Articles | Volume 14, issue 9
https://doi.org/10.5194/essd-14-3961-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3961-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Artemisia pollen dataset for exploring the potential ecological indicators in deep time
Li-Li Lu
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
Bo-Han Jiao
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
Feng Qin
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Gan Xie
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
Kai-Qing Lu
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
Jin-Feng Li
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
Bin Sun
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
Min Li
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
David K. Ferguson
Department of Paleontology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
Tian-Gang Gao
CORRESPONDING AUTHOR
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yi-Feng Yao
CORRESPONDING AUTHOR
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun Xiangshan, Beijing 100093, China
University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
No articles found.
Furong Li, Marie-José Gaillard, Xianyong Cao, Ulrike Herzschuh, Shinya Sugita, Jian Ni, Yan Zhao, Chengbang An, Xiaozhong Huang, Yu Li, Hongyan Liu, Aizhi Sun, and Yifeng Yao
Earth Syst. Sci. Data, 15, 95–112, https://doi.org/10.5194/essd-15-95-2023, https://doi.org/10.5194/essd-15-95-2023, 2023
Short summary
Short summary
The objective of this study is present the first gridded and temporally continuous quantitative plant-cover reconstruction for temperate and northern subtropical China over the last 12 millennia. The reconstructions are based on 94 pollen records and include estimates for 27 plant taxa, 10 plant functional types, and 3 land-cover types. The dataset is suitable for palaeoclimate modelling and the evaluation of simulated past vegetation cover and anthropogenic land-cover change from models.
Y. F. Yao, X. Y. Song, A. H. Wortley, S. Blackmore, and C. S. Li
Biogeosciences, 12, 1525–1535, https://doi.org/10.5194/bg-12-1525-2015, https://doi.org/10.5194/bg-12-1525-2015, 2015
Related subject area
Domain: ESSD – Land | Subject: Palaeooceanography, palaeoclimatology
Seeing the wood for the trees: active human–environmental interactions in arid northwestern China
SISALv3: a global speleothem stable isotope and trace element database
Paleo±Dust: quantifying uncertainty in paleo-dust deposition across archive types
A modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau
Last Glacial loess in Europe: luminescence database and chronology of deposition
The World Atlas of Last Interglacial Shorelines (version 1.0)
A dataset of standard precipitation index reconstructed from multi-proxies over Asia for the past 300 years
Hui Shen, Robert N. Spengler, Xinying Zhou, Alison Betts, Peter Weiming Jia, Keliang Zhao, and Xiaoqiang Li
Earth Syst. Sci. Data, 16, 2483–2499, https://doi.org/10.5194/essd-16-2483-2024, https://doi.org/10.5194/essd-16-2483-2024, 2024
Short summary
Short summary
Understanding how early farmers adapted to their environments is important regarding how we respond to the changing climate. Here, we present wood charcoal records from northwestern China to explore human–environmental interactions. Our data suggest that people started managing chestnut trees around 4600 BP and cultivating fruit trees and transporting conifers from 3500 BP. From 2500 BP, people established horticultural systems, showing that they actively adapted to the environment.
