Articles | Volume 14, issue 8
https://doi.org/10.5194/essd-14-3791-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-14-3791-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A dataset of lake-catchment characteristics for the Tibetan Plateau
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou, 730000, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, China
Pengcheng Fang
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
Yefeng Que
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
Liang-Jun Zhu
State Key Lab of Resources and Environmental Information System,
Institute of Geographic Sciences and Natural Resources Research, CAS,
Beijing, 100101, China
Zheng Duan
Department of Physical Geography and Ecosystem Science, Lund
University, Lund, 22100, Sweden
Guoan Tang
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
Pengfei Liu
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou, 730000, China
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou, 730000, China
Yongqin Liu
Center for the Pan-Third Pole Environment, Lanzhou University,
Lanzhou, 730000, China
State Key Laboratory of Tibetan Plateau Earth System, Resources and
Environment, Institute of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, 100101, China
Related authors
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, and Mukan Ji
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-395, https://doi.org/10.5194/essd-2023-395, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Based on marker gene, metagenome, and cultivated genome sequencing, the dataset contains 67,224 bacterial and archaeal species, 2,517 potential pathogens, 62,595,715 unique genes, and 4,327 microbial genomes of bacteria and archaea from Antarctic, Arctic, and Tibetan glaciers. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Leilei Yong, Yahui Wang, Batsuren Dorjsuren, Zheng Duan, and Hongkai Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3062, https://doi.org/10.5194/egusphere-2025-3062, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Topography and vegetation critically influence hydrology but are often underrepresented in models, especially in cold, data-scarce regions like Mongolia. Using a stepwise FLEX framework, we assessed their roles in two river basins. Distributed (FLEXD) and landscape-based (FLEXT) models outperformed lumped versions. High elevations showed delayed melt sustaining flow, while low elevations responded rapidly to rain. Study confirms topography/vegetation as key hydrological controls.
Qiumei Ma, Chengyu Xie, Zheng Duan, Yanke Zhang, Lihua Xiong, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-679, https://doi.org/10.5194/egusphere-2025-679, 2025
Short summary
Short summary
We propose a method to estimate the reservoir WLS curve based on the capacity loss induced by sediment accumulation and further assess the potential negative impact caused by outdated design WLS curve on flood regulation risks. The findings highlight that when storage capacity is considerably reduced, continued use of the existing design WLS curve may significantly underestimate, thus posing potential safety hazards to the reservoir itself and downstream flood protection objects.
Xin Yang, Sijin Li, Junfei Ma, Yang Chen, Xingyu Zhou, Fayuan Li, Liyang Xiong, Chenghu Zhou, Guoan Tang, and Michael Meadows
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-401, https://doi.org/10.5194/essd-2024-401, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Surveys of global landforms are important for understanding the internal and external dynamic information during the planet's evolution. This study proposes a novel framework for global landform classification and releases a novel dataset called Global Basic Landform Units (GBLU) with 1 arc-second resolution. this dataset can provide abundant and detailed geomorphological information for the field of earth sciences, facilitating further advancements in related research.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Yongqin Liu, Songnian Hu, Tao Yu, Yingfeng Luo, Zhihao Zhang, Yuying Chen, Shunchao Guo, Qinglan Sun, Guomei Fan, Linhuan Wu, Juncai Ma, Keshao Liu, Pengfei Liu, Junzhi Liu, and Mukan Ji
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-395, https://doi.org/10.5194/essd-2023-395, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Based on marker gene, metagenome, and cultivated genome sequencing, the dataset contains 67,224 bacterial and archaeal species, 2,517 potential pathogens, 62,595,715 unique genes, and 4,327 microbial genomes of bacteria and archaea from Antarctic, Arctic, and Tibetan glaciers. The data can be useful to ecologists, microbiologists, and policymakers regarding microbial distribution, evolution, and biohazard assessment for glacier microbiome under global climate change.
