three missions, only CryoSat-2 remains in operation.

For ERS-1 and ERS-2, we used version RP01 of the Level
2 (L2) Geophysical Data Record (GDR) product from the
REAPER (REprocessing of Altimeter Products for ERS)
project, which has been reprocessed to align both the ERS
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and Envisat datasets (Brockley et al., 2017). For Envisat,
we downloaded the latest L2 GDR product, version 3.0,
from ESA, which is better than the previous version (ver-
sion 2.1) in terms of coverage and performance at crossovers.
For CryoSat-2, we used the latest Baseline D L2 GDR
data provided by ESA. Over land ice, Baseline D improves
the ascending–descending crossover statistics to 0.1 m from
1.9 m achieved with the previous version, Baseline C (Mel-
oni et al., 2020). Before performing combined calculations,
all erroneous height records were eliminated using standard
quality flags.

2.2 Airborne laser altimetry data

To bridge the gap in observations between the ICESat (Ice,
Cloud and land Elevation Satellite) and ICESat-2 laser al-
timeter missions, the Operation IceBridge (OIB) project im-
plemented more than 1000 airborne surveys during 2009–
2020. During the OIB campaign, the airborne laser altime-
ter payload (i.e., the Airborne Topographic Mapper (ATM))
recorded a large number of high-precision ice sheet SE obser-
vations. Additionally, prior to OIB, several Pre-IceBridge air-
borne ATM surveys were conducted between 1993 and 2008.
The OIB and Pre-IceBridge ATM SE datasets can both be
download from the National Snow and Ice Data Center. Be-
cause their accuracy is 10 cm or better (Krabill et al., 2004),
we used these ATM elevation measurements (i.e., ATM L2
product) to validate our merged SE time series. Additionally,
SECs derived from OIB and Pre-IceBridge ATM measure-
ments (i.e., ATM L4 product) were also used.

2.3 Generation of surface elevation time series

Our previous study (Zhang et al., 2020) demonstrated that
using a large amount of data to fine-tune the correction of in-
termission bias and ascending–descending bias can develop a
more self-consistent and reliable combined elevation time se-
ries. However, use of the updated plane-fitting least-squares
regression model of Zhang et al. (2020) to merge data from
three or more satellite missions is not straightforward. As the
number of satellite altimetry missions involved in the calcu-
lation increases, additional terms of system bias and the in-
creasingly complex topological relationships between them
must be considered in the least-squares regression model,
making the model overly complicated and ultimately incom-
prehensible. However, it is possible to divide the calculation
into several individual steps, reducing the complexity of the
model while retaining its advantages.

First, the intramission ascending–descending bias at a grid
cell for each radar altimeter mission can be estimated as fol-
lows:
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(
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, (1)

where h
(
longi, lati, ti

)
denotes the surface height measured

at longitude (longi), latitude (lati), and time (ti), re-tracked
by the ICE-1 re-tracker (Bamber, 1994) for ERS-1, ERS-2,
and Envisat; the OCOG (Offset Centre of Gravity) re-tracker
(Wingham et al., 1986) for the CryoSat-2 LRM (Low Reso-
lution Mode); and the Wingham–Wallis model fit re-tracker
(Wingham et al., 2006) for the CryoSat-2 SARIn (Synthetic
Aperture Radar Interferometric). As a threshold re-tracker,
ICE-1 and OCOG are less sensitive to fluctuations in pene-
tration, thereby being more precise in terms of ice sheet el-
evation measurements (Nilsson et al., 2016; Schröder et al.,
2017; Slater et al., 2019). The reference epoch t0 was set to
2010.0 in this study; long0, lat0, and h0 represent the longi-
tude, latitude, and height (at t0), respectively, of the center
of a grid cell; a0–a4 are the quadratic expansion for surface
topography; a5–a7 denote the linear and seasonal signals for
temporal changes of SE; a8 is a parameter to mitigate the
time-variable penetration effects of the radar signal using the
anomaly of backscattered power (bsi − bs); bAD is for the
intramission ascending–descending bias; AD is assigned a
value of 1 for ascending tracks or 0 for descending tracks;
and res

(
longi, lati, ti

)
denotes the residuals of the regression.

Note that the SARIn and LRM observations of CryoSat-2
should be calculated separately here. The heights with the
intramission ascending–descending bias corrected can be de-
rived from

hc (longi, lati, ti
)
= h

(
longi, lati, ti

)
− bAD(−1)AD. (2)

Second, the intermission bias between Envisat and SARIn
(or LRM) of CryoSat-2 can be calculated from the corrected
heights hc (longi, lati, ti

)
:
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where bim is for the intermission bias; im is 1 for Envisat
observations or 0 for CryoSat-2 observations. The correction
of the intermission bias can be applied by

hcc (longi, lati, ti
)
= hc (longi, lati, ti

)
− bim(−1)im. (4)
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The above implies that Envisat is taken as a reference,
which means that the bias between SARIn and LRM will
be corrected in this step. After the intermission bias is cor-
rected, Envisat and CryoSat-2 data will be consistent, and
subsequently ERS-2 and then ERS-1 data can also be cor-
rected to be consistent with them.