Nikita Kaushal, Franziska A. Lechleitner, Micah Wilhelm, Khalil Azennoud, Janica C. Bühler, Kerstin Braun, Yassine Ait Brahim, Andy Baker, Yuval Burstyn, Laia Comas-Bru, Jens Fohlmeister, Yonaton Goldsmith, Sandy P. Harrison, István G. Hatvani, Kira Rehfeld, Magdalena Ritzau, Vanessa Skiba, Heather M. Stoll, József G. Szűcs, Péter Tanos, Pauline C. Treble, Vitor Azevedo, Jonathan L. Baker, Andrea Borsato, Sakonvan Chawchai, Andrea Columbu, Laura Endres, Jun Hu, Zoltán Kern, Alena Kimbrough, Koray Koç, Monika Markowska, Belen Martrat, Syed Masood Ahmad, Carole Nehme, Valdir Felipe Novello, Carlos Pérez-Mejías, Jiaoyang Ruan, Natasha Sekhon, Nitesh Sinha, Carol V. Tadros, Benjamin H. Tiger, Sophie Warken, Annabel Wolf, Haiwei Zhang, and SISAL Working Group members
Earth Syst. Sci. Data, 16, 1933–1963, https://doi.org/10.5194/essd-16-1933-2024, https://doi.org/10.5194/essd-16-1933-2024, 2024
Short summary
Short summary
Speleothems are a popular, multi-proxy climate archive that provide regional to global insights into past hydroclimate trends with precise chronologies. We present an update to the SISAL (Speleothem Isotopes
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Synthesis and AnaLysis) database, SISALv3, which, for the first time, contains speleothem trace element records, in addition to an update to the stable isotope records available in previous versions of the database, cumulatively providing data from 365 globally distributed sites.
Nicolás J. Cosentino, Gabriela Torre, Fabrice Lambert, Samuel Albani, François De Vleeschouwer, and Aloys J.-M. Bory
Earth Syst. Sci. Data, 16, 941–959, https://doi.org/10.5194/essd-16-941-2024, https://doi.org/10.5194/essd-16-941-2024, 2024
Short summary
Short summary
One of the main uncertainties related to future climate change has to do with how aerosols interact with climate. Dust is the most abundant aerosol in the atmosphere by mass. In order to better understand the links between dust and climate, we can turn to geological archives of ancient dust. Paleo±Dust is a compilation of measured values of the paleo-dust deposition rate. We can use this compilation to guide climate models so that they better represent dust–climate interactions.
Qingfeng Ma, Liping Zhu, Jianting Ju, Junbo Wang, Yong Wang, Lei Huang, and Torsten Haberzettl
Earth Syst. Sci. Data, 16, 311–320, https://doi.org/10.5194/essd-16-311-2024, https://doi.org/10.5194/essd-16-311-2024, 2024
Short summary
Short summary
Modern pollen datasets are essential for pollen-based quantitative paleoclimate reconstructions. Here we present a modern pollen dataset from lake surface sediments on the central and western Tibetan Plateau. This dataset can be used not only for quantitative precipitation reconstructions on the central and western Tibetan Plateau, but can also be combined with other pollen datasets to improve the reliability of quantitative climate reconstructions across the entire Tibetan Plateau.
Mathieu Bosq, Sebastian Kreutzer, Pascal Bertran, Philippe Lanos, Philippe Dufresne, and Christoph Schmidt
Earth Syst. Sci. Data, 15, 4689–4711, https://doi.org/10.5194/essd-15-4689-2023, https://doi.org/10.5194/essd-15-4689-2023, 2023
Short summary
Short summary
During the last glacial period, cold conditions associated with changes in atmospheric circulation resulted in the deposition of widespread loess. It seems that the phases of loess accumulation were not strictly synchronous. To test this hypothesis, the chronology of loess deposition in different regions of Europe was studied by recalculating 1423 luminescence ages in a database. Our study discusses the link between the main loess sedimentation phases and the maximal advance of glaciers.
Alessio Rovere, Deirdre D. Ryan, Matteo Vacchi, Andrea Dutton, Alexander R. Simms, and Colin V. Murray-Wallace
Earth Syst. Sci. Data, 15, 1–23, https://doi.org/10.5194/essd-15-1-2023, https://doi.org/10.5194/essd-15-1-2023, 2023
Short summary
Short summary
In this work, we describe WALIS, the World Atlas of Last Interglacial Shorelines. WALIS is a sea-level database that includes sea-level proxies and samples dated to marine isotope stage 5 (~ 80 to 130 ka). The database was built through topical data compilations included in a special issue in this journal.
