Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2445-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wave attenuation potential, sediment properties and mangrove growth dynamics data over Guyana's intertidal mudflats: assessing the potential of mangrove restoration works
Department of Coastal & Urban Risk & Resilience, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Department of Hydraulic Engineering, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
Mick van der Wegen
Department of Coastal & Urban Risk & Resilience, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Jasper Dijkstra
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Johan Reyns
Department of Coastal & Urban Risk & Resilience, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Department of Hydraulic Engineering, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
Bram C. van Prooijen
Department of Hydraulic Engineering, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
Dano Roelvink
Department of Coastal & Urban Risk & Resilience, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands
Department of Hydraulic Engineering, Delft University of Technology, P.O. Box 5, 2600 AA Delft, the Netherlands
Related authors
No articles found.
Ronaldyn Dabu, Dano Roelvink, Juan Garzon, and Ap van Dongeren
EGUsphere, https://doi.org/10.5194/egusphere-2025-2384, https://doi.org/10.5194/egusphere-2025-2384, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We studied how storms reshape dunes and shorelines along a Portuguese barrier island. Using satellite images, field data, and a fast computer model, we found that some areas lose sand rapidly while others gain it, depending on dune height and storm duration. Our findings help explain where and why coastal erosion occurs, and support smarter planning for coastal protection in a changing climate.
Dano Roelvink, Maarten van Ormondt, Johan Reyns, and Marlies van der Lugt
EGUsphere, https://doi.org/10.5194/egusphere-2025-492, https://doi.org/10.5194/egusphere-2025-492, 2025
Short summary
Short summary
Existing wave models are often quite heavy for coastal applications. The SnapWave model simulates wave refraction (turning towards the coast), shoaling (steepening up) and dissipation (loss of energy by friction and wave breaking), and it uses an efficient computational mesh that you can refine where you need it. In the paper we show that the model can reproduce time series of waves anywhere in the world, using a depth map and wave data from a global model (ERA5) or a local wave buoy.
Kees Nederhoff, Maarten van Ormondt, Jay Veeramony, Ap van Dongeren, José Antonio Álvarez Antolínez, Tim Leijnse, and Dano Roelvink
Geosci. Model Dev., 17, 1789–1811, https://doi.org/10.5194/gmd-17-1789-2024, https://doi.org/10.5194/gmd-17-1789-2024, 2024
Short summary
Short summary
Forecasting tropical cyclones and their flooding impact is challenging. Our research introduces the Tropical Cyclone Forecasting Framework (TC-FF), enhancing cyclone predictions despite uncertainties. TC-FF generates global wind and flood scenarios, valuable even in data-limited regions. Applied to cases like Cyclone Idai, it showcases potential in bettering disaster preparation, marking progress in handling cyclone threats.
Bram C. van Prooijen, Marion F. S. Tissier, Floris P. de Wit, Stuart G. Pearson, Laura B. Brakenhoff, Marcel C. G. van Maarseveen, Maarten van der Vegt, Jan-Willem Mol, Frank Kok, Harriette Holzhauer, Jebbe J. van der Werf, Tommer Vermaas, Matthijs Gawehn, Bart Grasmeijer, Edwin P. L. Elias, Pieter Koen Tonnon, Giorgio Santinelli, José A. A. Antolínez, Paul Lodewijk M. de Vet, Ad J. H. M. Reniers, Zheng Bing Wang, Cornelis den Heijer, Carola van Gelder-Maas, Rinse J. A. Wilmink, Cor A. Schipper, and Harry de Looff
Earth Syst. Sci. Data, 12, 2775–2786, https://doi.org/10.5194/essd-12-2775-2020, https://doi.org/10.5194/essd-12-2775-2020, 2020
Short summary
Short summary
To protect the Dutch coastal zone, sand is nourished and disposed at strategic locations. Simple questions like where, how, how much and when to nourish the sand are not straightforward to answer. This is especially the case around the Wadden Sea islands where sediment transport pathways are complicated. Therefore, a large-scale field campaign has been carried out on the seaward side of Ameland Inlet. Sediment transport, hydrodynamics, morphology and fauna in the bed were measured.
Cited articles
Allison, M., Nittrouer, C., and Kineke, G.: Seasonal sediment
storage on mudflats adjacent to the Amazon River, Mar. Geol., 125,
303–328, https://doi.org/10.1016/0025-3227(95)00017-S, 1995.