Third, all the consistent heights hcc (longi, lati, ti
)

can be
used in the final least-squares regression to construct the SE
time series:
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The elevation anomaly can be derived as follows:
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Note that the removal of h0 is to facilitate the study of
EC and that h0 can be used to generate an independent digi-
tal elevation model (DEM). The DEM and the corresponding
surface slope and azimuth are shown in Fig. 1. When neces-
sary, h0 can be added back. Then, the monthly SE time series
for a grid cell can be obtained as follows:

1h
(

long0, lat0, tj
)
=

1
n

n∑
i=1

1h
(
long0, lat0, ti

)
, (7)

where n is the number of corrected elevations in month tj .
To generate a robust time series of 5 km gridded eleva-

tions, the above least-squares fitting is first performed on a
2 km polar-stereographic grid over the GrIS using the ice
sheet mask in Zwally et al. (2012). For each grid node, all
observations within 2.5 km of the center of the grid node are
used for the iterative least-squares estimation under the con-
straints of 3σ outlier rejection criteria and the same thresh-
olds as in Zhang et al. (2020). Then, a 40 km floating median
low-pass filter, similar to Schröder et al. (2019), and the same
spatiotemporal median filter as used by Zhang et al. (2020)
are implemented to generate the final merged robust 5 km
gridded time series.

2.4 Interpolation based on EOF reconstruction

Assuming that the spatial patterns of GrIS SECs are station-
ary in time, the three-dimensional GrIS SE anomaly time se-

ries ∇H (long, lat, t) can be represented as a linear combina-
tion of the EOF modes eofi (long, lat) and principal compo-
nents pci (t) (Chambers et al., 2002; Jin et al., 2012):

∇H (long, lat, t)=
N∑
i=1

eofi (long, lat)pci (t) , (8)

where N is the total number of EOF modes and long, lat,
and t denote the temporal and spatial position of a certain
SE anomaly. The purpose of solving EOF modes is to sup-
plement the sparse monthly gridded data attributable to poor
observations in the early years. The average proportion of
the monthly grid cells that need interpolations to be filled
is 24.9 % for ERS-1 and 7.4 % for ERS-2, which are much
higher than 1.1 % for Envisat and 0.8 % for CryoSat-2. In
particular, there are seven monthly grids with more than 63 %
of cells that need to be interpolated during the ERS-1 period.
Therefore, we use the gridded time series during 2003–2020
obtained from the higher-quality observations of Envisat and
CryoSat-2 here. To mitigate errors caused by extrapolation,
only grid cells with at least 100 elevation anomalies in the
216 months of the 2003–2020 period are retained. The miss-
ing values in the gridded time series during 2003–2020 are
interpolated using ordinary kriging, a technique usually em-
ployed to generate a DEM (Bamber et al., 2009; Slater et al.,
2018).

Then, for the monthly grid that needs interpolation, the
following equation can be established:

vt =

M∑
i=1

eofi (long, lat)PCi (t)− T (long, lat, t) , (9)

where T (long, lat, t) denotes the values already in this
monthly grid; M means choosing the first M EOF modes;
vt is the interpolation (reconstruction) error; and PCi (t) is
the principal components to be estimated corresponding to
each of the M modes for this monthly grid, which can be
estimated to minimize vt using a linear least-squares estima-
tor. To determine M , we experimented by adjusting it from
1 to 216 modes. We found that both the percentage of the ex-
plained variance and the root mean square (RMS) difference
between the reconstructed time series of monthly EC and that
of the observations become insensitive after 30 modes with
only minor changes, as can be seen in Fig. 2. Thereby, the el-
evation anomalies missing from grid cells during the period
of the ERS missions are interpolated using EOF reconstruc-
tion. Note that we first deduct the seasonal signals using a
least-squares fitting model with a second-order polynomial
and seasonal terms before performing the EOF reconstruc-
tion and then add them back to the EOF reconstruction re-
sults here. The performance of both EOF reconstruction and
ordinary kriging is shown in Fig. 3, illustrating the superior-
ity of the former in comparison with the latter. Especially in
extrapolation, there are many obvious over-interpolations in
the ordinary kriging result.
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Figure 1. (a) SE of the GrIS DEM at reference time 2010.0 and (b) surface slope and (c) azimuth derived from the DEM.

Figure 2. Percentage of variance explained (red line) and cumula-
tive variance explained (blue line) by each EOF mode; RMS error
(green line) and its derivative (purple line) of the difference between
the reconstructed time series of monthly elevation change and that
of observation in different EOFs.