Yang Liu, Jingyun Zheng, Zhixin Hao, and Quansheng Ge
Earth Syst. Sci. Data, 14, 5717–5735, https://doi.org/10.5194/essd-14-5717-2022, https://doi.org/10.5194/essd-14-5717-2022, 2022
Short summary
Short summary
Proxy-based precipitation reconstruction is essential to study the inter-annual to decadal variability and underlying mechanisms beyond the instrumental period that is critical for climate modeling, prediction and attribution. We present a set of standard precipitation index reconstructions for the whole year and wet seasons over the whole of Asia since 1700, with the spatial resolution of 2.5°, based on 2912 annually resolved proxy series mainly derived from tree rings and historical documents.
Cited articles
Beerling, D. J. and Royer, D. L.: Convergent Cenozoic CO2 history, Nat. Geosci., 4, 418–420, https://doi.org/10.1038/ngeo1186, 2011.
Bhattacharya, T., Tierney, J. E., Addison, J. A., and Murray, J. W.: Ice-sheet modulation of deglacial North American monsoon intensification, Nat. Geosci., 11, 848–852, https://doi.org/10.1038/s41561-018-0220-7, 2018.
Blackmore, S., Wortley, A. H., Skvarla, J. J., and Robinson, H.: Evolution of pollen in Compositae, in: Systematics, Evolution and Biogeography of the Compositae, edited by: Funk, V. A., Susanna, A., Stuessy, T. F., and Bayer, R. J., International Association of Plant Taxonomy, Vienna, 102–130, ISBN 978-3-9501754-3-1 2009.
Bremer, K. and Humphries, C. J.: Generic monograph of the Asteraceae-Anthemideae, Bull. Nat. Hist. Mus., 23, 71–177, https://www.biodiversitylibrary.org/item/19562 (last access: 19 August 2022), 1993.
Brummitt, N., Araujo, A. C., and Harris, T.: Areas of plant diversity – What do we know?, Plants People Planet, 3, 33–44, https://doi.org/10.1002/ppp3.10110, 2021.
Cai, M., Ye, P., Yang, X., and Li, C.: Vegetation and climate change in the Hetao Basin (Northern China) during the last interglacial-glacial cycle, J. Asian Earth Sci., 171, 1–8, https://doi.org/10.1016/j.jseaes.2018.11.024, 2019.
Cao, X., Tian, F., Li, K., Ni, J., Yu, X., Liu, L., and Wang, N.: Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions, Earth Syst. Sci. Data, 13, 3525–3537, https://doi.org/10.5194/essd-13-3525-2021, 2021.
Chen, S. B.: Study on the pollen morphology of the Chinese genus Artemisia L. and the relationship with its allies, Institute of Botany, Chinese Academy of Sciences, Beijing, China, http://ir.ibcas.ac.cn/handle/2S10CLM1/12089 (last access: 19 August 2022), 1987 (in Chinese).
Chen, S. B. and Zhang, J. T.: A Study on pollen morphology of some Chinese Genera in tribe Anthemideae, Acta Phytotaxon. Sin., 29, 246–251, 1991 (in Chinese).
Cui, Q. Y., Zhao, Y., Qin, F., Liang, C., Li, Q., and Geng, R. W.: Characteristics of the modern pollen assemblages from different vegetation zones in Northeast China: Implications for pollen-based climate reconstruction, Sci. China Earth Sci., 62, 1564–1577, https://doi.org/10.1007/s11430-018-9386-9, 2019.
Davies, C. P. and Fall, P. L.: Modern pollen precipitation from an elevational transect in central Jordan and its relationship to vegetation, J. Biogeogr., 28, 1195–1210, https://doi.org/10.1046/j.1365-2699.2001.00630.x, 2001.
El-Moslimany, A. P.: Ecological significance of common nonarboreal pollen: examples from drylands of the Middle East, Rev. Palaeobot. Palyno., 64, 343–350, https://doi.org/10.1016/0034-6667(90)90150-h, 1990.