Anthony, E. J.: Assessment of peri-urban coastal protection options in
Paramaribo-Wanica, Suriname, WWF Guianas, Paramaribo, https://wwflac.awsassets.panda.org/downloads/ (last access: 1 September 2021), 2016.
Anthony, E. J. and Gratiot, N.: Coastal engineering and large-scale mangrove
destruction in Guyana, South America: Averting an environmental catastrophe
in the making, Ecol. Eng., 47, 268–273,
https://doi.org/10.1016/j.ecoleng.2012.07.005, 2012.
Augustinus, P. G. E. F.: The changing shoreline of Suriname (South America),
Doctoral Thesis, University Utrecht, URN:NBN:NL:UI:10-1874-263140, 1978.
Bao, T. Q.: Effect of mangrove forest structures on wave attenuation in
coastal Vietnam, Oceanologia, 53, 807–818,
https://doi.org/10.5697/oc.53-3.807, 2011.
Battjes, J. and Stive, M.: Calibration and verification of a dissipation
model for random breaking waves, J. Geophys. Res.-Oceans,
90, 9159–9167, https://doi.org/10.1029/JC090iC05p09159, 1985.
Best, Ü. S. N.: Process-based modelling of the impact of sea level rise
on salt marsh & mangrove fringe-mudflat morphodynamics An assessment of
the decadal triggers for morphological evolution and restoration methods, UNESCO-IHE, Water Science & Engineering, https://doi.org/10.25831/rght-5d21, 2017.
Best, U., van der Wegen, M., Reyns, J., Dijkstra, J., Roelvink, D., and van
Prooijen, B.: Advancing Resilience Measures for Vegetated Coastline
(ARM4VEG), Guyana [data set], https://doi.org/10.4121/c.5715269, 2022.
Blankespoor, B., Dasgupta, S., and Lange, G.-M.: Mangroves as a protection
from storm surges in a changing climate, Ambio, 46, 478–491, 2017.
Borsje, B. W., van Wesenbeeck, B. K., Dekker, F., Paalvast, P., Bouma, T.
J., van Katwijk, M. M., and de Vries, M. B.: How ecological engineering can
serve in coastal protection, Ecol. Eng., 37, 113–122,
https://doi.org/10.1016/j.ecoleng.2010.11.027, 2011.
Bovell, O.: NBS Mangrove Project: Setting the foundations for zero net loss
of the mangroves that underpin human wellbeing in the North Brazil Shelf
LME: Review of the effectiveness of existing coastal restoration efforts in
Guyana., International Union for Conservation of Nature (IUNC), Conservation
International (CI), Global Environment Facility (GEF), National Agricultural
Research and Extension institute (NAREI), GEF IW-6 ICM Mangrove Project–GEF ID #9949, https://nbslmegef.wordpress.com/ (last access: 1 April 2020), 2019.
Brunier, G., Anthony, E. J., Gratiot, N., and Gardel, A.: Exceptional rates
and mechanisms of muddy shoreline retreat following mangrove removal, Earth
Surf. Proc. Land., 44, 1559–1571,
https://doi.org/10.1002/esp.4593, 2019.
Chanson, H., Trevethan, M., and Aoki, S.-i.: Acoustic Doppler velocimetry
(ADV) in small estuary: field experience and signal post-processing, Flow
Meas. Instrum., 19, 307–313,
https://doi.org/10.1016/j.flowmeasinst.2008.03.003, 2008.
Colosimo, I., de Vet, P. L. M., van Maren, D. S., Reniers, A. J. H. M.,
Winterwerp, J. C., and van Prooijen, B. C.: The Impact of Wind on Flow and
Sediment Transport over Intertidal Flats, J. Mar. Sci. Eng., 8, 910, https://doi.org/10.3390/jmse8110910, 2020.
Cuc, N. T. K., Suzuki, T., de Ruyter van Steveninck, E. D., and Hai, H.:
Modelling the impacts of mangrove vegetation structure on wave dissipation
in Ben Tre Province, Vietnam, under different climate change scenarios,
J. Coastal Res., 31, 340–347,
https://doi.org/10.2112/JCOASTRES-D-12-00271.1, 2015.
Dalrymple, R. A., Kirby, J. T., and Hwang, P. A.: Wave diffraction due to
areas of energy dissipation, Journal of Waterway, Port, Coastal, and Ocean
Engineering, 110, 67–79,
https://doi.org/10.1061/(ASCE)0733-950X(1984)110:1(67), 1984.