Volume change of an ice sheet is an important parameter
for determining the response of the ice sheet to the effects of
climate change. The altimetric volume time series can be de-
rived from the gridded SE time series as described in Zhang
et al. (2020). Firstly, the effects of glacial isostatic adjustment
(GIA) and elastic solid-earth rebound should be corrected,
for they do not reflect changes due to ice and snow. Then,
the altimetric volume anomaly for each cell can be obtained
by multiplying the corrected SE anomaly by the area of the
cell. The altimetric volume anomalies for individual drainage
basins and major sectors can be calculated by integrating the
resulting altimetric volume anomalies over larger regions. In
this study, the ICE-6G_D model (Peltier et al., 2018) and a
scale factor (Groh et al., 2012) were used to correct for the
vertical crustal deformation related to GIA and elastic solid-
earth rebound.

2.5 Uncertainty for surface elevation time series

As described in Sect. 2.3, the elevation anomaly in a grid
cell of the merged SE time series is derived using a median

estimator. Thus, to obtain a realistic estimation of error, we
also use the scaled median absolute deviation MADS as a
metric of its uncertainty following Ewert et al. (2012):

MADS = kmedian(|H −median(H )|) . (10)

The scale factor k is set to 1.4826 to make MADS a con-
sistent estimator similar to the standard deviation.

As for those interpolated elevation anomalies in the grid-
ded time series, because of the complicated interpolation
methods adopted, it is difficult to estimate their uncertainty
using formal error propagation techniques. Here, we use the
scaled RMS of the residuals ε derived from the elevation
anomalies h in a grid cell as follows:

h=b0+ b1t + b2t
2
+ b3 cos(2π (t − t0))

+ b4 sin(2π (t − t0))+ ε, (11)

where b0 is a constant and b1–b4 denote the linear, quadratic,
and seasonal signals of the temporal changes of SE, respec-
tively. A scale factor of 1.05 is used to compensate for the
reduced RMS error due to fitting (Wahr et al., 2006).

It should be noted that when using our elevation time se-
ries to estimate the volume change for individual drainage
basins and major sectors, the correlated uncertainties be-
tween adjacent grid cells should also be considered. Accord-
ing to Schröder et al. (2019), applying a scaling factor to
the squared uncertainties can account for the autocorrelation
over an area.

3 Results

3.1 Surface elevation anomaly time series

The average rate of SEC in a certain time interval can be
calculated from SE time series using a least-squares fitting
model with a first-order polynomial and a sine wave with a 1-
year period. The additional annual items are used to avoid the
bias caused when the entire annual cycle is not fully covered.
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Figure 4 shows the climatological seasonal maps and the am-
plitude of annual cycle of SE anomaly over the GrIS. The
spatial distribution patterns and magnitude of the seasonal
changes in SE of the GrIS are clearly presented. The signif-
icant signals of seasonal variation are mainly concentrated
in the ablation zone below the equilibrium line identified in
McMillan et al. (2016). Thinning in autumn (July–August–
September) and thickening in spring (January–February–
March) are driven by the seasonal fluctuations in surface
melting, snowfall, and ice dynamics (Bartholomew et al.,
2011; Slater et al., 2021). Between May and August, surface
melting and enhanced ice dynamics when the surface melt-
water gains access to the ice–bed interface, lubricating basal
motion, lower the surface in the ablation zone. Snowfall and
slowing in ice dynamics in September–April thicken the ice
sheet. No evident seasonal fluctuations are found in the ele-
vation of the GrIS interior.

The average SEC rates and their uncertainties over the pe-
riods 1991–2000, 2001–2010, 2011–2020, and 1991–2020
from our merged elevation anomaly time series are shown in
Fig. 5. As reported by Shepherd et al. (2020), the GrIS has
been losing ice throughout most of the intervening period.
Thus, maps of these long-term average SEC rates show sig-
nals of continuous thinning in many areas along the coast.
Overall, the most notable signals of GrIS thinning are con-
centrated on the western coast of Greenland, especially along
Melville Bay and near Jakobshavn Isbræ. Comparison of the
average rates in the different periods reveals significantly
accelerated and expanded thinning in many outlet glaciers,
e.g., Jakobshavn Isbræ and Upernavik Isstrøm on the western
coast of the GrIS, Zachariæ Isstrøm and Nioghalvfjerdsfjor-
den Glacier in the northeast of the GrIS, Kangerdlugssuaq
Gletscher and Helheimgletscher in the southeast of the GrIS,
and Petermann Gletscher and Humboldt Gletscher in the
northwest of the GrIS. The main contributor to the significant
thinning detected in these regions is ice dynamics. The vol-
ume of solid ice being discharged into the ocean is increasing
because of warmer air and ocean temperatures (Mouginot et
al., 2015; Aschwanden et al., 2016; Shepherd et al., 2020;
Wood et al., 2021). Signs of thickening are evident mainly
in accumulation areas with higher elevation in central and
northwestern parts of the GrIS, e.g., the area near King Chris-
tian X Land. These weak signals of thickening mainly reflect
the increase in SMB caused by a combination of high snow-
fall and low surface melting (Simonsen et al., 2021). These
thinning and thickening spatial patterns are also confirmed
from ICESat and ICESat-2 (Smith et al., 2020; Ewert et al.,
2012).