Hui Zhu, Xin Yang, and Guoan Tang
Abstr. Int. Cartogr. Assoc., 6, 292, https://doi.org/10.5194/ica-abs-6-292-2023, https://doi.org/10.5194/ica-abs-6-292-2023, 2023
Yongqin Liu, Pengcheng Fang, Bixi Guo, Mukan Ji, Pengfei Liu, Guannan Mao, Baiqing Xu, Shichang Kang, and Junzhi Liu
Earth Syst. Sci. Data, 14, 2303–2314, https://doi.org/10.5194/essd-14-2303-2022, https://doi.org/10.5194/essd-14-2303-2022, 2022
Short summary
Short summary
Glaciers are an important pool of microorganisms, organic carbon, and nitrogen. This study constructed the first dataset of microbial abundance and total nitrogen in Tibetan Plateau (TP) glaciers and the first dataset of dissolved organic carbon in ice cores on the TP. These new data could provide valuable information for research on the glacier carbon and nitrogen cycle and help in assessing the potential impacts of glacier retreat due to global warming on downstream ecosystems.
Yuying Chen, Keshao Liu, Yongqin Liu, Trista J. Vick-Majors, Feng Wang, and Mukan Ji
The Cryosphere, 16, 1265–1280, https://doi.org/10.5194/tc-16-1265-2022, https://doi.org/10.5194/tc-16-1265-2022, 2022
Short summary
Short summary
We investigated the bacterial communities in surface and subsurface snow samples in a Tibetan Plateau glacier using 16S rRNA gene sequences. Our results revealed rapid temporal changes in nitrogen (including nitrate and ammonium) and bacterial communities in both surface and subsurface snow. These findings advance our understanding of bacterial community variations and bacterial interactions after snow deposition and provide a possible biological explanation for nitrogen dynamics in snow.
Xikun Wei, Guojie Wang, Donghan Feng, Zheng Duan, Daniel Fiifi Tawia Hagan, Liangliang Tao, Lijuan Miao, Buda Su, and Tong Jiang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-418, https://doi.org/10.5194/essd-2021-418, 2021
Preprint withdrawn
Short summary
Short summary
In this study, we use the deep learning (DL) method to generate the temperature data for the global land (except Antartica) at higher spatial resolution (0.5 degree) based on 31 different CMIP6 Earth system model(ESM). Our methods can perform bias correction, spatial downscaling and data merging simultaneously. The merged data have a remarkably better quality compared with the individual ESMs in terms of both spatial dimension and time dimension.
Mukan Ji, Weidong Kong, Chao Liang, Tianqi Zhou, Hongzeng Jia, and Xiaobin Dong
The Cryosphere, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020, https://doi.org/10.5194/tc-14-3907-2020, 2020
Short summary
Short summary
Old permafrost soil usually has more carbohydrates, while younger soil contains more aliphatic carbons, which substantially impacts soil bacterial communities. However, little is known about how permafrost age and thawing drive microbial communities. We found that permafrost thawing significantly increased bacterial richness in young permafrost and changed soil bacterial compositions at all ages. This suggests that thawing results in distinct bacterial species and alters soil carbon degradation.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.
Arino, O. and Bicheron, P.: Global Land Cover Map, European Space Agency
[data set], http://due.esrin.esa.int/page_globcover.php (last access: 18 August 2022),
2010.
Center for International Earth Science Information Network – Columbia
University: Gridded Population of the World, Version 4 (GPWv4): Population
Count, Revision 11, NASA [data set], https://doi.org/10.7927/H4JW8BX5, 2018.
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, 2020.
Che, T., Hu, Y., Dai, L., and Xiao, L.: Long-term series of daily snow depth
dataset over the Northern Hemisphere based on machine learning (1980–2019),
National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Snow.tpdc.271701, 2021.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J.,
Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg,
J. J., and Melack, J.: Plumbing the global carbon cycle: Integrating inland
waters into the terrestrial carbon budget, Ecosystems, 10, 171–184,
https://doi.org/10.1007/s10021-006-9013-8, 2007.
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, 2020.
Doll, C. N.: CIESIN Thematic Guide to Night-Time Light Remote Sensing and Its Applications, Center for
International Earth Science Information Network, Palisades, NY, USA, 41 pp., 2008.
Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type
Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS Land Processes DAAC [data
set], https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019.
Gao, H., Feng, Z., Zhang, T., Wang, Y., He, X., Li, H., Pan, X., Ren, Z.,
Chen, X., Zhang, W., and Duan, Z.: Assessing glacier retreat and its impact
on water resources in a headwater of Yangtze River based on CMIP6
projections, 765, 142774, https://doi.org/10.1016/j.scitotenv.2020.142774,
2021.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H.,
Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu,
L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song,
L.: Stable classification with limited sample: transferring a 30 m
resolution sample set collected in 2015 to mapping 10 m resolution global
land cover in 2017, Sci. Bull., 64, 370–373,
https://doi.org/10.1016/j.scib.2019.03.002, 2019.