Dasgupta, S., Islam, M. S., Huq, M., Khan, Z. H., and Hasib, M. R.:
Mangroves as protection from storm surges in Bangladesh, SSRN,
https://ssrn.com/abstrac=3075610 (last access: 1 January 2019), 2017.
Dasgupta, S., Islam, M. S., Huq, M., Huque Khan, Z., and Hasib, M. R.:
Quantifying the protective capacity of mangroves from storm surges in
coastal Bangladesh, PloS One, 14, e0214079, https://doi.org/10.1371/journal.pone.0214079, 2019.
Downing, J.: Twenty-five years with OBS sensors: The good, the bad, and the
ugly, Cont. Shelf Res., 26, 2299–2318,
https://doi.org/10.1016/j.csr.2006.07.018, 2006.
Eisma, D.: Oceanographic observations on the Surinam shelf, Hydrographic
Newsletter, Spec. Pub, 5, 21–53, 1967.
Eisma, D. and Van der Marel, H.: Marine muds along the Guyana coast and
their origin from the Amazon Basin, Contrib. Mineral. Petr., 31, 321–334, https://doi.org/10.1007/BF00371152, 1971.
Elgar, S. and Raubenheimer, B.: Wave dissipation by muddy seafloors,
Geophys. Res. Lett., 35, L07611, https://doi.org/10.1029/2008GL033245,
2008.
Feagin, R. A., Mukherjee, N., Shanker, K., Baird, A. H., Cinner, J., Kerr,
A. M., Koedam, N., Sridhar, A., Arthur, R., and Jayatissa, L. P.: Shelter
from the storm? Use and misuse of coastal vegetation bioshields for managing
natural disasters, Conserv. Lett., 3, 1–11,
https://doi.org/10.1111/j.1755-263X.2009.00087.x, 2010.
Food and Agriculture Organization of the United Nations (FAO): The World's
Mangroves 1980–2005: a thematic study prepared in the framework of the
Global Forest Resources Assessment 2005, ISSN 0258-6150, 2007.
Gratiot, N., Bildstein, A., Anh, T. T., Thoss, H., Denis, H., Michallet, H.,
and Apel, H.: Sediment flocculation in the Mekong River estuary, Vietnam, an
important driver of geomorphological changes, C. R. Geosci.,
349, 260–268, https://doi.org/10.1016/j.crte.2017.09.012, 2017.
Haskoning-Nederland and Delft-Hydraulics, W.: Institutional Capacity
Building Activities on Guyana Sea Defences Modelling Report, Volume 1:
Executive Summary, 9M5198.21/RG047/WL/H4095, 2005.
Hegge, B. J. and Masselink, G.: Spectral analysis of geomorphic time series:
auto-spectrum, Earth Surf. Proc. Land., 21, 1021–1040,
https://doi.org/10.1002/(SICI)1096-9837(199611)21:11<1021::AID-ESP703>3.0.CO;2-D, 1996.
Hogarth, P. J.: The biology of mangroves and seagrasses, Oxford University
Press, ISBN 9780198716549, 2015.
Hong Phuoc, V. and Massel, S. R.: Experiments on wave motion and suspended
sediment concentration at Nang Hai, Can Gio mangrove forest, Southern
Vietnam, Oceanologia, 48, 1, 2006.
Horstman, E.: The mangrove tangle: short-term bio-physical interactions in
coastal mangroves, Doctoral Thesis, University of Twente, Enschede, https://doi.org/10.3990/1.9789036536509, 2014.
Horstman, E., Dohmen-Janssen, C. M., Narra, P., Van den Berg, N., Siemerink,
M., and Hulscher, S. J.: Wave attenuation in mangroves: A quantitative
approach to field observations, Coastal Eng., 94, 47–62,
https://doi.org/10.1016/j.coastaleng.2014.08.005, 2014.
Horstman, E. M., Dohmen-Janssen, C. M., Bouma, T. J., and Hulscher, S. J.:
Tidal-scale flow routing and sedimentation in mangrove forests: Combining
field data and numerical modelling, Geomorphology, 228, 244–262,
https://doi.org/10.1016/j.geomorph.2014.08.011, 2015.
Jacobsen, N. G. and McFall, B. C.: A frequency distributed dissipation model
for canopies, Coastal Eng., 150, 135–146,
https://doi.org/10.1016/j.coastaleng.2019.04.007, 2019.
Kit, L. W.: Wave Attenuation Function of Mangroves Along Singapore's
Northern Coast, https://scholarbank.nus.edu.sg/handle/10635/134928 (last access: 1 February 2018), 2016.