Irrespective of whether thickening or thinning, it can be
seen that the rates of SEC in different periods vary. To gain
insight into the spatiotemporal changes of average SEC rates,
the average SEC rates and their uncertainties at 5-year inter-
vals during 1991–2020 for our time series are illustrated in
Fig. 6. Considerable variation in the mean SEC rates is evi-
dent, e.g., abnormal accumulation during 1996–2000, gradu-

ally increasing loss from 2000–2005 to 2011–2015, and de-
celeration of thinning during 2015–2020. Benefitting from
the higher temporal and spatial resolution of our combined
time series, the small-scale spatiotemporal evolution of the
average rates of SEC can be analyzed in detail. Taking Jakob-
shavn Isbræ as an example, Fig. 6 clearly reveals its evolu-
tion from thinning in the early 1990s, to equilibrium in the
late 1990s, to accelerated thinning in the first decade of the
2000s, and then to decelerated thinning in recent years. Simi-
larly, the evolution of other glaciers can be obtained from our
time series. It should be noted that due to the natural defect
of radar altimeter, our time series is not suitable for glaciers
that are too small or too steep. Sørensen et al. (2018) has ar-
bitrarily excluded all grid cells which are located on slopes
exceeding 1.5◦ to avoid the possible large uncertainty.

Our 5 km gridded time series can also provide a more de-
tailed evolution of SEC characteristics on temporal scales of
up to 30 years. The four examples presented in Fig. 7 il-
lustrate that our results have the capability to pinpoint such
signals of GrIS SEC. Jakobshavn Isbræ is the largest and
fastest outlet glacier on the western coast of Greenland; how-
ever, its thinning throughout the observational period since
1991 is not continuous. For example, short-term decelera-
tion of thinning and thickening during 1996–2001 and since
2014, caused by the deceleration of the ice flow (Joughin et
al., 2004; Khazendar et al., 2019), can be seen in Fig. 7a.
A rapid drop in the surface elevation of Jakobshavn Is-
bræ is evident during 2003–2013. The rate of surface low-
ering increases with increasing distance from the ground-
ing line. During this period, the mean rate at position A
(Fig. 7a) is up to −2.85± 0.04 m yr−1. Upernavik Isstrøm
consists of five glaciers, all of which flow into the same fjord.
Zachariæ Isstrøm and Nioghalvfjerdsfjorden drain the ma-
jority of the Northeast Greenland Ice Stream. Unlike Jakob-
shavn Isbræ, their surfaces have lowered consistently since
1991 (Fig. 7b and c). The average rates of thinning at A, B,
and C in Upernavik Isstrøm are−1.34± 0.03,−1.01± 0.01,
and −0.60± 0.01 m yr−1, respectively. The thinning rates
of Zachariæ Isstrøm and Nioghalvfjerdsfjorden are slower,
i.e., mean SEC rates of −0.67± 0.02, −0.28± 0.01, and
−0.21± 0.01 m yr−1 at A, B, and C, respectively. Similarly,
the closer it is to the grounding line, the faster the rate of
thinning of the ice of those glaciers is. King Christian X
Land, located in the northeast of the GrIS, is a highly rep-
resentative accumulation area. Ice velocity in this area is
very small, and there is no outflow glacier, and its change is
driven mainly by SMB (Aschwanden et al., 2016; Velicogna
et al., 2014). It shows weak continuous thickening over the
entire observational period since 1991 (Fig. 7d). The rate of
thickening at A, B, and C is 0.13± 0.01, 0.11± 0.01, and
0.06± 0.01 m yr−1, respectively. Whether continuous thin-
ning or thickening, the rates do not remain constant; i.e.,
there are always periods of acceleration or deceleration that
are evident traces of the driving force of climate change on
ice sheet change. For example, abnormal melting in 2012 and
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Figure 3. Interpolation performance of EOF reconstruction and ordinary kriging: panels (a), (b), and (c) are the results for the March 1992
(199203) observation, EOF reconstruction, and ordinary kriging interpolation, respectively, and panels (d), (e), and (f) are the same for April
1992 (199204).

Figure 4. Climatological maps of the SE anomaly averaging season by season: (a) spring (January–February–March), (b) summer (April–
May–June), (c) autumn (July–August–September), and (d) winter (October–November–December) and (e) the amplitude of corresponding
annual variation over the periods of 1991–2020 from the merged elevation time series.

accumulation since 2016–2017, both driven by the North At-
lantic Oscillation (NAO), are clearly visible in the time se-
ries of the above regions (Wood et al., 2021; Simonsen et al.,
2021).

3.2 Ice sheet volume time series

The volume time series of the entire GrIS and certain sub-
regions estimated from our time series are shown in Figs. 7
and 8, respectively. Linear- and quadratic-trend estimates can
be inferred from the volume time series using a least-squares
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Figure 5. Maps of long-term SECs and their uncertainties from the combined elevation time series over the periods of (a, e) 1991–2000,
(b, f) 2001–2010, (c, g) 2011–2020, and (d, h) 1991–2020.