Hansen, M., DeFries, R., Townshend, J. R. G., and Sohlberg, R.: UMD Global
Land Cover Classification, 1 Kilometer, 1.0, Department of Geography,
University of Maryland [data set], https://geog.umd.edu/feature/global-land-cover-facility-(glcf) (last access: 18 August 2022), 1998.
Hao, Z., Jin, J., Xia, R., Tian, S., Yang, W., Liu, Q., Zhu, M., Ma, T., Jing, C., and Zhang, Y.: CCAM: China Catchment Attributes and Meteorology dataset, Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, 2021.
Hargreaves, G. H.: Defining and Using Reference Evapotranspiration, J.
Irrig. Drain. Eng., 120, 1132–1139,
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132), 1994.
Hartmann, J. and Moosdorf, N.: The new global lithological map database
GLiM: A representation of rock properties at the Earth surface,
Geochemistry, Geophys. Geosystems, 13, Q12004, https://doi.org/10.1029/2012GC004370,
2012.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.: The first
high-resolution meteorological forcing dataset for land process studies over
China, Sci. Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y, 2020.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.:
Very high resolution interpolated climate surfaces for global land areas,
Int. J. Climatol., 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005.
Hill, R. A., Weber, M. H., Debbout, R. M., Leibowitz, S. G., and Olsen, A.
R.: The Lake-Catchment (LakeCat) Dataset: characterizing landscape features
for lake basins within the conterminous USA, Freshw. Sci., 37, 208–221,
https://doi.org/10.1086/697966, 2018.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huscroft, J., Gleeson, T., Hartmann, J., and Börker, J.: Compiling and
Mapping Global Permeability of the Unconsolidated and Consolidated Earth:
GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0), Geophys. Res. Lett., 45, 1897–1904,
https://doi.org/10.1002/2017GL075860, 2018.
Immerzeel, W. W., Van Beek, L. P. H., and Bierkens, M. F. P.: Climate change
will affect the asian water towers, Science, 328, 1382–1385,
https://doi.org/10.1126/science.1183188, 2010.
Jiang, L., Pan, F., Wang, G., Pan, J., Shi, J., and Zhang, C.: MODIS daily
cloud-free factional snow cover data set for Asian water tower area
(2000–2022), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Cryos.tpdc.272503, 2022.
Klingler, C., Schulz, K., and Herrnegger, M.: LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe, Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, 2021.
Li, S., Li, W., Xia, W., Wu, J., Yin, Y., Loffler, H., and Guo, X.: The
Scientific Expedition on the Modern Lake Evolution in the Qinghai-Tibet
Plateau: A Preliminary Report, J. Lake Sci., 10, 95–96, 1998.
Li, X., Long, D., Huang, Q., Han, P., Zhao, F., and Wada, Y.: High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions, Earth Syst. Sci. Data, 11, 1603–1627, https://doi.org/10.5194/essd-11-1603-2019, 2019.
Liu, J.: A dataset of lake-catchment characteristics for the Tibetan Plateau
(v1.0) (1979–2018), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Terre.tpdc.272026, 2022.
Liu, J., Liu, M., Tian, H., Zhuang, D., Zhang, Z., Zhang, W., Tang, X., and
Deng, X.: Spatial and temporal patterns of China's cropland during
1990–2000: An analysis based on Landsat TM data, Remote Sens. Environ., 98,
442–456, https://doi.org/10.1016/j.rse.2005.08.012, 2005.
Liu, K., Song, C., Ke, L., Jiang, L., and Ma, R.: Automatic watershed
delineation in the Tibetan endorheic basin: A lake-oriented approach based
on digital elevation models, Geomorphology, 358, 107127,
https://doi.org/10.1016/j.geomorph.2020.107127, 2020.
Liu, S., Guo, W., and Xu, J.: The second glacier inventory dataset of China
(version 1.0) (2006–2011), National Tibetan Plateau Data Center [data set],
https://doi.org/10.3972/glacier.001.2013.db, 2012.