Erdtman, G.: The acetolysis method, a revised descriptions, Svensk Botanisk Tidskrift, 54, 561–564, 1960.
Ferguson, D. K., Zetter, R., and Paudayal, K. N.: The need for the SEM in palaeopalynology, C. R. Palevol, 6, 423–430, https://doi.org/10.1016/j.crpv.2007.09.018, 2007.
GBIF.org: GBIF Occurrence Download, https://doi.org/10.15468/dl.596xd9, last access: 9 November 2021.
Ghahraman, A., Nourbakhsh, N., Mehdi, G. K., and Atar, F.: Pollen morphology of Artemisia L. (Asteraceae) in Iran, Iran. J. Bot., 13, 21–29, 2007.
Grímsson, F., Zetter, R., and Hofmann, C.: Lythrum and Peplis from the Late Cretaceous and Cenozoic of North America and Eurasia: new evidence suggesting early diversification within the Lythraceae, Am. J. Bot., 98, 1801–1815, https://doi.org/10.3732/ajb.1100204, 2011.
Grímsson, F., Zetter, R., and Leng, Q.: Diverse fossil Onagraceae pollen from a Miocene palynoflora of north-east China: early steps in resolving the phytogeographic history of the family, Plant Syst. Evol., 298, 671–687, https://doi.org/10.1007/s00606-011-0578-0, 2012.
Guiot, J. and Cramer, W.: Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems, Science, 354, 465–468, https://doi.org/10.1126/science.aah5015, 2016.
Halbritter, H., Silvia, U., Grímsson, F., Weber, M., Zetter, R., Hesse, M., Buchner, R., Svojtka, M., and Frosch-Radivo, A.: Illustrated pollen terminology, Springer Open, https://doi.org/10.1007/978-3-319-71365-6, 2018.
Hayat, M. Q., Ashraf, M., Khan, M. A., Yasmin, G., Shaheen, N., and Jabeen, S.: Phylogenetic analysis of Artemisia L. (Asteraceae) based on micromorphological traits of pollen grains, Afr. J. Biotechnol., 8, 6561–6568, https://doi.org/10.1556/AMicr.56.2009.4.11, 2009.
Hayat, M. Q., Ashraf, M., Khan, M. A., Yasmin, G., and Jabeen, S.: Palynological study of the genus Artemisia (Asteraceae) and its systematic implications, Pak. J. Bot., 42, 751–763, https://doi.org/10.1094/MPMI-23-4-0522, 2010.
Herzschuh, U., Tarasov, P., Wünnemann, B., and Kai, H.: Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data, Palaeogeogr. Palaeocl., 211, 1–17, https://doi.org/10.1016/j.palaeo.2004.04.001, 2004.
Hesse, M., Buchner, R., Froschradivo, A., Halbritter, H., Ulrich, S., Weber, M., and Zetter, R.: Pollen Terminology: An illustrated handbook, Springer, New York, https://doi.org/10.1093/aob/mcp289, 2009.
Hussain, A., Potter, D., Hayat, M. Q., Sahreen, S., and Bokhari, S. A. I.: Pollen morphology and its systematic implication on some species of Artemisia L. from Gilgit-Baltistan Pakistan, Bangl. J. Plant Taxon., 26, 157–168, https://doi.org/10.3329/bjpt.v26i2.44576, 2019.
Jiang, L., Q., W., Ye, L. Z., and R., and Ling, Y. R.: Pollen morphology of Artemisia L. and its systematic significance, Wuhan Univ. J. Nat. Sci., 10, 448–454, https://doi.org/10.1007/BF02830685, 2005.
Jinxia, C., Xuefa, S., Yanguang, L., Shuqing, Q., Shixiong, Y., Shijuan, Y., Huahua, L., Jianyong, L., Xiaoyan, L., and Chaoxin, L.: Holocene vegetation dynamics in response to climate change and hydrological processes in the Bohai region, Clim. Past, 16, 2509–2531, https://doi.org/10.5194/cp-16-2509-2020, 2020.