Figure 6. Maps of long-term SECs and their uncertainties from the combined elevation time series over the periods of (a, g) 1991–1995,
(b, h) 1996–2000, (c, i) 2001–2005, (d, j) 2006–2010, (e, k) 2011–2015, and (f, l) 2016–2020.

fitting model with a second-order polynomial and a sine wave
with a 1-year period.

Over the entire GrIS, we detect an overall volume
loss of 53.8± 4.5 km3 yr−1 with an acceleration in loss of
2.2± 0.3 km3 yr−2 during 1991–2020 (Fig. 8). Six of eight
ice drainage systems show volume loss (Fig. 9). The largest

volume loss (19± 1.4 km3 yr−1) and greatest acceleration in
loss (0.9± 0.1 km3 yr−2) are both from the ice sheet along
the northwestern coast (Fig. 9h). Drainage systems located
in central-western and southwestern parts of the GrIS are the
other two largest contributors to ice loss with volumes and
rates of acceleration of−10.2± 1.3 and−0.5± 0.1 km3 yr−2
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Figure 7. SE anomaly time series near (a) Jakobshavn Isbræ, (b) Upernavik Isstrøm, (c) Zachariæ Isstrøm and Nioghalvfjerdsfjorden Glacier,
and (d) King Christian X Land. The locations of the selected points (A, B, and C) are marked in the left-hand maps of elevation change over
1991–2020. The time series and the 1σ uncertainty ranges for each point are given in the right-hand plots with the time series of points A
and B shifted along the SE anomaly axis for better visibility.

(Fig. 9g) and−10.2± 1.9 and−0.6± 0.1 km3 yr−2 (Fig. 9f),
respectively. The only two drainage systems to show vol-
ume accumulation are located in central-eastern (Fig. 9c)
and northeastern (Fig. 9b) parts of the GrIS. However, their
trends of volume accumulation are very weak, i.e., 1.3± 0.8
and 0.1± 0.1 and−1.6± 2.6 and 0.5± 0.2 km3 yr−2, respec-
tively.

In addition to studying the long-term trend of the altimet-
ric volume change of the ice sheet, our merged time series
also provides detailed insight into small-scale fluctuations in
volume change that reflect the effects of climate change on a
temporal scale of up to 30 years. The evolution of ice sheet
volume for the entire GrIS and certain sub-regions can be di-
vided into different processes, as shown in Figs. 7 and 8, re-
spectively. Before 1997, because of the contribution of vari-

ous drainage systems in western Greenland (Fig. 9a and e–h),
the GrIS presented rapid volume loss. Simonsen et al. (2021)
thought that these ice losses were attributable mainly to the
main outflow glaciers along the western coast. Then, the
overall volume of the GrIS was alleviated, as also confirmed
by the changes in the 5-year average SEC rates (see Fig. 7).
This is attributed to an increase of the SMB in the north-
eastern and central-eastern drainage systems (Fig. 9b and c)
and to a reduction of ice discharge of outlet glaciers along the
western coast (Fig. 9g and h). Subsequently, the GrIS entered
a period of rapid ice loss because of the reduced SMB that
was mostly attributable to meltwater runoff and increased ice
discharge (Fig. 9a and e–h) (Simonsen et al., 2021; Shep-
herd et al., 2020; Velicogna et al., 2014). Then, all drainage
systems entered another period of slowdown in ice loss. In
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Figure 8. Volume change of the entire GrIS south of 81.5◦ N from
our merged altimetric time series (green dots) and its correspond-
ing result after removing seasonal oscillations using a 13-month
moving average (blue solid curve). The solid red line is the best-
fit quadratic curve for the linear- and quadratic-trend estimates of
volume change. The grey error bars show the 1σ uncertainty range
of the altimetry data. The red-shaded area in the inset indicates the
coverage of the GrIS with reference to the Greenland drainage sys-
tem boundaries in Zwally et al. (2012).

fact, these processes are full of the traces of the effects of
climate change. The rapid ice loss since 2003 was driven
by the transition of the NAO from a high positive phase to
a low-to-negative phase, which reduced SMB by enhancing
melting and reducing snowfall and accelerated ice discharge
of outlet glaciers by driving warmer subsurface waters on
the continental shelf (Bevis et al., 2019; Wood et al., 2021).
The subsequent slowdown was because the NAO transitioned
back to a more positive phase. It came from the anomalous
increase in snowfall and anomalously low surface melting
due to NAO-driven shifts in atmospheric forcing since 2016–
2017 (Shepherd et al., 2020; Simonsen et al., 2021) and the
slowed ice discharge attributable to NAO-driven shifts in
oceanic forcing since 2010 (Wood et al., 2021). The weak
signal of volume accumulation of drainage systems located
in central-eastern and northeastern parts of the GrIS (Fig. 9b
and c) was also attributed to the two short-term abnormally
increased snowfalls driven by the shift of the NAO, one in the
early 2000s (Shepherd et al., 2020) and the other in the late
2010s (Simonsen et al., 2021). The volume of accumulated
low-density snow exceeded that of lost high-density ice.