Loveland, T., Brown, J., Ohlen, D., Reed, B., Zhu, Z., Yang, L., and Howard,
S.: ISLSCP II IGBP DISCover and SiB Land Cover, 1992–1993, ORNL DAAC [data
set], https://doi.org/10.3334/ORNLDAAC/930, 2009.
Meijer, J., Huijbregts, M., Schotten, K., and Schipper, A.: Global patterns
of current and future road infrastructure, Environ. Res. Lett., 13, 064006,
https://doi.org/10.1088/1748-9326/aabd42, 2018.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217–240, https://doi.org/10.5194/soil-7-217-2021, 2021.
Qiu, Y.: MODIS daily cloud-free snow cover product over the Tibetan Plateau
(2002–2015), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Hydrol.tpe.00000026.file, 2018a.
Qiu, Y.: Snow water equivalent dataset for the High Asia Region (2002–2011),
National Tibetan Plateau Data Center [data set],
https://doi.org/10.11922/sciencedb.660, 2018b.
Ran, Y. and Li, X.: The mean annual ground temperature (MAGT) and permafrost
thermal stability dataset over Tibetan Plateau for 2005–2015, National
Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Geogra.tpdc.270672, 2019.
Read, E. K., Patil, V. P., Oliver, S. K., Hetherington, A. L., Brentrup, J.
A., Zwart, J. A., Winters, K. M., Corman, J. R., Nodine, E. R., Woolway, R.
I., Dugan, H. A., Jaimes, A., Santoso, A. B., Hong, G. S., Winslow, L. A.,
Hanson, P. C., and Weathers, K. C.: The importance of lake-specific
characteristics for water quality across the continental United States,
Ecol. Appl., 25, 943–955, 2015.
Soranno, P. A., Cheruvelil, K. S., Webster, K. E., Bremigan, M. T., Wagner,
T., and Stow, C. A.: Using Landscape Limnology to Classify Freshwater
Ecosystems for Multi-ecosystem Management and Conservation, Bioscience, 60,
440–454, https://doi.org/10.1525/bio.2010.60.6.8, 2010.
Soranno, P. A., Bacon, L. C., Beauchene, M., Bednar, K. E., Bissell, E. G.,
Boudreau, C. K., Boyer, M. G., Bremigan, M. T., Carpenter, S. R., Carr, J.
W., Cheruvelil, K. S., Christel, S. T., Claucherty, M., Collins, S. M.,
Conroy, J. D., Downing, J. A., Dukett, J., Fergus, C. E., Filstrup, C. T.,
Funk, C., Gonzalez, M. J., Green, L. T., Gries, C., Halfman, J. D.,
Hamilton, S. K., Hanson, P. C., Henry, E. N., Herron, E. M., Hockings, C.,
Jackson, J. R., Jacobson-Hedin, K., Janus, L. L., Jones, W. W., Jones, J.
R., Keson, C. M., King, K. B. S., Kishbaugh, S. A., Lapierre, J.-F.,
Lathrop, B., Latimore, J. A., Lee, Y., Lottig, N. R., Lynch, J. A.,
Matthews, L. J., McDowell, W. H., Moore, K. E. B., Neff, B. P., Nelson, S.
J., Oliver, S. K., Pace, M. L., Pierson, D. C., Poisson, A. C., Pollard, A.
I., Post, D. M., Reyes, P. O., Rosenberry, D. O., Roy, K. M., Rudstam, L.
G., Sarnelle, O., Schuldt, N. J., Scott, C. E., Skaff, N. K., Smith, N. J.,
Spinelli, N. R., Stachelek, J. J., Stanley, E. H., Stoddard, J. L., Stopyak,
S. B., Stow, C. A., Tallant, J. M., Tan, P.-N., Thorpe, A. P., Vanni, M. J.,
Wagner, T., Watkins, G., Weathers, K. C., Webster, K. E., White, J. D.,
Wilmes, M. K., and Yuan, S.: LAGOS-NE: a multi-scaled geospatial and
temporal database of lake ecological context and water quality for thousands
of US lakes, Gigascience, 6, gix101,
https://doi.org/10.1093/gigascience/gix101, 2017.
Sun, J., Yue, Y., and Niu, H.: Evaluation of NPP using three models compared
with MODIS-NPP data over China, PLoS One, 16, e0252149,
https://doi.org/10.1371/journal.pone.0252149, 2021.
Trabucco, A. and Zomer, R. J.: Global Soil Water Balance Geospatial
Database, CGIAR-CSI [data set], https://cgiarcsi.community (last access: 18 August 2022), 2010.