Koutsodendris, A., Allstadt, F. J., Kern, O. A., Kousis, I., Schwarz, F., Vannacci, M., Woutersen, A., Appel, E., Berke, M. A., Fang, X. M., Friedrich, O., Hoorn, C., Salzmann, U., and Pross, J.: Late Pliocene vegetation turnover on the NE Tibetan Plateau (Central Asia) triggered by early Northern Hemisphere glaciation, Global Planet. Change, 180, 117–125, https://doi.org/10.1016/j.gloplacha.2019.06.001, 2019.
Li, F., Sun, J., Zhao, Y., Guo, X., Zhao, W., and Zhang, K.: Ecological significance of common pollen ratios: A review, Front. Earth Sci.-PRC, 4, 253–258, https://doi.org/10.1007/s11707-010-0112-7, 2010.
Li, X. L., Hao, Q. Z., Wei, M. J., Andreev, A. A., Wang, J. P., Tian, Y. Y., Li, X. L., Cai, M. T., Hu, J. M., and Shi, W.: Phased uplift of the northeastern Tibetan Plateau inferred from a pollen record from Yinchuan Basin, northwestern China, Sci. Rep.-UK, 7, 10, https://doi.org/10.1038/s41598-017-16915-z, 2017.
Ling, Y. R.: On the system of the genus Artemisia Linn. and the relationship with allies, Bulletin of Botanical Research, 2, 1–60, 1982 (in Chinese).
Ling, Y. R., Humphries, C. J., and Gilbert, M. G.: Artemisia L., in: Flora of China Volume 20–21 (Asteraceae), edited by: Wu, Z. Y., Raven, P. H., and Hong, D. Y., Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, 678–739, ISBN 9781935641094, 2011.
Liu, H. Y., Wang, Y., Tian, Y. H., Zhu, J. L., and Wang, H. Y.: Climatic and anthropogenic control of surface pollen assemblages in East Asian steppes, Rev. Palaeobot. Palyno., 138, 281–289, https://doi.org/10.1016/j.revpalbo.2006.01.008, 2006.
Lu, K. Q., Qin, F., Li, Y., Xie, G., Li, J. F., Cui, Y. M., Ferguson, D. K., Yao, Y. F., Wang, G. H., and Wang, Y. F.: A new approach to interpret vegetation and ecosystem changes through time by establishing a correlation between surface pollen and vegetation types in the eastern central Asian desert, Palaeogeogr. Palaeocl., 551, 12, https://doi.org/10.1016/j.palaeo.2020.109762, 2020.
Lu, L. L, Jiao, B. H., Qin, F., Xie, G., Lu, K. Q., Li, J. F., Sun, B., Li, M., Ferguson, D. K., Gao, T. G., Yao, Y. F., and Wang, Y. F.: Artemisia pollen dataset for exploring the potential ecological indicators in deep time, Zenodo [data set], https://doi.org/10.5281/zenodo.6900308, 2022.
Ma, Q. F., Zhu, L. P., Wang, J. B., Ju, J. T., Lu, X. M., Wang, Y., Guo, Y., Yang, R. M., Kasper, T., Haberzettl, T., and Tang, L. Y.: Artemisia Chenopodiaceae ratio from surface lake sediments on the central and western Tibetan Plateau and its application, Palaeogeogr. Palaeocl., 479, 138–145, https://doi.org/10.1016/j.palaeo.2017.05.002, 2017.
Malik, S., Vitales, D., Hayat, M. Q., Korobkov, A. A., Garnatje, T., and Valles, J.: Phylogeny and biogeography of Artemisia subgenus Seriphidium (Asteraceae: Anthemideae), Taxon, 66, 934–952, https://doi.org/10.12705/664.8, 2017.