Krone, R. B.: Flume studies of transport of sediment in estrarial shoaling
processes, University of California, OCLC 648394993, 1962.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M. I.: Climate
Change 2021: The Physical Science Basis, Contribution of Working Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate
Change, IPCC: Geneva, Switzerland, https://doi.org/10.1017/9781009157896, 2021.
Mazda, Y., Wolanski, E., King, B., Sase, A., Ohtsuka, D., and Magi, M.: Drag
force due to vegetation in mangrove swamps, Mangroves and Salt Marshes, 1,
193–199, https://doi.org/10.1023/A:1009949411068, 1997.
Mazda, Y., Magi, M., Ikeda, Y., Kurokawa, T., and Asano, T.: Wave reduction
in a mangrove forest dominated by Sonneratia sp, Wetl. Ecol. Manag., 14, 365–378, https://doi.org/10.1007/s11273-005-5388-0, 2006.
McIvor, A. L., Möller, I., Spencer, T., and Spalding, M.: Reduction of
wind and swell waves by mangroves, Natural Coastal Protection Series: Report 1, Cambridge Coastal Research Unit Working Paper 40, The Nature Conservancy and Wetlands International, http://resolver.tudelft.nl/uuid:c77ceec8-8db6-4080-b5bb-f414dca9d39d (last access: 1 November 2017), 2012a.
McIvor, A. L., Spencer, T., Möller, I., and Spalding, M.: Storm surge
reduction by mangroves, Natural Coastal Protection Series: Report 2, Hydraulic Engineering Reports, 35, ISSN 2050-7941,
http://resolver.tudelft.nl/uuid:79fe752e-ce52-4bf6-a45c-2847bead07ab (last access: 1 January 2019), 2012b.
Parvathy, K. G., Umesh, P. A., and Bhaskaran, P. K.: Inter-seasonal
variability of wind-waves and their attenuation characteristics by mangroves
in a reversing wind system, Int. J. Climatol., 37,
5089–5106, https://doi.org/10.1002/joc.5147, 2017.
Petryk, S. and Bosmajian, G.: Analysis of flow through vegetation, J. Hydr. Div., 101, 871–884,
https://doi.org/10.1061/JYCEAJ.0004397, 1975.
Pilato, C.: Hydrodynamic Limitations and the Effects of Living Shoreline
Stabilization on Mangrove Recruitment along Florida Coastlines, Masters Thesis, College of Sciences, University of Central Florida, Biology, CFE0007899, 2019.
Proisy, C., Gratiot, N., Anthony, E. J., Gardel, A., Fromard, F., and
Heuret, P.: Mud bank colonization by opportunistic mangroves: a case study
from French Guiana using lidar data, Cont. Shelf Res., 29,
632–641, https://doi.org/10.1016/j.csr.2008.09.017, 2009.
Ratnayake, A. S., Ratnayake, N. P., Sampei, Y., Vijitha, A., and Jayamali,
S. D.: Seasonal and tidal influence for water quality changes in coastal
Bolgoda Lake system, Sri Lanka, J. Coast. Conserv., 22,
1191–1199, https://doi.org/10.1007/s11852-018-0628-7, 2018.
Sasmito, S. D., Murdiyarso, D., Friess, D. A., and Kurnianto, S.: Can
mangroves keep pace with contemporary sea level rise? A global data review,
Wetl. Ecol. Manag., 24, 263–278,
https://doi.org/10.1007/s11273-015-9466-7, 2016.
Smits, B. P.: Morphodynamic optimisation study of the design of
semi-permeable dams for rehabilitation of a mangrove-mud coast: A case study
of the Building-with-Nature project in Demak, Indonesia, Master Thesis,
Hydraulic Engineering, Delft University of Technology, Delft,
http://resolver.tudelft.nl/uuid:b92fbf67-4441-4ddd-bb7e-0d4c81d3381e (last access: 1 March 2018), 2016.
Spalding, M.: World atlas of mangroves, Routledge, London, 336, ISBN 9781849776608, https://doi.org/10.4324/9781849776608, 2010.
