Articles | Volume 14, issue 1
https://doi.org/10.5194/essd-14-295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-295-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A national extent map of cropland and grassland for Switzerland based on Sentinel-2 data
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Nica Huber
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Dominique Weber
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Christian Ginzler
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Bronwyn Price
Swiss Federal Institute for Forest, Snow and Landscape Research WSL,
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Related authors
No articles found.
Mauro Marty, Livia Piermattei, Lars T. Waser, and Christian Ginzler
Earth Syst. Sci. Data, 17, 5811–5832, https://doi.org/10.5194/essd-17-5811-2025, https://doi.org/10.5194/essd-17-5811-2025, 2025
Short summary
Short summary
Millions of aerial photographs represent an enormous resource for geoscientists. In this study, we used freely available historical stereo images covering Switzerland (1979–2006) to derive four countrywide digital elevation models (DSMs) at a 1 m spatial resolution. Our DSMs achieved sub-metric accuracy compared to reference data and high image matching completeness, demonstrating the feasibility of capturing surface change at a high spatial resolution over different land cover classes.
Aaron Cremona, Matthias Huss, Johannes Marian Landmann, Mauro Marty, Marijn van der Meer, Christian Ginzler, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-2929, https://doi.org/10.5194/egusphere-2025-2929, 2025
Short summary
Short summary
Our study provides daily mass balance estimates for every Swiss glacier from 2010–2024 using modelling, remote sensing observations, and machine learning. Over the period, Swiss glaciers lost nearly a quarter of their ice volume. The approach enables investigating the spatio-temporal variability of glacier mass balance in relation to the driving climatic factors.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Florian Zellweger, Eric Sulmoni, Johanna T. Malle, Andri Baltensweiler, Tobias Jonas, Niklaus E. Zimmermann, Christian Ginzler, Dirk Nikolaus Karger, Pieter De Frenne, David Frey, and Clare Webster
Biogeosciences, 21, 605–623, https://doi.org/10.5194/bg-21-605-2024, https://doi.org/10.5194/bg-21-605-2024, 2024
Short summary
Short summary
The microclimatic conditions experienced by organisms living close to the ground are not well represented in currently used climate datasets derived from weather stations. Therefore, we measured and mapped ground microclimate temperatures at 10 m spatial resolution across Switzerland using a novel radiation model. Our results reveal a high variability in microclimates across different habitats and will help to better understand climate and land use impacts on biodiversity and ecosystems.
Cited articles
Bengtsson, J., Bullock, J. M., Egoh, B., Everson, C., Everson, T., O'Connor,
T., O'Farrell, P. J., Smith, H. G., and Lindborg, R.: Grasslands-more
important for ecosystem services than you might think, Ecosphere, 10,
e02582, https://doi.org/10.1002/ecs2.2582, 2019.
Boch, S., Bedolla, A., Ecker, K. T., Ginzler, C., Graf, U., Küchler, H.,
Küchler, M., Nobis, M. P., Holderegger, R., and Bergamini, A.: Threatened
and specialist species suffer from increased wood cover and productivity in
Swiss steppes, Flora, 258, 151444,
https://doi.org/10.1016/j.flora.2019.151444, 2019.
Buchhorn, M., Lesiv, M., Tsendbazar, N. E., Herold, M., Bertels, L., and
Smets, B.: Copernicus global land cover layers-collection 2, Remote Sens.,
12, 1–14, https://doi.org/10.3390/rs12061044, 2020.
Buchhorn, M., Smets, B., Bertels, L., Roo, B. De, Lesiv, M., Tsendbazar,
N.-E., Li, L., and Tarko, A.: Copernicus Global Land Service: Land Cover
100 m: version 3 Globe 2015–2019: Product User Manual, Zenodo [data set],
https://doi.org/10.5281/zenodo.4723921, 2021.
Bundesamt für Statistik: Arealstatistik Schweiz, Neuchâtel, [data set], available at: https://www.bfs.admin.ch/bfs/de/home/statistiken/raum-umwelt/erhebungen/area.html (last access: 20 June 2021), 2020.
Copernicus Land Monitoring Service: Grassland 2018 and Grassland change 2015–2018, [data set] available at: https://land.copernicus.eu/pan-european/ (last access: 20 June 2021), 2020.
ESRI: ArcGIS Desktop: Release 10.3, available at: https://desktop.arcgis.com/ (last access: 20 June 2021), 2016.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
FOAG: Biodiversity for food and agriculture in Switzerland,
Abridged version and main findings of Switzerland’s Country
Report on the State of Biodiversity for Food and Agriculture,
Bern, 78 pp., available at: https://www.blw.admin.ch/ (last access: 20 June 2021), 2015.
Foody, G. M.: Explaining the unsuitability of the kappa coefficient in the
assessment and comparison of the accuracy of thematic maps obtained by image
classification, Remote Sens. Environ., 239, 111630,
https://doi.org/10.1016/j.rse.2019.111630, 2020.
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and
Garcia-Rodriguez, J.: A Review on Deep Learning Techniques Applied to
Semantic Segmentation, arXiv [preprint], 1–23,
arXiv:1704.06857,
2017.