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L., and Brewer, S.: Reconciling divergent trends and millennial variations in Holocene temperatures, Nature, 554, 92–96, https://doi.org/10.1038/nature25464, 2018.
Martín, J., Torrell, M., and Valles, J.: Palynological features as a systematic marker in Artemisia L. and related genera (Asteraceae, Anthemideae), Plant Biol., 3, 372–378, https://doi.org/10.1055/s-2001-16462, 2001.
Martín, J., Torrell, M., Korobkov, A. A., and Valles, J.: Palynological features as a systematic marker in Artemisia L. and related genera (Asteraceae, Anthemideae) – II: Implications for subtribe Artemisiinae delimitation, Plant Biol., 5, 85–93, https://doi.org/10.1055/s-2001-16462, 2003.
McClelland, H. L. O., Halevy, I., Wolf-Gladrow, D. A., Evans, D., and Bradley, A. S.: Statistical uncertainty in paleoclimate proxy reconstructions, Geophys. Res. Lett., 48, e2021GL092773, https://doi.org/10.1029/2021GL092773, 2021.
Miao, Y. F., Meng, Q. Q., Fang, X. M., Yan, X. L., Wu, F. L., and Song, C. H.: Origin and development of Artemisia (Asteraceae) in Asia and its implications for the uplift history of the Tibetan Plateau: A review, Quatern. Int., 236, 3–12, https://doi.org/10.1016/j.quaint.2010.08.014, 2011.
Mo, R. G., Bai, X. L., Ma, Y. Q., and Cao, R.: On the intraspecific variations of pollen morphology and pollen geography of a relic species-Helianthemum songaricum Schrenk, Acta Bot. Bor-Occid. Sin., 17, 528–532, 1997 (in Chinese).
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data, Nature, 433, 613–617, https://doi.org/10.1038/nature03265, 2005.
Mosbrugger, V., Utescher, T., and Dilcher, D. L.: Cenozoic continental climatic evolution of Central Europe, P. Natl. Acad. Sci. USA, 102, 14964–14969, https://doi.org/10.1073/pnas.0505267102, 2005.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'Amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial ecoregions of the worlds: A new map of life on Earth, Bioscience, 51, 933–938, https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2, 2001.
Sánchez-Murillo, R., Durán-Quesada, A. M., Esquivel-Hernández, G., Rojas-Cantillano, D., and Cobb, K. M.: Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones, Nat. Commun., 10, 4321, https://doi.org/10.1038/s41467-019-12062-3, 2019.
Sanz, M., Vilatersana, R., Hidalgo, O., Garcia-Jacas, N., Susanna, A., Schneeweiss, G. M., and Vallès, J.: Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): Evidence from nrDNA ETS and ITS sequences, Taxon, 57, 66–78, https://doi.org/10.2307/25065949, 2008.
Shan, B. Q., He, X. L., and Chen, Y. S.: Pollen Morphology of Artemisia in the Loess Plateau, Acta Botanica Boreali-Occidentalia Sinica, 27, 1373–1379, 2007 (in Chinese).
Sing, G. and Joshi, R. D.: Pollen morphology of some Eurasian species of Artemisia, Grana Palynologica, 9, 50–62, https://doi.org/10.1080/00173136909436424, 1969.
Stix, E.: Pollenmorphologische Untersuchungen an Compositen, Grana, 2, 41–104, https://doi.org/10.1080/00173136009429443, 1960.
Sun, J. T. and Xu, Y. T.: Pollen morphology and its taxonomic significance of Artemisia Linn. from Shandong, Journal of Shandong Normal University, 12, 186–190, 1997 (in Chinese).
Sun, X. J., Du, N. Q., Weng, C. Y., Lin, R. F., and Wei, K. Q.: Paleovegetation and paleoenvironment of Manasi Lake, Xinjiang, N. W. China during the last 14 000 years, Quaternary Sciences, 14, 239–248, 1994 (in Chinese).