Van Duivendijk, J. and Pieters, J.: Design and Construction of the Sea Defences of Guyana, International Symposium October 1982, Polders of the world, The Netherlands, 1982.
van Ledden, M., Vaughn, G., Lansen, J., Wiersma, F., and Amsterdam, M.:
Extreme wave event along the Guyana coastline in October 2005, Cont. Shelf Res., 29, 352–361, https://doi.org/10.1016/j.csr.2008.03.010,
2009.
van Wesenbeeck, B. K., Wolters, G., Antolínez, J. A., Kalloe, S.,
Hofland, B., de Boer, W., Çete, C., and Bouma, T. J.: Woods versus
waves: Wave attenuation through non-uniform forests under extreme
conditions, Research Square, https://doi.org/10.21203/rs.3.rs-321272/v1,
2021.
van Zelst, V., Dijkstra, J. T., van Wesenbeeck, B. K., Eilander, D., Morris,
E. P., Winsemius, H. C., Ward, P. J., and de Vries, M. B.: Cutting the costs
of coastal protection by integrating vegetation in flood defences, Nat.
Commun., 12, 1–11, https://doi.org/10.1038/s41467-021-26887-4, 2021.
Verhagen, H. J. and Loi, T. T.: The use of mangroves in coastal protection,
The 8th International Conference on Coastal and Port Engineering in
Developing Countries (COPEDEC) India, 20–24 February 2012, PIANC, 908–919, http://resolver.tudelft.nl/uuid:85a6189f-89e9-4618-abb7-db47cc13e2a7 (last access: 1 March 2021), 2012.
Vo-Luong, P. and Massel, S.: Energy dissipation in non-uniform mangrove
forests of arbitrary depth, J. Marine Syst., 74, 603–622,
https://doi.org/10.1016/j.jmarsys.2008.05.004, 2008.
Wells, J. T.: Shallow-Water Waves and Fluid-Mud Dynamics, Coast of Surinam,
South America, Louisiana State University and Agricultural & Mechanical
College, Louisiana, USA, https://apps.dtic.mil/sti/citations/ADA053251 (last access: 1 September 2021), 1977.
Wells, J. T. and Coleman, J. M.: Physical processes and fine-grained
sediment dynamics, coast of Surinam, South America, J. Sediment.
Res., 51, 1053–1068,
https://doi.org/10.1306/212F7E1E-2B24-11D7-8648000102C1865D, 1981a.
Wells, J. T. and Coleman, J. M.: Periodic mudflat progradation, northeastern
coast of South America; a hypothesis, J. Sediment. Res., 51,
1069–1075, https://doi.org/10.2110/jsr.51.1069, 1981b.
Wells, J. T., Coleman, J. M., and Wiseman Jr., W. J.: Suspension and
transportation of fluid mud by solitary-like waves, Coastal Eng.
1978, 1932–1952, https://doi.org/10.1061/9780872621909.119, 1978.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton,
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., and
Bourne, P. E.: The FAIR Guiding Principles for scientific data management
and stewardship, Scientific Data, 3, 1–9,
https://doi.org/10.1038/sdata.2016.18, 2016.
Willemsen, P., Horstman, E., Borsje, B., Friess, D., and Dohmen-Janssen, C.:
Decreased resilience of mangroves stressed by human interference, Master of
Science (MSc.), http://purl.utwente.nl/essays/74030 (last access: 1 May 2020), 2015.
Winterwerp, J. C., Albers, T., Anthony, E. J., Friess, D. A., Mancheño,
A. G., Moseley, K., Muhari, A., Naipal, S., Noordermeer, J., and Oost, A.:
Managing erosion of mangrove-mud coasts with permeable dams – lessons
learned, Ecol. Eng., 158, 106078,
https://doi.org/10.1016/j.ecoleng.2020.106078, 2020.
World Bank: Managing Coasts with Natural Solutions: Guidelines for Measuring
and Valuing the Coastal Protection Services of Mangroves and Coral Reefs,
World Bank, Washington, DC., http://hdl.handle.net/10986/23775 (last access: 1 October 2021), 2016.
Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., and Smith III, T.
J.: The role of mangroves in attenuating storm surges, Estuarine, Coastal
and Shelf Science, 102, 11–23, https://doi.org/10.1016/j.ecss.2012.02.021,
2012.
Short summary
The combination of seawalls and vegetation may be the key to Guyana's survival against rising water levels; however knowledge about the system behaviour and use of vegetation is inadequate. This paper comprises the first dataset since the 1970s along the Guyana coastline. Instruments were deployed to capture data on the water levels, waves and sediment locally. Data revealed the ways in which sediment is transported and deposited, as well as the wave damping of the mangrove–mudflat system.
The combination of seawalls and vegetation may be the key to Guyana's survival against rising...
Altmetrics
Final-revised paper
Preprint