4 Comparison to independent datasets

4.1 Comparison with airborne laser altimetry elevation

To validate our merged results, we first used the high-
precision ATM L2 surface heights. Before performing a com-
parison, a 40 km floating median low-pass filter was applied
to the ATM L2 data to eliminate outliers. Moreover, the mean
height (at t0) of the center of each grid cell h0 was first added
back into our merged GrIS SE anomaly time series to match
the surface heights. Then, we searched for all ATM L2 obser-
vations located within 2.5 km and a 10 d interval of each of

Table 1. Statistics of the results of validation with ATM laser al-
timeter observations. The median, RMS error, and P90–P10 of the
biases are given.

Validation Statistics of the comparison
data with validation data

Data Variable Median RMS P90–P10

ATM L2 SE (m) −2.82 99.43 145.25
ATM L4 SE differences (m) −0.02 8.84 3.78
ATM L4 SECs (m yr−1) −0.00 3.63 0.95

the grid nodes of our three-dimensional time series. The re-
sult of subtracting the elevation value of a grid node from the
median of the ATM L2 observations represents the difference
for that location. The results of the validation are shown in
Fig. 10a. It can be seen that the larger differences are concen-
trated primarily in steeper areas at the margins of the GrIS.
This might be due to the poor observation accuracy of radar
altimeters in areas of complex terrain (Zhang et al., 2020).
Another possible reason is that many of them are interpo-
lations or extrapolations. Over the GrIS, the median, RMS
error, and the 10th and 90th percentile ranges (P90–P10) are
−2.82, 99.43, and 145.25 m, respectively (Table 1), i.e., bet-
ter than obtained for the 5 km interpolated grid cells of the
DEM of Slater et al. (2018), which are comparable to our
calculations in terms of strategy and resolution (their median
and RMS error values were 25.4 and 138.6 m, respectively).

4.2 Comparison with airborne laser altimetry elevation
changes

We also used ATM L4 SECs to evaluate our merged re-
sults. Similarly, a 40 km floating median low-pass filter was
also used to eliminate outliers in the ATM L4 SECs before
performing the validation. The ATM L4 SECs are derived
from every two coincident ATM elevation measurements. We
compared the ATM L4 data points with grids in our merged
gridded time series that lay within a 2.5 km radius and a
15 d interval of the observation instants of that point. Sub-
sequently, the SE differences and SEC differences between
the ATM L4 observations and our merged time series at the
same epochs were obtained, as shown in Fig. 10b and c. The
spatial distribution patterns of SE differences and SEC dif-
ferences are similar to those of the SE differences mentioned
in Sect. 4.1. The larger differences are distributed in areas
with complex terrain at the margins of the GrIS. The me-
dian, RMS error, and P90–P10 over the GrIS are also listed
in Table 1. Overall, the median values of these difference are
both near 0, and the two P90–P10 values are both relatively
small. Thus, although the RMS error of the SE differences is
larger than that of both Schröder et al. (2019) and Zhang et
al. (2020) for the Antarctic Ice Sheet, our result is still con-
sidered reliable. Furthermore, the integrity of ATM L4 data
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Figure 9. Volume change of sub-regions south of 81.5◦ N from our merged altimetric time series (green dots) and their corresponding results
after removing seasonal oscillations using a 13-month moving average (blue solid curves). The solid red lines are the best-fit quadratic
curves for the linear- and quadratic-trend estimates of volume change. The grey error bars show the 1σ uncertainty range of the altimetry
data. The red-shaded area in the inset of each panel indicates the coverage of the sub-region with reference to the Greenland drainage system
boundaries in Zwally et al. (2012).

covering only the outlet glaciers of the West Antarctic Ice
Sheet and the Antarctic Peninsula Ice Sheet is limited.

5 Comparison with ESA GrIS Climate Change
Initiative elevation changes

The ESA GrIS Climate Change Initiative (CCI) project
has provided a dataset of SECs over the GrIS with a 5-
year mean during 1992–2020 derived from ESA’s Ku-band
radar satellite Level 2 data products, which can be down-
loaded for free from http://products.esa-icesheets-cci.org/

products/details/cci_sec_2020.tar.gz/ (last access: 30 July
2021). Here, our results are verified through intercomparison
with that dataset. For consistent comparison, 5-year average
SEC rates for the same observation epochs were estimated
from our time series using a least-squares fitting model with
a first-order polynomial and a sine wave with a 1-year pe-
riod. Then, we compared the CCI SECs or our SECs with
ATM L4 SECs at each grid node located within a 2.5 km
radius. To remove the influence of interpolation using EOF
reconstruction, we only compared results that were not inter-
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Figure 10. Validation with ATM laser altimeter observations: (a) differences between SE derived from ATM L2 and our merged time series,
(b) differences between SE derived from ATM L4 and our merged time series, and (c) differences between SEC derived from ATM L4 and
our merged time series.

polated. The median was also used to eliminate the influence
of outliers.