Sun, X. J., Wang, F. Y., and Song, C. Q.: Pollen-climate response surfaces of selected taxa from northern China, Sci. China Ser. D-Earth Sci., 39, 486–493, 1996.
Tarasov, P. E., Cheddadi, R., Guiot, J., Bottema, S., Peyron, O., Belmonte, J., Ruiz-Sanchez, V., Saadi, F., and Brewer, S.: A method to determine warm and cool steppe biomes from pollen data; application to the Mediterranean and Kazakhstan regions, J. Quaternary Sci., 13, 335–344, https://doi.org/10.1002/(SICI)1099-1417(199807/08)13:4<335::AID-JQS375>3.0.CO;2-A, 1998.
Tierney, J. E., Poulsen, C. J., Montanez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., Honisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N., Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L., Godderis, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J., McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and Zhang, Y. G.: Past climates inform our future, Science, 370, eaay3701, https://doi.org/10.1126/science.aay3701, 2020.
Tutin, T. G., Persson, K., and Gutermann, W.: Artemisia L., in: Flora Europaea Vol. 4, edited by: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Webb, D. A., Cambridge University Press, Cambridge, 178–186, ISBN 978-0521087179, 1976.
Vallès, J., Garcia, S., Hidalgo, O., Martín, J., and Garnatje, T.: Biology, Genome Evolution, Biotechnological issues and research
including applied perspectives in Artemisia (Asteraceae), Adv. Bot. Res., 60, 349–419, 2011.
Vrba, E. S.: Evolution, species and fossils-how does life evolve?, S. Afr. J. Sci., 76, 61–84, 1980.
Wang, F. X., Qian, N. F., Zhang, Y. L., and Yang, H. Q.: Pollen morphology of Chinese plants, 2nd edn., Science Press, Beijing, ISBN 7-03-003635-2, 1995 (in Chinese).
Wang, W. M.: On the origin and development of Artemisia (Asteraceae) in the geological past, Bot. J. Linn. Soc., 145, 331–336, https://doi.org/10.1111/j.1095-8339.2004.00287.x, 2004.
Wang, Y., Wang, W., Liu, L. N., Jiang, Y. J., Niu, Z. M., Ma, Y. Z., He, J., and Mensing, S. A.: Reliability of the Artemisia/Chenopodiaceae pollen ratio in differentiating vegetation and reflecting moisture in arid and semi-arid China, Holocene, 30, 858–864, https://doi.org/10.1177/0959683620902219, 2020.
Weng, C. Y., Sun, X. J., and Chen, Y. S.: Numerical characteristics of pollen assemblages of surface samples from the West Kunlun mountains, Acta Bot. Sin., 35, 69–79, 1993 (in Chinese).
Wodehouse, R. P.: Pollen Grain Morphology in the Classification of the Anthemideae, B. Torrey Bot. Club, 53, 479–485, https://doi.org/10.2307/2480028, 1926.
Wu, F. L., Fang, X. M., and Miao, Y. F.: Aridification history of the West Kunlun Mountains since the mid-Pleistocene based on sporopollen and microcharcoal records, Palaeogeogr. Palaeocl., 547, 109680, https://doi.org/10.1016/j.palaeo.2020.109680, 2020.
Wu, Z. Y. (Eds.): Chinese Vegetation, Science Press, Beijing, China, ISBN 7-03-002422-2, 1980 (in Chinese).
Xu, Q. H., Li, Y. C., Yang, X. L., and Zheng, Z. H.: Quantitative relationship between pollen and vegetation in northern China, Sci. China Ser. D-Earth Sci., 50, 582–599, https://doi.org/10.1007/s11430-007-2044-y, 2007.
Yang, J., Spicer, R. A., Spicer, T. E. V., Arens, N. C., Jacques, F. M. B., Su, T., Kennedy, E. M., Herman, A. B., Steart, D. C., Srivastava, G., Mehrotra, R. C., Valdes, P. J., Mehrotra, N. C., Zhou, Z. K., and Lai, J. S.: Leaf form-climate relationships on the global stage: an ensemble of characters, Global Ecol. Biogeogr., 24, 1113–1125, https://doi.org/10.1111/geb.12334, 2015.