UNEP-WCMC and IUCN: Protected Planet: The World Database on Protected Areas
(WDPA), Protected Planet [data set], http://www.protectedplanet.net (last access: 18 August 2022), 2021.
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones,
K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M.
A., and Watson, J. E. M.: Global terrestrial Human Footprint maps for 1993
and 2009, Sci. Data, 3, 160067, https://doi.org/10.1038/sdata.2016.67, 2016.
Wang, B. and Ran, Y.: Diversity of Remote Sensing-Based Variable Inputs
Improves the Estimation of Seasonal Maximum Freezing Depth, Remote Sens., 13, 4829,
https://doi.org/10.3390/rs13234829, 2021.
Wang, D., Wu, T., Zhao, L., Mu, C., Li, R., Wei, X., Hu, G., Zou, D., Zhu, X., Chen, J., Hao, J., Ni, J., Li, X., Ma, W., Wen, A., Shang, C., La, Y., Ma, X., and Wu, X.: A 1 km resolution soil organic carbon dataset for frozen ground in the Third Pole, Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, 2021.
Willmott, C. and Feddema, J.: A more rational climatic moisture index, Prof.
Geogr., 44, 84–88, https://doi.org/10.1111/j.0033-0124.1992.00084.x, 1992.
Xu, E.: Land use of the Tibet Plateau in 2015 (Version 1.0), National
Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Geogra.tpdc.270198, 2019.
Xu, F., Zhang, G., Yi, S., and Chen, W.: Seasonal trends and cycles of
lake-level variations over the Tibetan Plateau using multi-sensor altimetry
data, J. Hydrol., 604, 127251,
https://doi.org/10.1016/j.jhydrol.2021.127251, 2022.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yang, K. and He, J.: China meteorological forcing dataset (1979–2018),
National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file, 2019.
Zhang, G.: The lakes larger than 1 km2 in Tibetan Plateau (V3.0) (1970s–2021), National Tibetan Plateau Data Center [data set], https://doi.org/10.11888/Hydro.tpdc.270303, 2019.
Zhang, G., Luo, W., Chen, W., and Zheng, G.: A robust but variable lake
expansion on the Tibetan Plateau, Sci. Bull., 64, 1306–1309,
https://doi.org/10.1016/j.scib.2019.07.018, 2019.
Zhang, G., Bolch, T., Chen, W., and Crétaux, J.-F.: Comprehensive
estimation of lake volume changes on the Tibetan Plateau during 1976–2019
and basin-wide glacier contribution, Sci. Total Environ., 772, 145463,
https://doi.org/10.1016/j.scitotenv.2021.145463, 2021.
Zhang, T., Soranno, P. A., Cheruvelil, K. S., Kramer, D. B., Bremigan, M.
T., and Ligmann-Zielinska, A.: Evaluating the effects of upstream lakes and
wetlands on lake phosphorus concentrations using a spatially-explicit model,
Landsc. Ecol., 27, 1015–1030, https://doi.org/10.1007/s10980-012-9762-z,
2012.
Zhang, W.: Dataset of soil erosion intensity with 300 m resoluton in Tibetan
Plateau (1992, 2005, 2015), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Disas.tpdc.270224, 2019.
Zhou, C.: The dataset of wetland pattern changes on the Tibet Plateau
(1970s, 2000s), National Tibetan Plateau Data Center [data set],
https://doi.org/10.11888/Ecology.tpe.51.file, 2018.
Zhu, X., Pei, Y., Zheng, Z., Dong, J., Zhang, Y., Wang, J., Chen, L.,
Doughty, R. B., Zhang, G., and Xiao, X.: Underestimates of Grassland Gross
Primary Production in MODIS Standard Products, Remote Sens., 10, 1771,
https://doi.org/10.3390/rs10111771, 2018.
Zomer, R. J., Trabucco, A., Bossio, D. A., and Verchot, L. V.: Climate
change mitigation: A spatial analysis of global land suitability for clean
development mechanism afforestation and reforestation, Agric. Ecosyst.
Environ., 126, 67–80, https://doi.org/10.1016/j.agee.2008.01.014, 2008.
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
The management and conservation of lakes should be conducted in the context of catchments...
Special issue
Altmetrics
Final-revised paper
Preprint