Figure 10 shows the median, RMS error, and P90–P10 of
the results of the intercomparison over the GrIS at 5-year
intervals. It can be seen that our results are better in most
periods, especially in those time intervals across the period
of overlapping observations of Envisat and CryoSat-2 (i.e.,
from 2006–2010 to 2010–2014). Statistics of validation with
GrIS CCI SECs listed in Table 2 also confirm this assertion.
In comparison with the CCI SECs, the accuracy (RMS er-
ror) and dispersion of errors (P90–P10) of our results are im-
proved by 19.3 % and 8.9 %, respectively, over all periods.
In all periods from 2006–2010 to 2010–2014, the accuracy
(RMS error) and dispersion of errors (P90–P10) of our results
are improved by 30.9 % and 19.0 %, respectively. It might in-
dicate that the effectiveness of our method for intermission
bias correction for ERS-1 and ERS-2 has been reprocessed
to align with Envisat by REAPER (Brockley et al., 2017).

5.1 Limitations of the merged surface elevation time
series

Although a series of processes to ensure the accuracy and re-
liability of the merged results have been proven to be effec-
tive by comparison with other independent datasets above,
there still exist some limitations in the merged SE time se-
ries. These limitations mainly come from the natural defects
of radar altimeter.

The first is the penetration of the signal into the surface
snow, which causes a radar altimeter not to observe the ac-
tual surface height of the ice sheet. Furthermore, surface
processes such as melting, refreezing, and firn compaction
might produce a new reflecting surface that could result in
errors. For example, the abrupt increase in the CryoSat-2
recorded elevation in the interior of the GrIS during the ex-
treme melt event in July 2012 resulted from the change of

penetration depth caused by surface melting (Nilsson et al.,
2015; McMillan et al., 2016). This study used elevations re-
tracked by the threshold offset center of gravity re-tracker
(ICE-1 re-tracker and OCOG re-tracker) and the common
strategy of including corrections for waveform parameters
into the least-squares regression model (see Eq. 1) to mit-
igate the time-variable penetration effects of the radar sig-
nal. Because it is less sensitive to changes in volume scat-
tering, the threshold offset center of gravity re-tracker has
been used to reduce the effect of penetration (Nilsson et al.,
2015; Schröder et al., 2017; Schröder et al., 2019). The latter
has also been performed in many previous studies (Flament
and Remy, 2012; Sørensen et al., 2018; Zhang et al., 2020).
However, as presented by Slater et al. (2019), the influence of
the time-variable penetration depth would not be completely
eliminated, even when applying a waveform deconvolution
procedure (McMillan et al., 2016). Thereby, a small resid-
ual signal caused by the 2012 melt event and manifesting
as a surface elevation increase signal is found in the merged
time series. In regions above 2000 m in altitude, the eleva-
tion increased by approximately 0.16 m on average between
the months before (January–June 2012) and after (August–
December 2012) the extreme melt event, consistent with per-
vious findings (Slater et al., 2019). In the future, with the ac-
cumulation of long-term continuous observations by satellite
laser altimetry of ICESat-2, it seems feasible to obtain actual
penetration depth and model predictions to better compen-
sate for the fluctuations in penetration depth. On the bright
side, surface penetration suppresses noise induced by sea-
sonal snowfall, making radar altimetric measurements more
relevant to mass change than those obtained from laser al-
timetry (Sørensen et al., 2018). Therefore, our SE time se-
ries of multiple radar altimetry missions is more suited to
track dynamical processes and interannual or long-term sur-
face processes (Zhang et al., 2020; Simonsen et al., 2021).
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Figure 11. Validation with GrIS CCI SECs: (a) median, (b) RMS error, and (c) P90–P10 of the SEC differences between CCI (orange) and
those derived from our merged time series (green) at 5-year intervals during 1992–2019.

Table 2. Statistics of the results of validation with GrIS CCI SECs. The median, RMS error, and P90–P10 of the biases are given.

Statistics of the comparison with ATM L4 SECs

All periods Periods across the overlap
of Envisat and CryoSat-2

Median RMS P90–P10 Median RMS P90–P10
(m yr−1) (m yr−1) (m yr−1) (m yr−1) (m yr−1) (m yr−1)

GrIS CCI −0.05 0.57 0.79 −0.04 0.81 1.16
This study −0.03 0.46 0.72 −0.09 0.56 0.94

Complex terrain and drastic changes in elevation could
bring extra uncertainty in the merged time series. The beam-
limited footprint of a radar altimeter with a radius up to kilo-
meters makes it difficult for the radar altimeter to accurately
measure ice surface height in those areas. Terrain undulations
on the kilometer scale or smaller might make the biquadratic
surface polynomial approximate the local ice surface topog-
raphy inaccurately and thereby introduce errors into the cor-
rection for existing topography-induced height differences
between the individual shots. Surface elevation observations
from data products have been relocated by the point of clos-
est approach were used in this study to suppress the influence
related to the excessive size of footprint. The possible terrain

correction errors caused by small-scale relief can only be ex-
pected to be suppressed by the mean estimator. Thus, the un-
certainties of average SEC rates (Figs. 4 and 5) for marginal
areas with complex terrain are larger than those for the cen-
tral ice sheet. This is also reflected in the estimation of in-
termission bias and ascending–descending bias (Frappart et
al., 2016; Zhang et al., 2020), although we have used large
amounts of data to fine-tune them for each grid cell, which
has been proven to ensure better self-consistency and reli-
ability of the combined elevation time series (Zhang et al.,
2020).