Yi, S., Saito, Y., Oshima, H., Zhou, Y. Q., and Wei, H. L.: Holocene environmental history inferred from pollen assemblages in the Huanghe (Yellow River) delta, China: climatic change and human impact, Quaternary Sci. Rev., 22, 609–628, https://doi.org/10.1016/s0277-3791(02)00086-0, 2003a.
Yi, S., Saito, Y., Zhao, Q. H., and Wang, P. X.: Vegetation and climate changes in the Changjiang (Yangtze River) Delta, China, during the past 13 000 years inferred from pollen records, Quaternary Sci. Rev., 22, 1501–1519, https://doi.org/10.1016/s0277-3791(03)00080-5, 2003b.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686–693, https://doi.org/10.1126/science.1059412, 2001.
Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279–283, https://doi.org/10.1038/nature06588, 2008.
Zhang, X. S.: Vegetation map of China and its geographic pattern: Illustration of the vegetation map of the People's Republic of China (1:1 000 000), Geological Press, Beijing, ISBN 978-7-116-04513-2, 2007 (in Chinese).
Zhang, Y., Kong, Z. C., Wang, G. H., and Ni, J.: Anthropogenic and climatic impacts on surface pollen assemblages along a precipitation gradient in north-eastern China, Global Ecol. Biogeogr., 19, 621–631, https://doi.org/10.1111/j.1466-8238.2010.00534.x, 2010.
Zhang, Y. N. and Qian, C.: SEM observation on pollen morphology of lily species, Acta Pratac. Sin., 20, 111–118, 2011 (in Chinese).
Zhao, X. L. and Yao, C. H.: Pollen Morphlogy differences among Osmanthus fragrans cultivars, J. Hubei Minzu Univ. (Nat. Sci. Ed.), 17, 16–20, 1999 (in Chinese).
Zhao, Y., Xu, Q. H., Huang, X. Z., Guo, X. L., and Tao, S. C.: Differences of modern pollen assemblages from lake sediments and surface soils in arid and semi-arid China and their significance for pollen-based quantitative climate reconstruction, Rev. Palaeobot. Palyno., 156, 519–524, https://doi.org/10.1016/j.revpalbo.2009.05.001, 2009.
Zhao, Y., Liu, H. Y., Li, F. R., Huang, X. Z., Sun, J. H., Zhao, W. W., Herzschuh, U., and Tang, Y.: Application and limitations of the Artemisia Chenopodiaceae pollen ratio in arid and semi-arid China, Holocene, 22, 1385–1392, https://doi.org/10.1177/0959683612449762, 2012.
Zhao, Y. T., Miao, Y. F., Fang, Y. M., Li, Y., Lei, Y., Chen, X. M., Dong, W. M., and An, C. B.: Investigation of factors affecting surface pollen assemblages in the Balikun Basin, central Asia: Implications for palaeoenvironmental reconstructions, Ecol. Indic., 123, 107332, https://doi.org/10.1016/j.ecolind.2020.107332, 2021.
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengstrom, N., Zizka, V., and Antonelli, A.: CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases, Methods Ecol. Evol., 10, 744–751, https://doi.org/10.1111/2041-210X.13152, 2019.
Short summary
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to decipher the underlying causes of the long-standing disagreement on the correlation between Artemisia pollen and aridity by using the dataset to recognize the different ecological implications of Artemisia pollen types. Our findings improve the resolution of palaeoenvironmental assessment and change the traditional concept of Artemisia being restricted to arid and semi-arid environments.
Artemisia is one of the dominant plant elements in the arid and semi-arid regions. We attempt to...
Altmetrics
Final-revised paper
Preprint