Ghazaryan, G., Dubovyk, O., Löw, F., Lavreniuk, M., Kolotii, A.,
Schellberg, J., and Kussul, N.: A rule-based approach for crop identification
using multi-temporal and multi-sensor phenological metrics, Eur. J. Remote
Sens., 51, 511–524, https://doi.org/10.1080/22797254.2018.1455540, 2018.
Ginzler, C. and Hobi, M.: Countrywide Stereo-Image Matching for Updating
Digital Surface Models in the Framework of the Swiss National Forest
Inventory, Remote Sens., 7, 4343–4370,
https://doi.org/10.3390/rs70404343, 2015.
Gómez Giménez, M., de Jong, R., Della Peruta, R., Keller, A., and
Schaepman, M. E.: Determination of grassland use intensity based on
multi-temporal remote sensing data and ecological indicators, Remote Sens.
Environ., 198, 126–139, https://doi.org/10.1016/j.rse.2017.06.003, 2017.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji,
L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H.,
Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu,
L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song,
L.: Stable classification with limited sample: transferring a 30-m
resolution sample set collected in 2015 to mapping 10-m resolution global
land cover in 2017, Sci. Bull., 64, 370–373,
https://doi.org/10.1016/j.scib.2019.03.002, 2019.
Gonseth, Y., Wohlgemuth, T., Sansonnens, B., and Buttler, A.: Die
biogeographischen Regionen der Schweiz. Erläuterungen und
Einteilungsstandard, Umwelt Mater., 48, 2001.
Griffiths, P., Nendel, C., Pickert, J., and Hostert, P.: Towards
national-scale characterization of grassland use intensity based on
integrated Sentinel-2 and Landsat time series data, Remote Sens. Environ., 238, 111124, https://doi.org/10.1016/j.rse.2019.03.017, 2019.
Kolecka, N., Ginzler, C., Pazur, R., Price, B., and Verburg, P.: Regional
Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series,
Remote Sens., 10, 1221, https://doi.org/10.3390/rs10081221, 2018.
Kuhn, M.: Building Predictive Models in R Using the caret Package, J. Stat.
Softw., 28, 1–26, https://doi.org/10.18637/jss.v028.i05, 2008.
Liaw, A. and Wiener, M.: Classification and Regression by randomForest, R
News, 2, 18–22, 2002.
Neteler, M., Bowman, M. H., Landa, M., and Metz, M.: GRASS GIS: A
multi-purpose open source GIS, Environ. Modell. Softw., 31, 124–130,
https://doi.org/10.1016/j.envsoft.2011.11.014, 2012.
Pazúr, R., Huber, N., Weber, D., Ginzler, C., and Price, B.: Cropland and
grassland map of Switzerland based on Sentinel-2 data, EnviDat [data set] [code],
https://doi.org/10.16904/envidat.205, 2021.
Pflugmacher, D., Rabe, A., Peters, M., and Hostert, P.: Mapping pan-European
land cover using Landsat spectral-temporal metrics and the European LUCAS
survey, Remote Sens. Environ., 221, 583–595,
https://doi.org/10.1016/j.rse.2018.12.001, 2019.
QGIS: QGIS Geographic Information System, Open Source, Geospatial Foundation, available at: https://www.qgis.org/ (last access: 10 November 2020), 2020.
Riedel, S., Meier, E., Buholzer, S., Herzog, F., Indermaur, A.,
Lüscher, G., Walter, T., Winizki, J., Hofer, G., Ecker, K.,
and Ginzler, C.: ALL-EMA Methodology Report Agricultural Species and Habitats, Environ. Agroscope Sci., 57, 32, available at: https://www.agroscope.ch/science (last access: 20 December 2021), 2018.
Riedel, S., Lüscher, G., Meier, E., and Herzog, F.: Ökologische
Qualität von Wiesen, die mit Biodiversitätsbeiträgen
gefördert werden, Agrar. Schweiz, 10, 80–87, 2019.
Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., and
Peigné, J.: Agroecological practices for sustainable agriculture. A
review, Agron. Sustain. Dev., 34, 1–20,
https://doi.org/10.1007/s13593-013-0180-7, 2014.
Wohlgemuth, T.: Biogeographical regionalization of Switzerland based on
floristic data: How many species are needed?, Biodivers. Lett., 3,
180–191, https://doi.org/10.2307/2999675, 1996.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021.
Zupanc, A.: Improving Cloud Detection with Machine Learning, Medium, available at:
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (last access: 20 June 2021),
2017.
Short summary
We mapped the distribution of cropland and permanent grassland across Switzerland, where the agricultural land is considerably spatially heterogeneous due to strong variability in topography and climate, thus presenting challenges to mapping. The resulting map has high accuracy in lowlands as well as in mountainous areas. Thus, we believe that the presented mapping approach and resulting map will provide a solid ground for further research in agricultural land cover and landscape structure.
We mapped the distribution of cropland and permanent grassland across Switzerland, where the...
Altmetrics
Final-revised paper
Preprint