Additionally, interpolation or extrapolation of unobserved
cells might also introduce uncertainty into the merged re-
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sults, especially in steep and very active areas at the margins
of the GrIS. The limited number of valid elevations, along
with the greater uncertainty of several of them, would in-
evitably cause interpolation (extrapolation) error. This study
used the EOF reconstruction method to reduce the error,
which can incorporate more temporal and spatial informa-
tion to constrain the interpolation results. However, some in-
terpolation with large uncertainty still exists in some steep
or narrow glaciers at the margins of the GrIS. The first three
outliers of the volumetric time series shown in Fig. 9c are
caused by this error. To avoid the large uncertainty caused
by interpolation, Sørensen et al. (2018) arbitrarily excluded
all grid cells located on slopes exceeding 1.5◦, and Schröder
et al. (2019) excluded all data prior to 14 April 1992 from
ERS-1, while we provided the merged non-interpolated time
series in the dataset.

Overall, the above factors might cause errors to our time
series, but it is difficult to formally account for them. Thus,
according to previous studies, a straightforward estimate of
uncertainty was given in this study as described in Sect. 2.5.
It is an empirical estimation, and there may exist some un-
derestimation due to the errors from above sources which are
difficult to quantify.

6 Data availability

The surface elevation time series of the GrIS can be
downloaded from the National Tibetan Plateau Data
Center at https://doi.org/10.11888/Glacio.tpdc.271658
(Zhang et al., 2021). In this repository, the time
series is provided in NetCDF (.nc; Network
Common Data Form) format and named Sur-
face_Elevation_Anomaly_Greenland_Monthly_5km_Grid.nc,
which is easy to read or reanalyze with MATLAB and
Python. There are nine variables in the .nc file, includ-
ing longitude (lon), latitude (lat), time (time), the SE
anomaly before interpolation and its uncertainty (elev and
elev_uncer), the SE anomaly after interpolation and its un-
certainty (elev_interp and elev_uncer_interp), the drainage
systems number (basin), and the flag of interpolation
(flag_interp). The specific information of these variables has
been indicated in the data file.

7 Conclusions

In this study, we developed a 30-year SE time series over the
GrIS by combining ERS-1, ERS-2, Envisat, and CryoSat-2
satellite radar altimeter observations. A large number of op-
erations, especially an updated plane-fitting least-squares re-
gression strategy and an EOF reconstruction method, were
performed to ensure that the time series has higher accuracy
with monthly time resolution and 5× 5 km spatial grid reso-
lution. Validations with airborne laser altimetry observations
and ESA GrIS CCI SECs indicated that our merged SE time

series is reliable. In terms of the 5-year average SEC rates,
the accuracy and dispersion of errors of our results were
19.3 % and 8.9 % higher than those of the CCI SECs, respec-
tively. Benefiting from the finer correction of the intermis-
sion bias, the accuracy and dispersion of errors in our results
were improved by up to 30.9 % and 19.0 %, respectively, in
periods from 2006–2010 to 2010–2014.

The SECs and volume changes of the ice sheet are im-
portant variables that reflect the effects of climate change.
As shown in Sect. 3, our data series can be used not only
for studying long-term changes in the elevation and volume
of the GrIS but also for studying their temporal and spatial
evolutions in detail on a temporal scale of up to 30 years.
In particular, benefiting from the high temporal and spatial
resolutions of our time series, the temporal and spatial evo-
lution processes of ice loss from the main outflow glaciers
in the GrIS can also be described in detail. These evolution
processes are the response of the GrIS to oceanic and atmo-
spheric changes driven by climate change. Thus, our merged
time series provides an opportunity to examine the potential
associations between ice sheet changes and climate forcing.
The spatiotemporal patterns of accelerating or decelerating
SEC of the GrIS, caused by shifts in atmospheric forcing and
oceanic forcing driven by NAO phase transformation, reveal
the sensitivity of the GrIS to climate forcing.

The mass balance of an ice sheet is a climate-related vari-
able that has greater scientific value than elevation change. If
combined with an appropriate ice density model, we could
obtain a mass balance time series from our merged time
series with much higher spatial resolution and longer tem-
poral coverage than that of either GRACE (Gravity Recov-
ery and Climate Experiment) or GRACE-FO (Follow-On).
This could have advantages for studying mass change in
small basins, especially the mass balance of outflow glaciers,
thereby improving the estimation accuracy of the mass bal-
ance of the GrIS and reducing the uncertainty of projections
of future sea level change.
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